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Abstract. Security mechanisms to protect our systems and data from 
malicious adversaries have become essential. Strong encryption algo­
rithms are an important building block of these solutions. However, each 
application has its own requirements and it is not always possible to find 
a cipher that meets them all. This work compares unrolled combina­
torial hardware implementations of six lightweight block ciphers, along 
with an AES implementation as a baseline. Up until now, the majority 
of such ciphers were designed for area-constrained environments where 
speed is often not crucial, but recently the need for single-cycle, low-
latency block ciphers with limited area requirements has arisen to build 
security architectures for embedded systems. Our comparison shows that 
some designers are already on this track, but a lot of work still remains 
to be done. 

Keywords: block ciphers, lightweight cryptography, single-cycle, syn­
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1 Introduction 

Software applications have always been vulnerable to attacks from malicious 
actors. One research topic in the trusted computing community is Protected 
Module Architectures (PMAs), where applications can be automatically pro­
tected against them. For example, Intel’s Software Guard Extensions (SGX) 
provide architectural support to isolate applications [3]. Software runs in so-
called enclaves, which have special hardware features to protect code and data 
from unauthorised access. When sensitive data leaves or enters the enclave, it 
is automatically encrypted and decrypted, and this requires a fast algorithm. 
Finding suitable low-latency cryptographic algorithms is one of the biggest chal­
lenges when bringing these isolation techniques to area-constrained embedded 
systems. 

As smaller silicon technology nodes make it possible to place more and more 
transistors on a single die, modern Systems-on-Chip (SoCs) have become many-
core devices. High-bandwidth, packet-switched Networks-on-Chip (NoCs) have 
replaced slower buses [15]. Protection of these networks is an open research 
question. The underlying ideas of security mechanisms for traditional networks 
can be used, but will require fast and efficient cryptographic primitives. 
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In both these applications, having high throughput is not the most important 
design requirement. Rather, when a data element arrives, it should be processed 
as fast as possible, the additional delay that is introduced has to be as low as 
possible. A single-cycle implementation is the extreme, as it will not have any 
additional latency. One approach to achieve this, is by unrolling existing iterative 
block ciphers. However, this results in long combinatorial paths, which have a 
high associated delay. As will be shown in our work, they can only operate at such 
low clock frequencies, the operating speed of the architectures they are integrated 
with will be limited. Of course, introducing pipeline registers would increase the 
throughput and maximum clock frequency, but at the cost of additional latency. 
Another advantage of fully combinatorial implementations is that they can be 
easily integrated with existing designs, because of the lack of control logic. 

Our work gives synthesis results for unrolled implementations of six families 
of lightweight ciphers, where the same approach is used for all of them. Whenever 
possible, algorithms are grouped by block and key size to make a fair comparison 
with regard to the security they offer. The different algorithms are AES [14], 
KATAN [16], PRESENT [8], PRINCE [11], RECTANGLE [32], SIMON [5] and 
SPECK [5]. A short summary of the best known cryptanalysis results is given for 
each algorithm. Section 2 first introduces some general concepts and terminology. 
Synthesis results for FPGA and ASIC are given in Section 3. Finally, Section 4 
compares our results, followed by a conclusion in Section 5. 

2 Preliminaries 

2.1 Block Cipher Structure 

A block cipher (Definition 1 [23]) is a basic cryptographic building block offering 
confidentiality of data. It is used in a wide variety of applications, from protecting 
communication to generating pseudo-random numbers. 

Definition 1. An n-bit block cipher is a function E : Vn × K → Vn, such that 
for each key K ∈ K, E(P, K ) is an invertible mapping (the encryption function 
for K) from Vn to Vn, written EK (P ). The inverse mapping is the decryption 
function, denoted DK (C). C = EK (P ) denotes that ciphertext C results from 
encrypting plaintext P under K. 

