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Abstract. In this paper, we propose a lightweight authenticated encryp-
tion mode JAMBU. It only needs n-bit extra register for a block cipher
with 2n-bit block size. It achieves n-bit authentication security when 2n

bits are processed under a single key. When nonce (IV) is reused, the
encryption security is similar to that of the CFB mode while the mes-
sage authentication maintains strong security. We instantiate JAMBU
with AES-128 as the underlying block cipher to construct an authen-
ticated cipher AES-JAMBU. There are more lightweight authenticated
ciphers can be constructed by applying JAMBU with lightweight block
ciphers such as SIMON. To the best of our knowledge, JAMBU is the
most lightweight authentication mode which provides n-bit authentica-
tion security.
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1 Introduction

Authenticated encryption mode is one of the commonly used method in the
design of authenticated ciphers. The ISO/IEC 19772:2009 [18] standardized sev-
eral modes for authenticated encryption, including EAX [3], CCM [36], GCM [28]
and OCB 2.0 [34]. And a number of other authenticated encryption modes have
been proposed in the past two decades, e.g., IAPM [23], CWC [25], HBS [22],
BTM [21] and McOE [13]. The ongoing CAESAR competition [8] attracted more
designs on the authentication encryption modes, including CBA [17], COPA [1],
CPFB [30], OTR [29], CLOC [19], ELmD [9] iFeed [38], JAMBU [16], SCREAM
[14] SHELL [35] and SILC [20].

An important trend in the current development of cryptography is to design
lightweight cryptographic primitives since the increasing needs for low-cost em-
bedded systems such as RFID tags, sensor networks and smart cards. Several
authenticated encryption schemes have been proposed for the lightweight usage,
such as Hummingbird-2 [12], ALE [6], and FIDES [4]. However, those above men-
tioned lightweight authenticated encryption schemes are dedicated design and
can not be used as a mode of operation to convert an encryption scheme into
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an authenticated cipher. Moreover, it turns out that it is quite difficult to con-
struct a secure lightweight authenticated cipher. Security flaws were discovered
for ALE and FIDES shortly after their publications [11, 24, 37].

Hence, it is meaningful to develop secure lightweight authenticated encryp-
tion modes so that the previous designs of lightweight block ciphers can be con-
verted to lightweight authenticated encryption schemes. In this paper, we present
a lightweight authenticated encryption mode JAMBU and use AES-128 as the
underlying block cipher to construct an authenticated cipher – AES-JAMBU.

Among the authenticated encryption modes proposed in the CAESAR com-
petition, SILC and JAMBU are the only two lightweight authenticated modes
for block ciphers. Both of the two modes need to call the encryption twice to
process one plaintext block. Therefore, the software performances of these two
modes are expected to be comparable. The security claims are also similar with
nonce-misuse resistance for the authentication. But SILC requires 4n bits state
for a block cipher with 2n bits state which is larger than the 3n bits state size
of JAMBU.

This paper is organized as follows. In Section 2, we give the specification of
JAMBU mode. In Section 3, we present the AES-JAMBU authenticated cipher.
In Section 4, we discuss the applications of JAMBU with lightweight block ci-
phers. The security goals are given in Section 5, followed by the security analysis
of AES-JAMBU under nonce-respecting and nonce-misuse scenarios in Section 6
and Section 7. The features of JAMBU are presented in Section 8. The software
and hardware performance are provided in Section 9. We illustrate the motiva-
tion and rationale of our design in Section 10. Finally, Section 11 concludes this
paper.

2 The JAMBU Mode of Operation

2.1 Preliminary

2.1.1 Operations

The following operations are used in JAMBU:
⊕ : bit-wise exclusive OR.
‖ : concatenation.

2.1.2 Notations and Constants

The following notations are used in JAMBU specifications.
0a : a bit of ‘0’s.
AD : associated data (this data will not be encrypted or decrypted).
adlen : bit length of the associated data with 0 ≤ adlen < 264.
C : ciphertext.
Ci : a ciphertext block (the last block may be a partial block).
EK : encryption of one block using the secret key K.
IV : initialization vector used in JAMBU.
K : secret key used in JAMBU.
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msglen : bit length of the plaintext/ciphertext with 0 ≤ msglen < 264.
mi : a data block.
n : half of the block size used in JAMBU.
N : number of the associated data blocks and plaintext blocks after

padding. N = NA +NP

NA : number of the associated data blocks after padding.
NP : number of the plaintext blocks after padding.
P : plaintext.
Pi : a plaintext block (the last block may be a partial block).
R : an additional state used for encryption. The size is half of the

block size.
S : an internal state which will be used for encryption.
T : authentication tag.
t : bit length of the authentication tag

2.2 Parameters

As an authenticated encryption mode, JAMBU accept the underlying block ci-
phers with even bits block size which is put as 2n. The key size is the same as
the one used in the block cipher. The tag length is n bits. We limit the maximum
length of messages to be 2n bits under a single key.

