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Abstract 

We investigate recently introduced lightweight cryptographic techniques that efficiently target 
communication security to meet use cases such as interconnected devices working in Low Power 
Wide Area (LPWA) networks. First of all, we isolate these lightweight techniques as non-linear, ad
ditive, stream ciphers. Then, we describe theoretical analysis to support some evidence of plausible 
security: (a) high-period stream ciphers rule out certain classes of attacks; (b) idealized versions 
of the analyzed lightweight stream ciphers have high period. Finally, we also show empirical per
formance results, demonstrating effective algorithms that easily fit into the limited resources of 
constrained environments, while outperforming more traditional methods (e.g., block ciphers) by 
almost one order of magnitude. 

Introduction 

In today’s interconnected world and the “Internet of Things”, certain sufficiently constrained envi
ronments exist such that the traditional NIST-approved cryptographic algorithms do not perform to 
the operating requirements. Lightweight cryptographic primitives, although possibly not as secure as 
conventional cryptographic primitives (e.g., block ciphers, hash functions), may be efficient enough to 
enable applications over such constrained environment. For cryptography primitives in conventional 
desktop and/or server environments, several years of modern cryptography research were needed to 
find the right formal definitions so to rigorously state their security properties under carefully for
mulated models and assumptions. For lightweight cryptography, such a process has barely started. 
In fact, given the current state of the art in lightweight cryptography, giving evidence that any level 
(even though smaller) of security is achievable, while guaranteeing the desired higher performance, is 
already a non-trivial challenge. In this paper, we attempt to address such a challenge with respect to 
some recently proposed lightweight cryptographic solutions for certain relevant application use cases. 

Our contribution. In this paper we analyze lightweight cryptographic solutions that are being used 
in RPM1 [Rel14, Rel14b, Rel14c, Rel14d] to achieve communication security among interconnected 
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devices working in Low Power Wide Area (LPWA) networks. These techniques were designed to 
take into consideration various constraining factors including lightweight computing of sensors, power 
requirements, data rates and bandwidth in conjunction with Quality of Service (QoS) requirements 
that are Medium QoS such as residential smart meters or HVAC, as well as High QoS such as heart 
monitors or power utility smart grid. In the rest of the paper we also detail application use cases for 
these and similar technologies. 

Our technical contribution starts by showing quantitative aspects of the following known relation
ships between stream ciphers with long period and secure symmetric encryption schemes: (1) stream 
ciphers generating a pseudo-random sequence of values can be turned into secure symmetric encryp
tion schemes; and (2) the period of stream ciphers directly bounds the time window of security for the 
associated symmetric encryption scheme. 

We then consider the RPM constructions and isolate the underlying lightweight cryptographic 
primitives as two additive and non-linear stream ciphers. In RPM, these are used in combination with 
conventional cryptographic techniques and modes of operation to provide lightweight constructions 
that very efficiently target a number of interesting communication security properties, including: con
fidentiality via encryption, implicit mutual and constant authentication, continuous key management 
by key re-freshing. 

On a more practical side, we report performance results, showing that symmetric encryption based 
on the two lightweight RPM stream ciphers is faster by almost one order of magnitude than AES-based 
symmetric encryption. 

On a more theoretical side, we analyze the security of encryption schemes based on the two 
lightweight RPM stream ciphers. Specifically, we show that idealized versions of them have a long 
period. As perhaps of independent interest, the analysis is based on estimating the number of collisions 
in lightweight functions, and establishing linear independence and/or ranks of matrices of a specific 
structure. Our analysis methodology is based on carefully deriving idealized version of each specific 
lightweight construction, and obtaining a proof that the idealized version has large period to potentially 
infer some confidence of security against some class of attacks (i.e., attacks based on low stream cipher 
periods) for the original, non-idealized, version. On one hand, this idealization is desirable in that it 
makes the analysis more tractable, it provides analysis related to constructions for which no analysis 
exists, and it sheds light on potential construction properties. On the other hand, we caution the reader 
that formal statements proved for an idealized version may not translate to the non-idealized version. 
This fact is not new: as an example, as part of an active cryptography research area, researchers 
often consider idealized versions of cryptographic constructions and prove them to be secure under the 
existence of a random oracle. Indeed, the random oracle methodology, first suggested in [BeRo93], is 
being often used, in many variants, to give some informative evidence of security in schemes for which 
a proof is otherwise unavailable or hard to obtain. However, caution is often advocated by researchers 
in extrapolating these results, as several scheme examples have been constructed where an idealized 
variant is secure but the non-idealized is insecure (starting with [CaGoHa04]). 

Organization of the paper. In Section 2 we detail basic definitions and relationships between 
symmetric encryption schemes and stream ciphers. In Section 3 and 4 we present the two stream 
ciphers underlying the RPM lightweight communication security solutions. In Section 5 we analyze 
the period of idealized versions of the described stream ciphers. We conclude with performance results 
in Section 6 and application use cases in Section 7. 
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2 Definitions, Background and Preliminaries 

In this section we give some basic definitions, including pseudo-random generators, random functions, 
symmetric encryption schemes and stream ciphers. We then recall some known facts relating properties 
like pseudo-randomness and period of stream ciphers to the security of encryption schemes. 