Algorithm designers typically use established design techniques when creat­
ing new algorithms. Most current block ciphers are iterated ciphers (Definition 2 
[23]). Feistel ciphers (Definition 3 [23]) are a special instance with a particular 
structure. 

Definition 2. An iterated block cipher is a block cipher involving the sequential 
repetition of an internal function cal led the round function. Parameters include 
the number of rounds r, the block bit-size n, and the bit-size k of the input key 
K from which r subkeys Ki (round keys) are derived. For invertibility (allowing 
unique decryption), for each value Ki the round function is a bijection on the 
round input. 



Definition 3. A Feistel cipher is an iterated cipher mapping a 2t-bit plaintext 
(L0, R0), for t-bit blocks L0 and R0, to a ciphertext (Rr, Lr), through an r-round 

Kiprocess where r ≥ 1. For 1 ≤ i ≤ r, round i maps (Li−1, Ri−1) −−→ (Li, Ri) as 
follows: Li = Ri−1, Ri = Li−1 ⊕ f (Ri−1, Ki), where each subkey Ki is derived 
from the cipher key K. 

Hardware implementations of iterated block ciphers usually have logic for 
a single round and a controller that manages the round function iterations. 
Consequently, several clock cycles will be required before the result is ready. 
It is important to note that the number of clock cycles needed to encrypt a 
block is a property of the implementation. One way to reduce the number of 
cycles is by unrolling the iterations, and in doing so, we obtain single-cycle 
implementations. When all rounds are fully unrolled, this process results in the 
same basic structure for all of them (see Figure 1). 

It can be seen from Definition 2 that each round has two components: the key 
expansion and round function. The former generates the subkeys Ki based on 
the original key, a previous one or a combination of both. The latter transforms 
the input data using the key. In general, the function is identical for each round, 
but some algorithms introduce small variations (e.g. a different constant could 
be added in each round). The total number of rounds depends on the algorithm 
and can vary widely. An operation is sometimes applied to the plaintext before 
using it as an input to the first round. The last round’s output can be similarly 
modified before using it as the ciphertext. 
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Fig. 1. Structure of unrolled block ciphers (pt: plaintext, ct: ciphertext). 

2.2 Logic Depth 

The logic depth [26] of a path is defined as the number of combinatorial gates 
between input and output. Since each level of the path has a specific delay 
associated with it, the logic depth will be linked to the latency of the circuit. 
However, some operations will have a longer intrinsic delay than others, so that 
a deep circuit of low-latency gates will have a lower delay than a shallow circuit 
with high-latency gates. The logic depth is a property of the implementation, 
which is influenced by the design. 



Section 3 will give the logic depth of the critical path on FPGA for each 
algorithm. The critical path of a circuit is the path for which it takes the longest 
for the output to stabilize [27], i.e., the one with the longest delay. 

2.3 Fan-Out 

The fan-out denotes the number of load gates N that are connected to the output 
of the driving gate [27]. When the fan-out of a gate is large, it will deteriorate 
performance because the load on that gate will be very high. This impacts its 
dynamic performance and will slow down the circuit. The fan-out of a gate is 
influenced by the design of the algorithm and how it is implemented. Therefore, 
a designer should be careful not to reuse a single intermediate result in a next 
step too often. 

3 Synthesis Results 

We will now discuss the design criteria and specifications of each block cipher, 
as well as its most important results. The best cryptanalysis results known to 
us are given as well. An overview of the properties of all discussed algorithms is 
given in Table 1. Table 2 and Table 3 give an overview of all FPGA and ASIC 
results respectively. A diagram of the critical path for each cipher is also given. 
Note that these figures do not show the algorithm’s full data flow, but rather a 
simplified version for clarity. 

The regular structure (Section 2.1) of block ciphers makes it possible to use 
a generic approach for unrolling each algorithm. Only the encryption mode of 
each cipher was implemented. The area cost of adding decryption will depend 
on the design: this requires less overhead compared to encryption for some than 
others. Both FPGA and ASIC results are listed, because although most real-
world applications will eventually be produced as ASIC, FPGAs are sometimes 
introduced in products (e.g., because they can be upgraded in the field). They 
are also heavily used in the development of new chips. 