2.3 Padding

The following padding scheme is used in JAMBU . For associated data, a ’1’ bit
is padded followed by the least number of ‘0’ bits to make the length of padded
associated data a multiple of n-bit. Then the same padding method is applied
to the plaintext.

2.4 Initialization

JAMBU uses an n-bit initialization vector(IV). The initialization vector (public
message number) is public. And each key/IV pair should be used only once to
achieve the maximum security of the scheme.

Let (X,Y ) represent the composition of n-bit states X and Y which results
in a state of 2n-bit. The initial state is set as S−1 = (0n, IV ). The following
operations are used for initialization.

1. (X−1, Y−1) = EK(S−1);
2. R0 = X−1;
3. S0 = (X−1, Y−1 ⊕ 5).

The initialization of JAMBU is shown in Fig. 1.
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Fig. 1: Initialization of JAMBU .

2.5 Processing the associated data

The associated data is divided into n-bit blocks and processed sequentially. For
the last block, the padding scheme is applied to make it a full block. Note that
at least one block is processed in the processing of AD. Namely, if the length
of AD, adlen, is 0, a padded block 1 ‖ 0n−1 will be processed. Let NA be the
number of AD blocks after padding, the AD is processed as follows.

- For i = 0 to NA − 1, we update the states:
(Xi, Yi) = EK(Si);
Ui+1 = Xi ⊕Ai;
Vi+1 = Yi ⊕Ri ⊕ 1;
Si+1 = (Ui+1, Vi+1);
Ri+1 = Ri ⊕ Ui+1.

Fig. 2 shows the processing of two blocks of associated data.

Fig. 2: Processing associated data.

2.6 Encryption of JAMBU

In the encryption of JAMBU, the plaintext is divided into blocks of n-bit. And
the last block is padded using the padding scheme specified previously. In each
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step of the encryption, a plaintext block Pi is encrypted to a ciphertext block
Ci.

If the last plaintext block is a full block, a block of “1||0n−1” is processed
without any output. Fig. 3 shows the encryption of two plaintext blocks.

Let NP be the number of plaint blocks after padding, the encryption is de-
scribed as follows:

- For i = NA to NA + NP − 1, we perform encryption and update the state:
(Xi, Yi) = EK(Si);
Ui+1 = Xi ⊕ Pi−NA

;
Vi+1 = Yi ⊕Ri;
Si+1 = (Ui+1, Vi+1);
Ri+1 = Ri ⊕ Ui+1.
Ci−NA

= Pi−NA
⊕ Vi+1 if i < NA +NP − 1 or the last plaintext block is a

partial block; otherwise, CNP−1 will not be computed.

- The final ciphertext block is truncated to the actual length of last plaintext
block from the most significant bit side.

Fig. 3: Processing the plaintext.

2.7 Finalization and tag generation

After all the padded plaintext blocks are processed, suppose the state is SN+1

and RN+1 (N = NA +NP − 1), we use following steps to generate the authen-
tication tag, see Fig. 4.

1. (XN+1, YN+1) = EK(SN+1);
2. UN+2 = XN+1;
3. VN+2 = YN+1 ⊕RN+1 ⊕ 3;
4. RN+2 = RN+1 ⊕XN+1;
5. SN+2 = (XN+2, YN+2);
6. Authentication tag is generated as T = RN+2 ⊕XN+2 ⊕ YN+2.
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Fig. 4: Finalization and tag generation.

2.8 The decryption and verification

The decryption and verification are similar to the encryption and authentication,
except that the ciphertext block is XORed with the sub-state V to compute the
plaintext block. For the final block, the ciphertext is padded using the same
scheme as the plaintext before the XOR operation. If the length of ciphertext
block is a multiple of n, another block of “1||0n−1” is processed similar as in the
encryption.