Basic definitions and primitives. We say that two distributions D0 and D1 are (t, E)-indistinguishable 
if for any algorithm A running in time t, it holds that  
Prob


 

x ← D0 : A(x) = 1


  
− Prob
 x ← D1 : A(x) = 1


 
  
≤ E
 

(i.e., no algorithm running in time t can distinguish with probability ≥ E if a random sample came 
from one distribution or the other). 

A function {Gn,m : n ∈ N , m ≥ n + 1}, with Gn,m : {0, 1}n → {0, 1}m, is a (t, E)-pseudo-random 
generator (family) if the distribution {x ← {0, 1}n : Gn,m(x)} is (t, E)-indistinguishable from the 
uniform distribution over {0, 1}m . A function {Rn : n ∈ N },, with Rn : {0, 1}n → {0, 1}n is a random 
function if the function Rn is chosen with distribution uniform across all possible functions with n-bit 
inputs and outputs. A random permutation is a random function such that Rn is also a permutation 
from the input domain to the output domain. 

Symmetric Encryption. We will define (conventional) symmetric encryption schemes, as well as a 
stateful version of them. Except for specifically treated cases, definitions are applicable to both. 

Let K be a key space, M be a message space, and C be a ciphertext space. A (stateless) encryption 
scheme E S = (E , D) and a stateful encryption scheme sE S = (sE , sD) are each specified by a pair 
of algorithms, with the following syntax and properties. 

Syntax. The encryption algorithm E is a probabilistic algorithm that, on input a key k ∈ K and a 
plaintext m ∈ M , returns a ciphertext c ∈ C. The decryption algorithm D is a probabilistic algorithm 
that, on input a key k ∈ K and a ciphertext c ∈ C, returns either a plaintext m' ∈ M or a special 
symbol ⊥ indicating that the ciphertext is invalid. 

The stateful encryption algorithm sE is a probabilistic algorithm that, on input a key k ∈ K, a 
current state esi, for an integer i ≥ 0, and a plaintext m ∈ M , returns a ciphertext c ∈ C and an 
updated state esi+1. The decryption algorithm D is a probabilistic algorithm that, on input a key 
k ∈ K, a current state dsi, for an integer i ≥ 0, and a ciphertext c ∈ C, returns an updated state 
dsi+1, and either a plaintext m' ∈ M or a special symbol ⊥ indicating that the ciphertext is invalid. 

Properties: Decryption Correctness. The decryption correctness property of an encryption scheme 
states that the decryption algorithm (almost) always returns the same plaintext used to compute the 
ciphertext using the encryption algorithm. Formally, we say that scheme (KG,E,D) satisfies decryption 
correctness if for any m ∈ M , it holds that the following probability is negligible:  
 'k ← K; c ← E(k, m); m' ← D(k, c) : m = m

 

Prob
 .
 

The formalization of this property for stateful encryption schemes is similar. 

Properties: Security. Several formalizations for the security notion of symmetric encryption schemes 
have been considered in the literature, under different adversary models. Here, we consider the (most 
typically used) adversary model where the adversary is allowed to: (1) eavesdrop the communication 
between sender and receiver; (2) perform a chosen-message attack. A number of security definitions in 
this adversary model have been proposed in the literature (see, for instance, [Bdjr97] for comparison 
among many of these notions). Here, we use a notion that was called “real-or-random” security. 
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Informally speaking, real-or-random security says that an adversary would be unable to tell apart 
encryptions of known data from encryptions of random data. Formally, let A be an adversary with 
access to an oracle O; that is, A can repeatedly ask a query to O and obtain an associated reply. 
Consider O as either (1) the encryption algorithm E(k, ·) that, on input a query q by A, returns 
E(k, q), where k is random element from K and unknown to A, or (2) the encryption algorithm 
rE (k, ·), that, on input a query q by A, returns E(k, r), for a random element r from M , and a 
random element k from K, both r and k being unknown to A. We say that scheme (KG,E,D) satisfies 
(t, q, E)-“real-or-random” security if for any m ∈ M , and any adversary running in time at most t, and 
making at most q oracle queries, it holds that:     

Pr out ← AE(k,·) : out = 1 − Pr out ← ArE (k,·) : out = 1 ≤ E. 

Remarks. The main goal in the design of symmetric encryption schemes consists of designing a scheme 
that satisfies t, q, E, for t, q polynomial and E negligible in the security parameter or, more concretely, 
for ‘large enough’ t, q and ‘small enough’ E. We also note that by the transitive property, the inability 
to distinguish an encryption of any message from an encryption of a random message, implies the 
inability to distinguish encryptions of any two messages. Finally, we note that the formalization of 
this property for stateful encryption schemes is similar. 