The FPGA results were obtained after Place and Route (PAR) on a Xilinx 
Virtex 6 in Xilinx ISE. More specifically, the configuration of the Xilinx ML605 
development board was selected (xc6vlx240t-2ff1156). All syntheses for ASIC 
were done with UMC’s 0.13 µm technology in Synopsys Design Vision. 

3.1 AES 

In 1998, Daemen and Rijmen submitted their Rijndael algorithm [14] to the 
Advanced Encryption Standard (AES) competition, organised by NIST. Three 
years later, the design won and it is now known as AES. The implementation 
criteria for the AES contest were high throughput, low memory requirements, 
and hardware and software suitability [6]. It is used for confidentiality in a wide 
range of applications: among others to protect Wi-Fi connections, secure web 
traffic, or encrypt hard drivers. The Rijndael family can accommodate any block 



Table 1. Properties of all implemented algorithms. 

Cipher Key Size Block Size Rounds Type Characteristics Cryptanalysis 

AES 128 128 10 SP Network 8-bit S-box [9] 

32 
KATAN 80 254 Non-Linear Boolean Functions (AND and XOR) [21] 

64 

80 
PRESENT 64 31 SP Network 4-bit S-box [13]

128 

PRINCE 128 64 12 Unrolled 4-bit S-box, Matrix Layer [12] 

RECTANGLE 80 64 25 SP Network 4-bit S-box [29] 

64 32 32 
SIMON Feistel XOR and Left Cyclic Shift [4]

128 64 44 

64 32 22 
SPECK XOR, Addition and Cyclic Shift [18]

128 64 27 

and key size from 128 to 256 bits, with steps of 32 bits. NIST fixed the block 
size at 128 bits, but the key size can be chosen depending on the required level 
of security (128, 192, or 256 bits) [25]. 

The algorithm has the following three basic operations: SubBytes, ShiftRows 
and MixColumns. SubBytes substitutes a state byte with the result of an S-
box look-up. ShiftRows cyclically shifts the state’s rows. MixColumns applies 
an invertible linear transformation to each column. AES was not specifically 
designed as a low-area or low-latency hardware cipher, but it is included here as 
a reference because its algorithm is well-understood and generally known. 

The best known shortcut attack that works on the full versions of AES is 
a biclique attack from 2011 [9]. It breaks all 10 rounds of AES128 with a time 
complexity of 2126.18 and data complexity of 288. These numbers are still high 
enough to have no practical value. 
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Fig. 2. Diagram of the critical of one unrolled AES round (RCi: round constant, «: cir­
cular shift, ×: finite field multiplier). The dashed part is the key expansion, which does 
not impact the critical path. 

Our implementation for 128-bit keys uses 8,984 LUTs and has a 20.4 ns 
combinatorial delay. On FPGA, logic is responsible for 21.94% of the delay and 
routing for 78.06%. The logic depth (Section 2.2) of the critical path consists 
of 52 levels. The S-box look-up of each round accounts for three levels, or 30 
for our design (10 rounds). A diagram of the critical path for one round is 



shown in Figure 2. The S-box look-up and finite field multiplication are the most 
expensive components in terms of delay. However, note that the multiplication 
can be implemented efficiently and without a full multiplier. Although the key 
expansion for each round is done in parallel with the calculations of the round 
itself and therefore does not appear on the critical path, it is shown to give an 
idea of its cost. 

The big difference between the logic and routing delay has two causes. First, 
the main operations on the critical path are look-ups in big 8-bit S-boxes, which 
have long delays. They incur a total delay (both logic and routing) of 11.2 ns, 
or 45.24%. Second, the input signal to each round has a large fan-out, slowing 
down the circuit. This is not caused by a design decision here, but rather an 
effect of how the S-box was synthesized. 