A tag T ′ is generated after the decryption and is compared to the tag T . If
the two tags match, the plaintext is outputted.

3 The AES-JAMBU authenticated cipher

In this section, we will apply the JAMBU mode to the most widely used block
cipher AES-128 and construct an authenticated cipher AES-JAMBU.

Recommended parameter set In AES-JAMBU, we recommend specific val-
ues for the parameters used in JAMBU. The block size is 128-bit and the size
of n is 64-bit. The tag length t is 64-bit and the maximum number of message
bits protected by one key is 264 bits.

The parameters of AES-JAMBU are summarized in Table 1.

4 The Applications of JAMBU with Lightweight Block
Ciphers

To construct a lightweight authenticated cipher using JAMBU, there are many
choices of underlying block ciphers which are designed for the lightweight appli-
cation, e.g., PRESENT [5], KATAN [10], PRINCE [7], LED [15] and SIMON [2].

In this paper, we take SIMON as an instance of the application of JAMBU.
SIMON is a family of lightweight blocks cipher published by NSA in 2013. It
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Table 1: Parameter set of AES-JAMBU.

Parameters Length in bits

Plaintext (P)+Associated data (AD) < 264

Key (K) 128

Tag (T) 64

Initialization vector (IV) 64

State (S) 320a

a 128-bit block and 128-bit key are used
in AES-128. An additional 64-bit state
is used in AES-JAMBU.

specifies 10 block ciphers with block sizes 32, 48, 64, 96, 128 bits and key sizes
64, 72, 96, 128, 144, 192, 256 bits. SIMON uses the Feistel network with simple
round operations which are efficient in both hardware and software. The Feistel
network can be easily adopted in JAMBU as the internal state of the block
cipher is naturally divided into two sub-states.

For the extremely lightweight case, SIMON32/64 can be used in JAMBU
and the internal state size can be as small as 112 bits. For more commonly
applications, SIMON64/96 and SIMON96/96 can be good choices and there
internal state sizes are 192 bits and 240 bits respectively.

5 Security Goals

The security goals of JAMBU are given in Table 2. There is no secret message
number. The public message number is a nonce. To achieve the maximum se-
curity, each key and IV pair should be used to protect only one message. If
verification fails, the new tag and the decrypted ciphertext should not be given
as output.

However, in case that the nonce is reused under the same key, the confiden-
tiality of JAMBU is partially compromised. According to the analysis in [32] by
Peyrin et al. , if the first i plaintext blocks are the same, then the (i+ 1)-th and
(i+2)-th plaintext blocks are insecure. And the integrity of JAMBU will remain
n-bit.

Notice that the integrity security in Table 2 includes the integrity security
of plaintext, associated data and nonce and under the assumption that a block
cipher with 2n-bit block size and κ-bit encryption security is employed and n-
bit tag is generated. The table also assumes that the total length of message
(plaintext and associated data) protected by a single key is limited to 2n bits.
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Table 2: Security Goals of JAMBU.

Confidentiality (bits) Integrity (bits)

JAMBU κ n

6 The Security Analysis of JAMBU under
Nonce-Respecting Scenario

In this section, we analyze the security of JAMBU which includes the security
of encryption and the security of authentication when the nonce is unique under
the same key.

6.1 The security of encryption

The encryption of JAMBU can be seen as a variant of the Cipher Feedback
(CFB) mode from the NIST recommendation [31]. The main difference is that
in JAMBU the message block and an additional state block R are XORed with
the internal state. The encryption of JAMBU is expected to be as strong as
the underlying block cipher as long as each key/IV is used to protect only one
message. Thus, the plaintext block and the additional state will not affect the
randomness of the output of the CFB mode, and the confidentiality of JABMU
can be implied from CFB.

6.2 The security of message authentication

In this section, we will give our security analysis on message authentication of
JAMBU from the key/state recovery attack and the probability for a successful
forgery in the nonce-respecting scenario.

6.2.1 Key/state recovery attack

Since the secret key of is protected by the underlying block cipher which is
considered ideal, JAMBU is not vulnerable to the key recovery attack. And for
state recovery attack, JAMBU also has a strong resistance as there are 2n-bit
unknown state at each step and the secret key is used in the encryption of each
step.