Examples. We recall the “one-time pad” encryption scheme, as its properties will be implicitly used in 
the rest of the paper. It is defined as follows. The key space K, the message space M and the ciphertext 
space C are defined to be {0, 1}£, for the same positive integer £. On input k ∈ K and m ∈ M , the 
encryption algorithm returns c = m ⊕ k. On input k ∈ K and c ∈ C, the decryption algorithm returns 

' m = c ⊕ k. This scheme satisfies decryption correctness and (t, q, E)-“real-or-random” security, for 
unbounded t, q and E = 0, but this level of security does require |K| ≥ |M |. 

For block ciphers like AES, when combined with block cipher modes of operation, like CBC or 
Counter Mode, one can obtain |K| constant with respect to |M | and prove that they satisfy (t, q, E)
“real-or-random” security, for ‘large enough’ t, q and ‘small enough’ E, assuming the underlying block 
cipher is ‘sufficiently close’ to a random permutation with the same input and output lengths. 

Stream ciphers. Informally, a stream cipher can be considered as a method to generate a pseudo
random sequence of keys, along with some state information. 

Let K be a key space, S be a state space, Ak be a key alphabet, Am be a plaintext alphabet, Ac 

be a ciphertext alphabet, and M = A∗ (resp., C = A∗) be a message space (resp., ciphertext space) m c 
formed by an indefinite cartesian product of the plaintext alphabet (resp., ciphertext alphabet). A 
(synchronous) stream cipher S C = (F, G, H, H −1) is specified by a tuple of algorithms, with the 
following syntax and properties. 

Syntax. Let s0 be the initial state. The next state algorithm F is a deterministic algorithm that, on 
input a (master) key k ∈ K, and a current state si ∈ S, returns a next state si+1 ∈ S, for any index 
integer i ≥ 0. The next key algorithm G is a deterministic algorithm that, on input a (master) key 
k ∈ K, and a current state si ∈ S, returns a next key ki ∈ Ak, for any index integer i ≥ 0. The 
character encryption algorithm H is a deterministic algorithm that, on input a current key ki ∈ Ak 

and a plaintext character mi ∈ Am, returns a ciphertext character ci ∈ Ac. The character decryption 
algorithm H−1 is a deterministic algorithm that, on input a current key ki ∈ Ak and a ciphertext 
character ci ∈ Ac, returns a plaintext character mi ∈ Am. 

Other Properties of stream ciphers. Let m = n · t, for some integer t > 0. Define function prGn,q 

as the function that, for any index integer i > 0, returns (ki, . . . , ki+t), where si+1 = F (k, si) and 
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ki = G(k, si), for i = 1, . . . , q. We say that the stream cipher S C = (F, G, H, H −1) returns a (t, E)
pseudo-random sequence of q keys if the function prGn,q is a (t, E)-pseudo-random generator. 

We say that the stream cipher S C = (F, G, H, H −1) is additive if H(ki, mi) = ki ⊕ mi and 
H−1(ki, ci) = ki ⊕ ci, for all integers i ≥ 0. 

A sequence s = (s0, s1, . . .) is called periodic if there are integers i0, t > 0 such that si+t = si for 
and all i ≥ i0. The least positive integer t satisfying this property is called the period of sequence s. 
The period of the sequence of next keys returned by a stream cipher S C is called the period of stream 
cipher S C . 

Relationships between stream ciphers and symmetric encryption. We formulate two known 
results on using stream ciphers for stateful symmetric encryption. (The qualitative results are known, 
but we have never seen such results with detailed quantitative analysis.) The first proposition says 
that an additive stream cipher returning a pseudo-random sequence of keys can directly be used to 
produce a secure encryption scheme. 

Proposition 1 Let S C be an additive stream cipher. If S C returns a (t, E)-pseudo-random sequence 
of q keys, then S C -E S is a stateful symmetric encryption scheme that satisfies decryption correctness 
and (t ' , q ' , E ' )-real-or-random security, for t ' = t − O(q) and E ' = E. 

The next proposition says that the period of an additive stream cipher limits the number of messages 
that might be securely encrypted using a scheme based on that stream cipher. 

Proposition 2 Let S C be an additive stream cipher with period p. Also, let S C -E S be a stateful 
symmetric encryption scheme that satisfies decryption correctness. For any E > 0, S C -E S does not 
satisfy (t, q, E)-real-or-random security, for t = O(p) and q ≥ p. 

Remarks. Proposition 1 suggests a way to build efficient encryption schemes based on stream ciphers 
that produce pseudo-random sequences of keys. The best known approaches to design stream ciphers 
that are conjectured to have this property are based on block ciphers or cryptographic hash functions, 
which we try to outperform in lightweight cryptography constructions. Thus, Proposition 1 can also 
be interpreted as setting a goal when designing lightweight stream ciphers: trying to approximate the 
pseudo-randomness property using more efficient constructs than block ciphers. This is one rationale 
behind the design of the constructions in Section 3 and 4. 

Proposition 2 suggests a way to limit a class of natural attacks when building efficient encryption 
schemes based on lightweight stream ciphers: design a stream cipher with a high period. This is 
another rationale behind the design of the constructions in Section 3 and 4. 