All S-boxes were implemented with 8-bit to 8-bit Look-Up Tables (LUTs). 
This explains the large ASIC area, because LUTs do not map well to ASIC. Note 
that implementations which rely on composite field arithmetic yield significantly 
better area results, especially in ASIC [28,20]. 

3.2 KATAN 

De Cannière et al. designed KATAN and KTANTAN [16] to be used in RFID 
tags. Their goal was to build an algorithm with an efficient hardware implemen­
tation, while still achieving reasonable throughput. The family of ciphers has a 
fixed key size of 80 bits, but the block size is a parameter (32, 48 or 64 bits). 
KATAN uses a Linear Feedback Shift Register (LFSR) for the key expansion. 
Encryption is done by splitting the state into two parts of different length and 
applying a non-linear function to each in every round of the algorithm. The only 
difference between KATAN and KTANTAN is that the latter has a hard-coded 
key. 

Bogdanov and Rechberger [10] first broke the KTANTAN family of ciphers 
with a meet-in-the-middle attack that has a time complexity of 275.170 and data 
complexity of 3. So far, there are only known attacks against reduced-round 
versions of KATAN, the best of which is a related-key boomerang attack by 
Isobe et al. [21]. It breaks 174 out of 254 rounds of KATAN32 with a time 
complexity 278.8 and data complexity 227.6 . 

Two versions of KATAN were built: KATAN32 and KATAN64 use 32-bit and 
64-bit blocks respectively. The former requires 1,064 LUTs and has a critical path 
of 41.2 ns. Although it has a very small area, its practical use is limited by the 
long delay, which is caused by the large number of rounds. The results for the 
latter are similar, with 2,550 LUTs and 47.3 ns. On FPGA, 91% of the delay is 
caused by routing, and 9% by logic for both variations. The logic depth consists 
of respectively 62 and 72 levels for the 32- and 64-bit states. 

Figure 3 shows a diagram of the critical path. The signal runs in parallel 
through the paths with the left shift and XOR and AND gates respectively. Since it 
doesn’t cost much to implement a shift in hardware, only the latter will be in the 
critical path. Both the key expansion and LFSR round counter (ctri, which isn’t 
shown) can be calculated in parallel and are therefore not part of the critical 
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Fig. 3. Diagram of the critical path of one unrolled KATAN round (ctri: LFSR round 
counter, «: regular shift). The dashed part is the key expansion, which does not impact 
the critical path. 

path. Although the round function has a small delay, the large number of rounds 
explains why a combinatorial implementation of the overall algorithm is slow. 

The XOR gates have a 9 to 1 delay ratio. In the Virtex 6 FPGA, they are 
implemented with 6-input LUTs, which have a constant look-up time of 0.061 ns 
(the logic delay). The routing delay accounts for the time needed to get the result 
to the next LUT. Contrary to the constant logic delay, it varies slightly depending 
on the fan-out (Section 2.3) and placement of the design on the fabric. 

3.3 PRESENT 

Like KATAN (Section 3.2), PRESENT [8] was created as a lightweight block 
cipher for constrained environments. They have very similar characteristics, but 
PRESENT has a higher throughput with lower area. In each encryption round, 
the state’s nibbles are run through a 4-bit S-box. This is followed by a permu­
tation layer which moves bits to different positions. The block size is fixed at 64 
bits, but both 80- and 128-bit keys can be used. The variation with 80-bit keys 
takes up 2,089 LUTs and has a 29.2 ns delay. Increasing the key size has a small 
impact on area and critical path. 

No known attacks break the full version of PRESENT. The best one was 
published by Joo Yeon Cho [13] and breaks 25 out of 31 rounds of the 80-bit 
variation with a time complexity of 264 and data complexity of 262.4 . 