6.2.2 The forgery attack

The tag of JAMBU is generated by XORing three n-bit words in the internal
state: RN+2, XN+2 and YN+2. Suppose an adversary makes q queries with at
most m blocks message. In a forgery attack, the goal of the adversary is to
produce a valid tag for a (AD, C) which has never been queried . We consider
two cases:
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Case 1: the internal state (R, U, V) does not collide with any previous queries
before the finalization. Then at least one of the RN+1, UN+1 and VN+1 is new.
Then we discuss the input of the final encryption (UN+2, VN+2):

– (UN+2, VN+2) is new. Then, the final encryption would have a new input,
then the tag is valid with probability 1/2n.

– (UN+2, VN+2) has been queried before. Then the corresponding RN+1 must
have difference, otherwise, the input would be a collision which violates our
assumption. Therefore, there will be input difference at (UN+1, VN+1) and
the output difference must be a fixed value. Then the probability is bounded
by (q − 1)/22n ≤ 1/2n when q ≤ 2n.

Case 2: the internal state (R, U, V) has collision with some previous queries
before the finalization. A general approach to construct an internal collision is
from the birthday attack. This was discussed by Preneel and van Oorschot [33]
which showed that all iterated MACs with n-bit internal state can be attacked
with O(2n/2) queries. For JAMBU, the internal state size is 3n bits. Thus, around
23n/2 messages are needed for an internal collision using birthday attack. When
the number of blocks encrypted is 2n−log(n) (the maximum value defined in
the specification), there are around 22n−2log(n) pairs of internal states. So the
collision probability is around 2−3n+2n−2log(n) = 2−n−2log(n) which is less than
1/2n.

We can derive the necessary conditions for an internal collision. Suppose we
have the first internal collision such that (Ri+1, Ui+1, Vi+1) = (Rj+1, Uj+1, Vj+1).
We have Ri+1 = Ri⊕Ui+1, Ui+1 = Xi⊕Pi, and Vi+1 = Yi⊕Ri, and the similar
expressions holds for the states at step j+ 1. Hence, we can derive the following
necessary conditions for the internal collision:

Yi = Yj (1)

Ri = Rj (2)

Xi ⊕Xj = Pi ⊕ Pj (3)

Note that the condition (1) and (2) imply Vi+1 = Vj+1 which can be observed
from the keystream block. By generating around 2n/2 blocks of keystream, we
are expected to observe one collision on the keystream block. But this collision
is only a necessary condition, and we still need either (1) or (2) holds.

For condition (1), Yi and Yj are the output of AES encryption. Without the
collision on the input (Ui, Vi) and (Uj , Vj), Yi = Yj has probability 2−n. On the
other hand, if there is collision on (Ui, Vi) and (Uj , Vj), we get an internal collision
on previous state (Ri, Ui, Vi) and (Rj , Uj , Vj) which violates our assumption.

For condition (2), both Ri and Rj are unknown and during the encryption.
So the condition (2) can only be satisfied probabilistically, which is 1/2n.

For condition (3), when there is no difference on Xi and Xj , it will lead to a
collision in previous internal state, which is assumed impossible. And if there is
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difference, the difference is uncontrollable by an attacker. Hence, the probability
for condition (3) is 1/2n.

Given the above analysis, the probability for internal collision given the col-
lision on keystream is 1/22n. Therefore, even if we can detect the maximum
2(n−log(n))×2/(2n) = 2n−2log(n) collisions on keystream blocks, the probability
that an internal collision occurs is less than 1/2n.

Hence, the probability of a successful forgery is upper bounded by the the
sum of probability in the above two cases, which is 2/2n. Hence, JAMBU is
strong against the attacks on message authentication.

7 The Security Analysis of JAMBU under Nonce Misuse
Scenario

In this section, we analyze the security of AES-JAMBU which includes the se-
curity of encryption and the security of authentication when the nonce is unique
under the same key.

7.1 The security of encryption

For JAMBU, the encryption still have intermediate level of robustness in the
nonce reuse circumstances. More specifically, after the identical blocks in the
prefix, the first and second message blocks are insecure.

Regarding to the encryption security under IV misuse cases, it is not that
meaningful to consider the distinguish attack, as it can be trivially done. For key
recovery attack, it is as difficult as breaking the underlying block cipher. Here
we will discuss the plaintext recovery attack without the knowledge of the key.