3 A First RPM Stream Cipher 

In this section we describe the first RPM cipher. We first present its two primitive functions, and then 
define the stream cipher based on these two functions. 

3.1 A Primitive Function: PDAF 

The first primitive function is called Position Digit Algebra Function (briefly, PDAF). It takes as input 
two n-element lists x and y of numbers from a set of size r and returns as output an n-element list z 
of numbers from a set of size r. Each component of the output list is computed as the sum (modulo r) 
of two elements from list x, where the index of the second element within the list is selected according 
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to an element of list y. As the additions do not require a carry, the entire PDAF function can be
 
executed in parallel. We now give a more formal description.
 

Parameters for PDAF: positive numbers n, r, where n is even.
 

Input to PDAF: lists x = (x[0], . . . , x[n−1]) and y = (y[0], . . . , y[n−1]), where x[i], y[i] ∈ {0, . . . , r −
 
1}, for i = 0, . . . , n − 1.
 

Instructions for PDAF: 

1. For i = 0, . . . , n − 1,
 
set j(i) = (i + y(i)) mod n
 
set z[i] = (x[i] + x[j(i)]) mod r
 

2. Return: z = (z[0], . . . , z[n − 1]). 

Example. Assume n = 6 and r = 16. If x = (3, 8, 7, 11, 1, 15) and y = (2, 11, 5, 8, 8, 6) then 
z = (10, 11, 15, 10, 4, 14). 

3.2 A Primitive Function: OWC 

The second primitive function is called One-Way Cut (briefly, OWC). It takes as input an n-element
 
list x of numbers from a set of size r and returns as output an n/2-element list z of numbers from a set
 
of size r. We describe the most basic variant, where the output list is computed by summing modulo
 
r two of the elements from the input list, one from each of two input sublists. In another variant, not
 
described here, the function uses a parameter sv from set {1, . . . , n/2}, called a separation number,
 
and used to partition list x into equal-length lists. As the additions do not require a carry, the entire
 
OWC function can be executed in parallel. We now give a more formal description.
 

Parameters for OWC: positive numbers n, r, where n is even.
 

Input to OWC: list x = (x[0], . . . , x[n − 1]), where x[i] ∈ {0, . . . , r − 1}, for i = 0, . . . , n − 1.
 

Instructions for OWC:
 

1. For i = 0, . . . , n/2 − 1,
 
set z[i] = (x[2i] + x[2i + 1]) mod r
 

2. Return: z = (z[0], . . . , z[n/2 − 1]). 

Example. Assume n = 6 and r = 16. If x = (15, 4, 2, 12, 8, 11) then z = (3, 14, 3). 

3.3 The Stream Cipher rpmSC1 

The additive stream cipher rpmSC1=(F, G) is built using primitives PDAF and OWC. Specifically, 
the next state algorithm F uses PDAF and the next key algorithm G uses OWC. We now give a more 
formal description. 

Parameters for rpmSC1: positive numbers n, r, where n is even. 

Input to rpmSC1: the initial state (s−1, s0), where s0 is chosen as a random number from {0, . . . , r − 
1}n, and s−1 is the shared key k, also a random number from {0, . . . , r − 1}n . 

Next state algorithm F: On input the current state (si−1, si), algorithm F returns the next 
state (si, si+1), where si+1 = PDAF (si, si−1), si = si−1, and all values si−1, si, si+1 are numbers 
in {0, . . . , r − 1}n, for any i ≥ 1.
 

Next key algorithm G: On input the current state (si−1, si), algorithm G returns the next key ki =
 
OWC (si), where value si is a number in {0, . . . , r − 1}n, and value ki is a number in {0, . . . , r − 1}n/2
 

for any i ≥ 1.
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4 A Second RPM Stream Cipher 

In this section we describe the second RPM cipher. We first present its two primitive functions, and 
then define the stream cipher based on these two functions. 

4.1 A Primitive Function: CMBN 

The first primitive function is called Combine (briefly, CMBN). It takes as input two n-element lists
 
x and y of numbers from a set of size r and returns as output an n-element list z of numbers from a
 
set of size r. Each component of the output is computed as the sum (modulo r) of one element chosen
 
from list x and one element chosen from list y. For each of these two elements, the index choosing the
 
element from its list is computed according to a recurrence relation involving the next value from the
 
other input list. As the additions do not require a carry, the entire CMBN function can be executed
 
in parallel. We now give a more formal description.
 

Parameters for CMBN: positive numbers n, r, where n is even.
 

Input to CMBN: lists x = (x[0], . . . , x[n − 1]) and y = (y[0], . . . , y[n − 1]), where x[h], y[h] ∈
 
{0, . . . , r − 1}, for h = 0, . . . , n − 1.
 