On FPGA, 9.0% of the delay is caused by logic and 91.0% by routing for both 
key sizes. A diagram of the critical path for one round is shown in Figure 4. In 
each round, it first passes through the XOR with the key, followed by the S-box 
look-up and finally the permutation layer. The latter is a very cheap operation 
in hardware, as it only requires reordening wires. The XOR gates have the same 
characteristics that were mentioned earlier, but the smaller 4-bit S-boxes have 
a logic and routing delay similar to other gates. The critical path of the former 
has a logic depth of 48 levels, while the latter comes in at 52 levels. 
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Fig. 4. Diagram of the critical path of one unrolled PRESENT round. The dashed part 
is the key expansion, which does not impact the critical path. 

3.4 PRINCE 

PRINCE [11] is the first lightweight block cipher design that focuses on reducing 
latency. Traditional block ciphers are iterated algorithms with almost identical 
round functions (Section 2.1). This similarity is a big advantage to build compact 
multi-cycle algorithms, but becomes problematic when the ciphertext needs to 
be ready in a single cycle. By deciding on an unrolled structure from the start, 
the design space greatly increases, as there is no need for each round to be 
identical. An additional requirement for PRINCE was negligible overhead for 
the decryption mode. 

The algorithm has a symmetric design about a center matrix multiplication. 
Aside from the addition of the expanded key and round constants, the rounds 
have two basic operations: a 4-bit S-box and matrix multiplication. The latter is 
constructed so that every output bit is influenced by three input bits. The matrix 
multiplication is implemented as an XOR of the selected bits. Three different 
matrices are used: the construction of the symmetric matrix M ' is given in the 
original paper. The matrix M is derived from M ' by first shifting the input state 
similarly to AES’ ShiftRows before the multiplication. Both the block and key 
size are fixed to 64 and 128 bits respectively. The 128-bit key input is expanded 
to 192 bits, so that three different 64-bit keys are available. k0 and k' are used 0 
for pre- and post-whitening respectively, and k1 as the round subkey. 

The key k0 and a round constant are added first. Then, there are five rounds 
in which the S-box is applied to the state, followed by multiplication with M , 
and again the addition of a round constant and the key k1 (see Figure 5). The 
center part of the algorithm applies the S-box, multiplies the result with M ', 
and applies the inverse S-box. This is followed by five inverse rounds (the order 
of the operations is reversed, and the inverse S-box and M−1 are used). The 
final step is again the addition of a round constant and key k0

' . 
Since its publication, the resistance of PRINCE against different attacks has 

been investigated. The most recent ones are due to Morawiecki [24], Derbez and 
Perrin [17], Canteaut et al. [12] and Zhao et al. [33]. The best known attack so 



far is the one by Morawiecki [24]. His meet-in-the-middle approach compromises 
10 out of 12 rounds with (online) time complexity 268 and data complexity 
257 . When the reflection parameter α can be chosen, the cipher core, i.e. the 
algorithm without the pre- and post-whitening keys, is fully broken with a time 
and data complexity of 241 [22]. 
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Fig. 5. Critical path diagram of one regular PRINCE round (RCi: round constant). 
The dashed part is the key expansion, which does not impact the critical path. 

PRINCE only needs 1,244 LUTs and has a short critical path of 16.4 ns. 
It first passes through the three initial XORs, which are combined in a single 
LUT. In the five regular rounds that follow (see Figure 5), the S-box look-up 
and matrix multiplication are also synthesized to a single LUT, as well as the 
two remaining XORs. The signal then runs through another S-box look-up and 
the matrix multiplication at the center. The rest of the path is symmetric, due to 
the cipher’s design. On FPGA, routing is responsible for 91.0% of the delay and 
logic for 9.0%, which can again be explained by the general gate characteristics 
given earlier. The logic depth of the critical path is 26 levels. 

The absence of a complicated key expansion does not impact the critical path, 
as it can be processed in parallel with the data processing. This was observed 
for the other algorithms, where the key expansion never shows up in the critical 
path. However, it does lower the area requirements of the cipher. 