Suppose that a nonce-misuse chosen plaintext adversary wants to decrypt
a secure ciphertext block, say Ci+2. If he can find the correct plaintext with
probability greater than 1/2n, he has a better chance than the random guess.
Otherwise the ciphertext is secure. In our setting, the adversary may query
messages with common blocks up to Pi−1 so that the Ci+2 is secure. To de-
crypt Ci+2, Yi+2⊕Ri+2 must be known. Since, Xi+2||Yi+2 = EK(Ui+2||Vi+2), if
Ui+2||Vi+2 has never been queried before, Yi+2 will be random and the adversary
can not win the game. Thus, the adversary must be able to obtain a collision
of Ui+2||Vi+2. Note that Vi+2 = Yi+1 ⊕ Ri+1 does not have common prefix the
any other queries and the value of Ri+1 is secret, this condition can only be
satisfied with probability 1/2n. But since Ci+1 is known and the plaintext can
be chosen, it is possible to obtain a collision on Vi+2. Suppose that there is some
Vj satisfies that Vi+2 = Vj , the probability that Ui+2 = Uj is 1/2n. To see this,
we write the condition as Xi+1 ⊕ Pi+1 = Xj ⊕ Pj . Since Pi+1 has unique prefix
by our assumption, the value is fixed, and Xi+1, Xj are the output of encryption
which can not be controlled, we have Pj = Pi+1 ⊕ Xi+1 ⊕ Xj has probability
1/2n. Therefore, the probability to obtain a collision of Ui+2||Vi+2 is at most
1/2n. Hence, except the first two blocks after the common prefix, the blocks are
secure.
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7.2 The security of message authentication

Like the nonce misuse scenario, we consider two cases: Case 1: the internal state
(R, U, V) does not collide with any previous queries before the finalization. Same
analysis applies here and the probability to obtain a valid tag is 1/2n.
Case 2: the internal state (R, U, V) has collision with some previous queries
before the finalization. The three necessary conditions for internal collision still
hold, but the analysis would have some difference in the nonce misuse setting.

First, it is obvious that the internal collisions can happen with identical prefix
and a same input block, but this trivial internal collision will not lead to a valid
forgery. So we are only interested in the non-trivial internal collisions which do
not have common prefix.

Next, if the first difference appears in the i-th block, then it is impossible to
eliminate it in the (i + 1)-th block. This is easy to see as either Ri+1 or Ui+1

will have difference.
For condition (1), the probability for a single collision is the same as the

unique nonce case. But the difference is that when a collision of Y is found, it
can be fixed by using the same prefix when the other conditions are considered.
Thus, if an adversary queried at most m blocks of messages, he is expected to
find m(m− 1)/2× 2−n collisions on Y .

For condition (2), since the collision blocks will not have the identical prefix,
this conditions has probability 2−n as we discussed in previous analysis.

For condition (3), when the nonce is reused, it is possible to choose the
difference of the message block. Then if the difference on Xi and Xj is known,
condition (3) can be satisfied with probability 1. According to the method used
in [32], the difference in X and R can be derived by 6 · 2n/2 queries under nonce
reused assumption. Here we use 2n/2 as the lower bound of the number of queries
need to find the difference in X and R.

Now if we find Nc collisions of Y which satisfies condition (1), the probability
of an internal collision can be computed as Nc/2

n with Nc×2n/2 queries. On the
other hand when Nc random queries are made, the probability of a successful
forgery has probability Nc/2

n. Therefore, when Nc× 2n/2 queries are made, the
probability of internal collision is less than the probability of the trivial attack.

Hence, the probability for a successful forgery is bounded by 2/2n.

8 Features

- Lightweight. In addition to the registers used in the underlying block cipher,
the JAMBU authenticated encryption mode only requires one additional
register with half of the block size. For AES-GCM, two additional registers1

are needed and each has equal length as the block size. And for fast im-
plementation of GCM operations, a look up table is very helpful. However,
when the table is used, a much larger amount of memory will be needed. It
makes AES-GCM not suitable for lightweight implementations.

1 The two registers are used to: store the length of P and AD; store the chaining value
for authentication.
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- Partial resistance against IV reuse. When the IV is accidentally reused under
the same key, the security of encryption and authentication is not completely
compromised. Notice that in AES-GCM, the nonce reuse will lead to the lost
of all confidentially and integrity.