Instructions for CMBN: 

1. Set i−1 = j−1 = −1 
2. For h = 0, . . . , n − 1,
 

set ih = (ih−1 + 1 + x[h]) mod n
 
set jh = (jh−1 + 1 + y[h]) mod n
 
set z[h] = (x[jh] + y[ih]) mod r
 

3. Return: z = (z[0], . . . , z[n − 1]). 

Example. Assume n = 6 and r = 16. If x = (3, 13, 8, 6, 1, 7) and y = (13, 9, 14, 15, 10, 2), then 
z = (15, 9, 6, 3, 9, 11). 

4.2 A Primitive Function: EXTC 

The second primitive function is called Extract (briefly, EXTC). It takes as input two n-element lists
 
x and y of numbers from a set of size r and returns as output an n-element list z from a set of size r
 
. Each element of the output list is equal to one element chosen from list x, where the index choosing
 
the element is computed according to a recurrence relation involving the next value from the input
 
list y. In a variant, the output is computed by summing similarly chosen elements from both input
 
lists. As the additions do not require a carry, the entire EXTC function can be executed in parallel.
 
We now give a more formal description.
 

Parameters for EXTC: positive numbers n, r, where n is even.
 

Input to EXTC: lists x = (x[0], . . . , x[n−1]) and y = (y[0], . . . , y[n−1]), where x[h], y[h] ∈ {0, . . . , r −
 
1}, for h = 0, . . . , n − 1.
 

Instructions for EXTC: 

1. Set i−1 = −1 
2. For h = 0, . . . , n − 1,
 

set ih = (ih−1 + 1) + y[h] mod n
 
set z[h] = x[ih] mod r (variant : z[h] = x[ih] + y[ih] mod r)
 

3. Return: z = (z[0], . . . , z[n − 1]). 

7
 



Example. Assume n = 6 and r = 16. If x = (0, 2, 11, 1, 6, 5) and y = (1, 2, 12, 6, 5, 15), then 
z = (2, 6, 5, 0, 0, 6). 

4.3 The Stream Cipher rpmSC2 

The additive stream cipher rpmSC2=(F, G) is built using primitives CMBN and EXTC. Specifically, 
both the next state algorithm F and the next key algorithm G use CMBN and EXTC. We now give 
a more formal description. 

Parameters for rpmSC2: positive numbers n, r, where n is even. 

Input to rpmSC2: the initial state s0, the (master) keys mk0, mk1, where s0, mk0, mk1 are random 
numbers from {0, . . . , r − 1}n . 

Next key function G: On input the current state si, and keys mk0, mk1, function G does the 
following 

1. set v[h] = si[h] + mk0[h] mod r, for h = 0, . . . , n − 1; 
2. set v = (v[1], . . . , v[n]); 
3. set a = C M B N (mk1, v); 
4. set z = E X T C (a, mk1); 
5. return: z = (z[0], . . . , z[n − 1]). 

Next state function F: On input the current state si, and keys mk0, mk1, function F does the 
following 

1. run steps 1-4 in the computation of function G; 
2. set si+1(h) = z[h] + v(h) mod r, for h = 0, . . . , n − 1; 
3. return: si+1 = (si+1[1], . . . , si+1[n]). 

5 Security Analysis 

In this section we provide some considerations on the period of the two described stream ciphers. 
Specifically, we define idealized variants of the two described stream ciphers, obtained by replacing or 
augmenting the stream ciphers with a random function, and we analyze the expected period of these 
two idealized variants. As the determined periods are large, this suggests that so might be the periods 
for the described stream ciphers, under suitable idealized behavior assumptions (but see the discussion 
in the introduction for a cautious interpretation of these results). 

5.1 On the Period of rpmSC1 

We define an idealized version of rpmSC1, denoted as rpmSC1r, by first defining a slightly modified 
next state function F ' and next key function G ' , and then plugging these functions into rpmSC1. 

Next state algorithm F ' : Let R be a random function. On input the current state (si−1, si), 
algorithm F ' returns the next state (si, si+1), obtained by computing ui+1 = PDAF (si, si−1) and 
(si, si+1) = R(ui+1), where all values si−1, si, si+1, ui+1 are numbers in {0, . . . , r − 1}n, for any i ≥ 1. 

Next key algorithm G ' : On input the current state (si−1, si), algorithm G ' returns the next key 
ki ∈ {0, . . . , r − 1}n/2 for any i ≥ 1, computed as follows. First, G ' obtains a list ui of n values 
(ui[0], . . . , ui[n − 1]), where ui[2j] = si−1[j] and ui[2j + 1] = si[j], for j = 0, . . . , n/2 − 1. Then G ' 

computes ki = OWC (ui), where value si is a number in {0, . . . , r − 1}n, and value ki is a number in 
{0, . . . , r − 1}n/2 for any i ≥ 1. 
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The rpmSC1r stream cipher. Formally, cipher rpmSC1r is defined starting from rpmSC1, and 
replacing the next state algorithm F and the next key algorithm G, as described in Section 3, with 
the previously defined algorithms F ' and G ' , respectively. Intuitively, this idealized stream cipher is 
defined so to satisfy the following properties: (a) input to the PDAF primitive can be considered 
random and independent strings; and (b) the current key is derived as a direct OWC computation on 
input the current state. 