3.5 RECTANGLE 

Published in 2014, RECTANGLE [32] is the most recent cipher discussed here. 
It was designed to have good hardware and software performance. The round 
function is very simple: first, there is an XOR with the round subkey, followed 
by the application of a 4-bit S-box substitution to the state’s columns and a 
cyclic shift of its rows over different offsets. The key expansion also has these 
two operations (the S-box is only applied to the 0th column of the key state) 
and the addition of a round constant, which is generated by an LFSR. The block 
size is fixed at 64 bits, but there are two possible key sizes (80 and 128 bits). 

Since it was only published very recently, few analyses have been published 
on RECTANGLE. Currently, there is only one report about the variation with 
80-bit keys by Shan et al. [29]. Their differential attack breaks 19 out of 25 
rounds with a time complexity of 267.42 and data complexity of 262 . 

The variation with 80-bit keys takes up 1,688 LUTs and has 26.1 ns delay. 
For each round, the critical path runs through the XOR with the round key, S­
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Fig. 6. Critical path diagram of one unrolled RECTANGLE round («: circular shift, 
RCi: round constant). The dashed part is the key expansion, which does not impact 
the critical path. 

box look-up and circular shift (see Figure 6). The key expansion can be done 
in parallel and is only shown to give an idea of its cost. On FPGA, one LUT 
combines the XOR, S-box look-up, and shift. However, the synthesis cannot merge 
the three operations in some cases (probably due to placement constraints). The 
final component is the XOR with the last subkey (not shown on Figure 6). On 
FPGA, 9.2% of the delay is caused by logic and 90.8% by routing, which is 
expected given the general characteristics of the gates. The logic depth of the 
critical path is 41 levels. 

3.6 SIMON 

The designers of SIMON and SPECK (Section 3.7) [5] focused on flexibility. 
Most lightweight block ciphers have a small number of possible block and key 
sizes. This can make it hard to find a suitable algorithm for a specific application. 
In contrast, the parameters of SIMON and SPECK give rise to 10 variations. 
The block size ranges from 32 to 128 bits and the key size from 64 to 256 bits. 

SIMON is a Feistel cipher (Section 2.1) where the cipher’s state is split in half 
and in each round, the upper part of the input is left unchanged and becomes 
the lower part of the output. The round function is applied to the lower part 
and assigned to the upper part of the output. SIMON’s round function is very 
straightforward: it has just three cyclic shifts, three XOR gates, and one AND gate. 
The key expansion is slightly more complicated, but uses similar building blocks 
as the round function. 

SIMON and SPECK have been analysed for mathematical weaknesses using 
a variety of techniques ([2], [7], [30], [31], [4] and [1]), but none have broken the 
full cipher so far. Note that some publications are limited to a set of specific 
parameter pairs. The best result for SIMON 32/64 at this time is a linear super-
trail attack by Ashur [4] which breaks 24 out of 32 rounds with a time complexity 
of 263.57 and data complexity of 231.57 . 

We implemented two parameter pairs: one with 32-bit blocks and 64-bit keys 
and one with 64-bit blocks and 128-bit keys. The former needs 960 LUTs and 
has a critical path of 20.4 ns. The latter uses 2,688 LUTs and the output is ready 
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Fig. 7. Critical path diagram of one unrolled SIMON round (∼: inverter, «: circular 
shift, zi: bit from a predefined constant vector). The dashed part is the key expansion, 
which does not impact the critical path. 

after 27.3 ns. The critical path runs through a circular shift, AND and XOR gate 
(see Figure 7). Again, the key expansion is not part of the critical path, but is 
only included in the diagram to show its cost. The XOR and AND operations in 
each round are combined in a single LUT. On FPGA, 90% of the delay is caused 
by routing and 10% by logic for both variations, which is the ratio we’ve seen 
for the other designs as well. The logic depth of the smallest variation consists 
of 34 levels and 46 levels for the other one. 