9 Performance

9.1 Hardware performance

The core feature of JAMBU is hardware-oriented. In the hardware implemen-
tation of authenticated ciphers, the state size is an important factor, especially
for low-cost embedded systems. To compare the hardware efficiency of the au-
thenticated encryption modes on the area, We look at the state size when an
authenticated encryption mode is applied to a 2n-bit block cipher. We compare
the state size in JAMBU with the existing authentication modes, and the results
are given in Table 4. As a lightweight authenticated encryption mode, JAMBU
provides the minimum state size for the hardware implementation.

Table 3: The comparison (in state size) for authenticated encryption modes, assuming
the underlying block cipher has block size 2n bits

Modes State size Increments

CCM 4n 2n
GCM 6n 4n
OCB3 6n 4n
EAX 8n 6n
COPA 6n 4n
CPFB 6n 4n
ELmD 8n 6n
SILC 4n 2n
COLC 4n 2n

JAMBU 3n n

9.2 Software performance

We implemented AES-JAMBU in C code using the AES instruction. We tested
the speed on the Intel Core i5-2540M 2.6GHz processor (Sandy Bridge) running
64-bit Linux 12.01. The turbo boost is turned off, so the CPU runs at 2.6GHz
in the experiment. The compiler being used is gcc 4.5.2, and the options “-O3
-msse2 -maes -mavx” are used. The test is performed by encrypting/decrypting
a message repeatedly, and printing out the final message. To ensure that the tag
generation is not removed during the compiler optimization process, we use the
tag as the IV for processing the next message. To ensure that the tag verification
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is not removed during the compiler optimization process, we sum up the number
of failed verifications and print out the final result.

We tested the speed of CTR, OCB3, GCM and CCM (AES-128 is used in
these modes) on the same machine for comparison. The testing programs of CTR,
OCB3, GCM and CCM are downloaded following the description given Krovetz
and Rogaway in the OCB3 paper [27] and their website [26]. The performance
comparison is given in Table 3. For 4096-byte messages, the speed of AES-
JAMBU is about 11.6 cpb. Since in AES-JAMBU, each AES encryption is used
to process only 8 byte of message, we expect that the speed of AES-JAMBU will
be about two times slower than AES-GCM. The speed turns out to be about
four times slower in our experiment. The reason may be largely due to some
operations in AES-JAMBU are not optimized in our current implementation.

Table 4: The software speed comparison (in cycles per byte) for different message
length on Intel Sandy Bridge. A plus sign (+) indicates that the data are from the
ALE designers and the performance is measured on Intel i5-2400 microprocessor.

64B 128B 256B 512B 1024B 4096B

AES-128-CTR+ – 1.61 1.22 0.99 0.87 0.77
AES-128-CCM 7.26 6.31 5.65 5.19 5.17 5.05
AES-128-GCM+ – 4.95 3.88 3.33 3.05 2.90
AES-128-OCB3+ – 2.69 1.79 1.34 1.12 0.88

AES-JAMBU 17.7 14.54 13.05 12.27 11.86 11.60

We also test the JAMBU mode for SIMON64/128, SIMON96/128 and SI-
MON128/128, the speeds are 61 cpb, 58 cpb and 50 cpb respectively.

10 Design rationale

JAMBU is designed to be a lightweight authenticated encryption mode which
can offer partial resistance against IV reuse.

To make this mode lightweight, we introduces only an n-bit extra register for
a 2n-bit block size. And we only use the bit-wise XOR operations in the JAMBU
mode.

The padding scheme used in JAMBU does not require the length information
to be stored in a register. This reduces the memory requirements.

To offer a certain level of security against IV reuse, we use a block cipher
encryption in the state update and only half of the state is leaked after encryp-
tion. The plaintext is injected into the other half of the state which is unknown
for the attacker.

Several constants are XORed with the state in JAMBU. They are used to
separate the initialization, associate data processing, plaintext processing, and
finalization.
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AES-JAMBU uses AES as the underlying block cipher. It can take advan-
tages from the security analysis AES as well as the fast implementation of AES
using AES-NI.

11 Conclusion

We have described the lightweight authenticated encryption mode JAMBU. This
mode only adds a small register with size half of the block size and achieves
the birthday bound security in message authentication under the nonce-misuse
scenario. JAMBU is currently the most lightweight authentication encryption
mode. Besides, we proposed an authenticated cipher AES-JAMBU is constructed
using AES-128 as the underlying block cipher in JAMBU mode.
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