We obtain the following 

n/2−0.85 log2 n−1Theorem 3 The expected value of the period of rpmSC1r is ≥ r . 

The rest of this subsection is dedicated to the proof of Theorem 3. 
' For every x, y ∈ {0, . . . , r − 1}n, a left (y,PDAF)-collision of x is a value x ∈ {0, . . . , r − 1}n such 

' that PDAF (x, y) = PDAF (x , y). Our estimate of the period of rpmSC1r will be directly related 
to the total number of possible states and the expected number of left (y,PDAF)-collisions. Thus, in 
what follows, our main goal becomes to estimate the number of left collisions. The rest of the proof 
can be summarized in the following high-level steps. First, we define a notion of y-matrix and observe 
three of its properties, including the fact that a PDAF computation can be seen as a y-matrix product. 
Second, we define notions of q-cycles for an input y, and expected number of cycles, and relate these 
three notions by observing five facts. Among other things, in these facts, we relate the expected period 
of rpmSC1r to the number of left (y,PDAF)-collisions, and we bound the number of such collisions. 

Definition and properties of y-matrices. Let x be a list in {0, . . . , r − 1}n . For each list y in {0, . . . , r − 
1}n, define the y-matrix as the n × n matrix M (y) obtained by sequentially setting its elements as in 
the following 3 steps: 

1.	 M (y)(i, j ) = 0 for all i, j = 1, . . . , n; 
2.	 M (y)(i, i) = 1 for all i = 1, . . . , n; 
3.	 M (y)(i, j ) = M (y)(i, j ) + 1 for i = 1, . . . , n and j = (i + y[i]) mod n. 

' For every x, y ∈ {0, . . . , r − 1}n , a (y, M )-collision of x is a value x ∈ {0, . . . , r − 1}n such that 
M (y)(x) = M (y)(x ' ). As a consequence of the above definitions of y-matrix, (y, M )-collision and left 
(y,PDAF)-collision, we observe the following three properties: 

1.	 each row of M (y) has 1 or 2 nonzero entries, one being on the diagonal, and either both nonzero 
entries are = 1 or the one nonzero entry is = 2; 

2. the computation z = PDAF (x, y) can be written as a matrix product z = M (y)(x); and 
3.	 a (y, M )-collision of x is a left (y,PDAF)-collision of x. 

Definition and properties of q-cycles. Let q be a non-negative integer. We say that the q distinct 
indices (i1, . . . , iq) ∈ {1, . . . , n} are a q-cycle for input list y ∈ {0, . . . , r − 1}q if the following holds: 

1.	 ih = ih−1 + y[h] for all h = 2, . . . , q 
2. i1 = iq + y[q]. 

We say that the q distinct indices (i1, . . . , iq) ∈ {1, . . . , n} are a minimal q-cycle for y if no sublist of 
' (i1, . . . , iq) is a q ' -cycle, for q < q. We say that a tuple of indices is a (minimal) cycle for y if it is a 

(minimal) q-cycle for y, for some q ∈ {1, . . . , n}. Two cycles are disjoint if all indices in {1, . . . , n} in 
one cycle are different from all indices in {1, . . . , n} in the other cycle. If y is uniformly chosen from 
{0, . . . , r − 1}n, the number of q-cycles for y and the number of cycles of y are random variables, with 
a well-defined expectation. We finally observe the following five facts relating the above notions of 
cycles, collisions and period: 

1. if (i1, . . . , iq) is a q-cycle for y, the matrix entries M (y)(i1, i2), . . . , M (y)(iq−1, iq), M (y)(iq, i1) are 
= 0 
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2. if (i1, . . . , iq) is a minimal q-cycle for y, the rank of the q × n submatrix S(y),q containing the q 
rows indexed as i1, . . . , iq in M (y) is = q − 1; 

t3. for any t ≥ 1, if there are t disjoint cycles for y, then for each x ∈ {0, . . . , r − 1}n, there exist r
left (y,PDAF)-collisions of x; 

4. the expected number of cycles for a uniformly chosen y ∈ {0, . . . , r − 1}n is ≤ 1.7 log2 n + 2; 
5. if the expected number of cycles for a uniformly chosen y ∈ {0, . . . , r − 1}n is ≤ t then the 

expected value of the period of stream cipher rpmSC1 is ≥ rn−t . 
Note that Theorem 3 directly follows from above Facts 4 and 5, which, in turn, are established using 
Facts 1-3. Therefore, to end the proof of Theorem 3, it suffices to prove all of the above Facts 1-5. 

Proof of Fact 1. The fact directly follows by the definition of q-cycle, implying that all entries 
(i1, i2), . . . , (iq−1, iq), (iq, i1) of y-matrix M (y) are either set to 1 in step 2 or incremented by 1 in 
step 3. 