3.7 SPECK 

SPECK was published together with SIMON (Section 3.6), and although both 
perform well in general, SIMON was optimised for hardware implementations 
and SPECK for software. The state is also split in half in SPECK’s design, but it 
is not a Feistel cipher, so both halves change in each round. The round function 
has even fewer operations than SIMON’s, but a very important difference is that 
one adder is now being used. Although trivial in software, this design decision 
has a big impact on hardware performance, as can be seen from the results. 

Of all reports on SIMON, only Biryukov et al. [7] also analysed SPECK, but 
improved results were obtained by Dinur [18]. The best attack breaks 14 out of 
22 rounds of SPECK 32/64 with a time complexity of 263 and data complexity 
of 231 . 

Implementations were built for the same two parameter pairs as were used 
with SIMON (Section 3.6). SPECK 32/64 requires 1,513 LUTs and has a 40.3 ns 
delay. SPECK 64/128 uses 3,594 LUTs and has a critical path of 50.3 ns. The 
components of the critical path differ between the rounds depending on the 
possible optimizations after placement. In general, it runs through the circular 
shift, adder chain, and finally the XOR gates (see Figure 8). Comparing the delay 
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Fig. 8. Critical path diagram of one unrolled SPECK round («: circular shift, i: round 
counter). The dashed part is the key expansion, which does not impact the critical path. 

for both variations, we can clearly see the impact of the adder. On FPGA, logic 
is responsible for 33% and the wiring for 67% for both variations. This is due to 
the adders introducing longer logic delays than the basic gates that were used 
in all other algorithms. The critical path of SPECK 32/64 has a logic depth of 
124 levels, while SPECK 64/128 comes in at 197 levels. The total delay caused 
by the adders is 26.4 ns (65.53%) and 32.8 ns (65.28%) respectively. 

4 Comparison 

Table 2 summarizes all FPGA results from the previous section, grouped by 
block and key size. Looking at the ciphers with 32-bit blocks, SIMON 32/64 
has the best performance both in terms of area and throughput. An important 
disadvantage are the 64-bit keys which only offer very short-term protection 
against small organizations [19]. While KATAN 32/80 uses stronger keys and 
has has similar area requirements, its large number of rounds results in a long 
critical path. 

Among the algorithms with 64-bit blocks and 80-bit keys, RECTANGLE is 
the smallest and has the shortest latency too. PRESENT has similar characteris­
tics because they use the same techniques. The difference between the two is only 
caused by the actual S-box design and permutation layer. Although KATAN’s 
area is still quite small for these parameters, its latency is the second-highest of 
all implementations. The reason for the higher throughput is the bigger block 
size. 

Comparing the results for the last parameter pair (64-bit blocks, 128-bit 
keys), PRINCE’s performance really stands out. It is by far the smallest in its 
category and not even that far off SIMON 32/64. The latency is the lowest of all 
implemented ciphers, which confirms its main design requirement. The numbers 



for PRESENT and SIMON are similar, with PRESENT having a slightly smaller 
footprint and SIMON being a bit faster. However, as the area increases with the 
parameter size, the variations with small parameters are most interesting. The 
circuit is compounded by a large number of additional rounds when the size of 
the parameter goes up. SPECK’s results don’t make it an attractive alternative. 
The critical path is particularly long because of the adders in its design. 

Looking at the different lightweight ciphers, the performance of AES is sur­
prisingly good. It has a very large area because of the big S-boxes (8-bit to 
8-bit), but its latency is competitive, given the small number of rounds and effi­
cient permutation layer. Combined with the 128-bit blocks, this results in high 
throughput. 

Table 2. Size, critical path and throughput on FPGA (italics: best result in a security 
class, bold: best result overall) 

Cipher Size Critical Path Throughput 

[LUTs] [ns] [Gbit/s] 

SIMON 32/64 960 20.4 1.46
 

SPECK 32/64 1,513 40.3 0.74
 

KATAN 32/80 1,064 41.2 0.72 

KATAN 64/80 2,550 47.3 1.26 

PRESENT 64/80 2,089 29.2 2.04 

RECTANGLE 64/80 1,668 26.1 2.29 

PRESENT 64/128 2,203 32.6 1.83 

PRINCE 64/128 1,244 16.4 3.64 

SIMON 64/128 2,688 27.3 2.18 

SPECK 64/128 3,594 50.3 1.19 

AES 128/128 8,984 24.7 4.82 

Most ASIC results are in line with the expectations from FPGA. The biggest 
surprise is SPECK’s area being smaller than SIMON’s, both for 32- and 64­
bit blocks. A possible explanation for this difference is that the adders can be 
mapped better on ASIC than FPGA. Also note that the latency for SPECK 
64/128 is very high on ASIC. 

It is now possible to make some observations on the design of lightweight 
ciphers. Unrolling the rounds of an iterated cipher places all data operations of 
the round function on the critical path. Therefore, when an algorithm has more 
rounds, the critical path will often be longer as well (see Figure 9). This is clear 
from the results for KATAN, which has a very large number of rounds. It is well 
known that regular arithmetic does not perform well in hardware, especially in 
terms of latency. SPECK’s performance is a clear indication of this. Big S-boxes 
are also expensive, and as can be seen from the AES implementation, they have 



Table 3. Size, critical path and throughput on ASIC (italics: best result in a security 
class, bold: best result overall) 

Cipher Size Critical Path Throughput 

[GE] [ns] [Gbit/s] 

SIMON 32/64 8,432.00 29.6 1.00
 

SPECK 32/64 5,893.25 82.1 0.36
 

KATAN 32/80 11,939.50 61.2 0.49 

KATAN 64/80 24,766.50 75.8 0.79 

PRESENT 64/80 22,063.50 39.4 1.51 

RECTANGLE 64/80 14,003.75 39.3 1.52 

PRESENT 64/128 23,005.75 38.1 1.57 

PRINCE 64/128 9,522.75 22.9 2.60 

SIMON 64/128 23,584.00 41.7 1.43 

SPECK 64/128 16,371.00 182.4 0.33 

AES 128/128 126,571.00 61.6 1.93 

a large area requirement, especially in ASIC. Additionally, because they don’t 
map well to the FPGA fabric, they have very long delays. The number of S-boxes 
used in the round function is of less importance, as they are working in parallel. 
Depending on the platform, using multiple-input gates could also negatively 
impact the latency (e.g. a four-input XOR can be implemented in a single LUT 
on FPGA, while it will result in a cascade of three XORs in ASIC). 

Finally, recommendations for the design of low-latency algorithms follow from 
these remarks. When focusing on low latency, having an unrolled design, like 
PRINCE, gives significantly better results. Iterated SP networks also perform 
well: the delay of small S-boxes is not very high and the permutation layer can 
essentially be implemented for free. The number of rounds should be as low as 
possible, while still maintaining an acceptable level of security. Small S-boxes are 
a nice component, as they have low latency as well as good area performance. 
Lastly, the general design rule to use boolean operations in hardware designs 
also applies here. 

5 Conclusion 

In this paper, we have given synthesis results for unrolled implementations of 
six families of lightweight block ciphers, along with AES for reference. It was 
shown that PRINCE, the only cipher specifically designed to have low latency, 
is the fastest of all implemented algorithms, and also has a very competitive area. 
For smaller block sizes, which are useful for some applications, SIMON has the 
smallest area and offers good throughput. However, the latency of most ciphers 
is too high to be useful in practice. For example, PRINCE runs at 61.039 MHz 
on Virtex 6, which is fast compared to the other ciphers, but is suitable only for 
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Fig. 9. Plot of the critical path on FPGA in function of the number of rounds. 

small embedded applications. The speed in a microcontroller will be even lower 
once it is integrated with other components that add to the critical path. The 
search for new ciphers is therefore an important future research topic. 
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