Proof of Fact 2. If (i1, . . . , iq) is a minimal q-cycle for y, by definition of q-cycle, all indices i1, . . . , iq 

are distinct. Therefore, by definition of y-matrix, the q rows indexed as i1, . . . , iq in M (y) contain 2 
entries = 1, one such entry being on the matrix diagonal. By Fact 1, we have that the sum of all q 
rows is the all-zero row, and thus the rank of the y-matrix is ≤ q −1. Because of the cycle’s minimality, 
any q − 1 among these q rows are linearly independent and thus the rank of the y-matrix is = q − 1. 

M (y)Proof of Fact 3. By property 2 of y-matrices, a PDAF computation can be written as z = x, 
where z, x are n-component vectors with elements in {0, . . . , r − 1}, and M (y) is a n × n matrix with 
elements in {0, 1, 2}. Then, every disjoint cycle for y introduces a new linear dependency between 
a different subset of rows in M (y). Thus, t disjoint cycles for y imply that M (y) has rank n − t. 

tThis implies, by Fact 2 and linear independence, that for each z, there are r vectors x such that 
t tz = M (y)(x). Therefore, every x has r (y,M)-collisions, and, by property 3 of y-matrices, r left 

(y,PDAF)-collisions.
 

Proof of Fact 4. Let pt,q,n denote the probability of having t disjoint q-cycles in a uniformly chosen,
 
n-element, input list y, and let M (y) be the associated y-matrix. We obtain that
     

n n 
q (q − 1)! tq (q − 1)!t ntq(q − 1)!t 1 

p1,q,n = and, for t > 1, pt,q,n = ≤ ≤ , 
ntqnq (tq)!ntq qtq 

where the inequalities follows by known bounds on the involved binomial coefficient and factorials. 
We then obtain that the expected number of cycles in a uniformly chosen, n-element, input list y, is 

n n/q n n/q n n/qnn n n n n1 1 1 1 1 
= ≤ ln n + 1 + ≤ ln n + 1 + 1.44 ln n + 1 = 1.7 log2 n + 2, 

qtq q tq q tq 
q=1 t=1 q=1 t=1 q=2 t=1 

where the first inequality follows from known results on Harmonic series and the second inequality 
follows from known bounds on the Riemann’s zeta function on inputs > 1 (see, e.g., [AbSt72]). 

Proof of Fact 5. This follows by combining Fact 3-4 with the observation that the sequence of keys 
repeats at every iteration where the random oracle R returns a state that results in a left (y,PDAF)
collision of x, for any of the previous x input to PDAF. 

5.2 On the Period of rpmSC2 

We define an idealized version of rpmSC2, denoted as rpmSC2r, by replacing the CMBN primitive 
function in the rpmSC2 stream cipher with a random permutation, so that the inputs to the EXTC 
primitive function can be considered random and independent strings. 
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The rpmSC2r stream cipher. Let R denote a random permutation. Formally, cipher rpmSC2r 

is defined starting from rpmSC2, and replacing step 3 of its next key function G, as described in 
Section 4, there reading as “a = C M B N (mk1, v)”, with the step “a = R(v)”. 

We obtain the following 

0.316 nTheorem 4 The expected value of the period of rpmSC2r is ≥ r . 

Proof. Since R is a random permutation, the output of R, on input the current state si, has no 
collisions. Then, to estimate the period of rpmSC2r, we observe that the next key output by rpmSC2r 

cycles whenever the output z at the i-th execution of EXTC is equal to the output z at the j-th 
execution of EXTC, for some j < i. We note that in these two executions of EXTC, the second input 
is the same value mk1, but the first input differs and is based on different states si, sj , respectively. 

' We then define the notion of left col lision in the output of EXTC; that is, two values a, a such that 
EXTC(a, k) =EXTC(a ' , k), for any random (master) key k. Our estimate of the period of rpmSC2r 

will be directly related to the total number of possible states and the number of left collisions in 
EXTC. Thus, in what follows, our main goal becomes to estimate the number of left collisions. 

We start by observing that, by the definition of EXTC, the output z returned by EXTC satisfies 
z[h] = a[ih], for h = 0, . . . , n − 1. Furthermore, we observe that 
• i0 = mk1[0]; 
• i1 = 1 + mk1[0] + mk1[1]; 
• i2 = 2 + mk1[0] + mk1[1] + mk1[2]; . . . 
• ih = h + mk1[0] + . . . + mk1[h]; . . . 
• in−1 = n − 1 + mk1[0] + . . . + mk1[n − 1]. 

In matrix notation, we have that In = bn + Tn×nkn, where In is the index vector (i0, . . . , in−1)
T , bn 

is the constant vector (0, 1, . . . , n − 1)T , kn is the key vector (mk1[0], . . . , mk1[n − 1])T , and Tn×n is a 
lower left triangular matrix with all 1’s in the lower left triangle. 

Because Tn×n is a full-rank matrix, and kn is a vector with random and independent components, 
by linear independence properties, we obtain that In is a vector with random and independent com
ponents. This implies that the output z returned by EXTC is the concatenation of randomly chosen 
entries of the input array a; that is, a[i0], . . . , a[in−1] for random i0, . . . , in−1. This fact allows us to 

' find all left collisions in EXTC as the pairs of strings a, a that only differ in the positions (if any) in 
L = {0, . . . , n − 1} \ {i0, . . . , in−1}. Estimating the number of such pairs is a variation of the following 
balls-into-bins occupancy problem that has been studied in the algorithms literature: imagine throw
ing n balls into n bins; what is the expected number of empty bins? Each bin remains empty with 
probability peb = (1 − 1/n)n, which is ≤ 1/e for any n ≥ 1, where e = 2.718 . . . is Neper’s constant. 
Thus, by linearity of expectation, the expected number of empty bins is = npeb ≤ n/e, which implies 
that the expected cardinality of set L is = npeb ≤ n/e. This, in turn, implies that the expected 

' n/enumber of strings a that creates a left collision together with a fixed string a is ≤ r . Finally, by 
a birthday-type probability argument (similarly as in the proof of Theorem 3), we obtain that the 

n(1/2−1/2e) ≥ r0.316 nexpected value of the period of rpmSC2r is ≥ r . 

Remark. We observe that the above technique to find left collisions continues to work, with a few 
minor changes, for the variant of EXTC where the output vector z is computed as the sum modulo 
r of an element of the input x and an element of the other input y, as described in Section 4.2. This 
follows from the fact that this different computation of vector z does not modify the definition of left 
collisions for EXTC, or the definitions of set L and quantity peb. 
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Figure 1: Comparison between encryption without AES and with AES of 1056 bits per iteration. 

6 Performance Analysis 

Two sets of performance tests have been performed on the techniques presented in Section 3, 4 and 
the associated symmetric encryption schemes. 

A first set was performed in February 2010, with machine specifications: HP Pavilion with Intel 
Core Duo running XP 32-bit, with 1GB RAM running CentOS. These tests were performed for the 
stream cipher rpmSC2, The result was a performance of 5.2 seconds for 1, 000, 000 iterations, each 
processing 1056 bits. 

A second set was performed in July 2010, with machine specifications: Intel Core i3-2330M 2.2 
GHz with 4GB RAM. These tests were performed for symmetric encryption based on the additive 
stream cipher rpmSC2, in two cases: (1) encryption is performed using modular sum between the 
stream cipher’s next key and the message block; and (2) encryption is performed using the AES block 
cipher, whose input key was the stream cipher’s next key. As seen in Figure 1, the performance of 
encryption without AES is almost one order or magnitude faster. 

Empirically, it has been observed that rpmSC1 has similar performance as rpmSC2, even though 
it is somewhat slower. 

7 Application Use Cases 

One example application use case for the presented stream ciphers and their associated secure com
munication solutions is for securing Low Power Wide Area (LPWA) Networks with the following 
features: 

1. utilize lightweight computing devices, 
2. have minimal power requirements, 
3. operate at low data rates; e.g., 1Kbps, 
4. use 150 MHz to 1 GHz transmission power with unlimited duty cycles, 
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Figure 2: Frequency band window 

5. can deliver Medium, High quality of service 
6. have mission critical performance capability, and 
7. can provide packet level security. 

In Figure 2 we show the optimal bandwidth factors of Accellus LPWA [Spl14]. 

To identify the market for LPWA networks, AEgis Systems Limited and Machina Research [Aeg14, 
Mor13] have defined a set of 8 application categories, based on range, bandwidth and quality of service, 
but reflecting the predominantly narrow band nature of most Market-to-Market (M2M) applications. 

The categories are shown in Figure 3 along with examples of typical applications in each case. Further
more, they conclude that a sizeable proportion of the narrow band connections fall into the medium 
quality of service category. This is largely a reflection of the M2M market itself, which is mainly ac
counted for by applications in sectors such as automotive, manufacturing, smart metering and building 
automation, which (whilst not being mission critical in life or death terms) nevertheless may have sig
nificant financial or public policy implications, if they should not perform in the required way. 

By design, the Accellus LPWA Network technology fits in groups 2, 4 and 6 (shown in orange in the 
figure), with the emphasis on groups 4 and 6. 

Conclusions 

Lightweight cryptographic functions are proposed in RPM for constrained environments like LPWA 
sensor networks, to efficiently target important security properties, including: confidentiality via en
cryption, implicit mutual and constant authentication, and continuous key management by key refresh
ing. We reported performance results showing that encryption based on some RPM stream ciphers is 
almost 1 order of magnitude faster than AES-based encryption. We also studied RPM primitives to 
prove security of idealized versions of associated stream ciphers against a certain class of attacks (i.e., 
attacks based on low period). With respect to the RPM stream ciphers, it remains of interest to reduce 
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Figure 3: Application categories, based on range, bandwidth and QoS. 

the idealization in the primitive analysis done in this paper or obtain similar results with respect to 
other classes of attacks, as well as finding successful attacks. With respect to provable security for 
lightweight cryptography constructions, it remains of interest to study what classes of attacks can be 
provably shown to be ineffective under suitable assumptions. 
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