
Performance of State-of-the-Art Cryptography
 

on ARM-based Microprocessors
 
Hannes Tschofenig∗, Manuel Pegourie-Gonnard† 

∗ARM Limited, Email: Hannes.Tschofenig@arm.com 
†ARM Limited, Email: manuel.pegourie-gonnard@arm.com 

I . EX T E N D E D AB S T R AC T 

ARM has designed many processors, and has extended its product portfolio by diversifying its CPU 

development. This resulted in the new processor family with the name ”Cortex”. There are three profiles 

in this family, namely 

1)	 Cortex-A: Application processors that are designed to handle complex applications, such as high-end 

embedded operating systems. Example products include high-end smart phones, tables, home gateways, 

televisions, drones, etc. The Raspberry Pi also uses the Cortex-A processor. 

2)	 Cortex-R: Real-time, high-performance processors targeted primarily at the higher end of the real-

time market. Example products are hard drive controllers, baseband controllers for cellular radio 

communciation, and automotive systems. 

3)	 Cortex-M: Processors targeting applications where low cost, and energy efficiency play an important role. 

Currently, there are the following Cortex-M processors on the market: Cortex-M0, M0+, M3, M4 and 

the recently released M7). Each of these processors provides different capabilities for different market 

segments [1]. 

Cortex-A and Cortex-R processors are very powerful and do not require special attention from a performance 

point of view. As mentioned, they are able to perform complex tasks without any problems and are not 

considered ’constrained’ with respect to their computational capabilities. Widely used high-end operating system 

are available for these processors. 

The situation for Cortex-M processors is, however, different since these processors do not offer a memory 

management unit (MMU) (but a memory protection unit (MPU) instead), contain a less powerful but more 

energy efficient CPU, and are equipped with less RAM and flash memory. Many modern operating systems 

assume the presence of a MMU and the limited RAM / flash memory resources often prohibit the use of 

sophisticated operating systems1 . 

PO S I T I O N PA P E R F O R T H E ’NI ST LI G H T W E I G H T CRY P TO G R A P H Y WO R K S H O P ’, 20th A N D 2 1st JU LY 2 015, GA I T H E R S B U R G , US . 
1Note that we assume a platform with 256 KB of flash memory and 32 KB of RAM for use with our new mbed operating system, see [2]. 

mbed OS also requires a memory protection unit to provide memory access permissions for different memory regions thus improving OS 

security. In particular, this prevents applications from corrupting/accessing memory used by other applications or by the hypervisor. 

April 1, 2015	 DRAFT 

mailto:manuel.pegourie-gonnard@arm.com
mailto:Hannes.Tschofenig@arm.com


2 

Cortex-M processors are very popular with Internet of Things (IoT) products and the ability to offer an online 

development environment, an operating system, as well as the Internet protocol stack (including standardized 

security protocols) lowers the barrier of entry for small, innovative companies. Our efforts are therefore focused 

on ensuring suitable performance for the Cortex-M processor family. Without stating real-world hardware 

requirements it is difficult to offer meaningful performance numbers and goals for optimization efforts. 

For evaluating the performance of an entire IoT product it is, however, also necessary to refer to a reference 

design since there are many different design patterns in use under the umbrella of IoT. The basic design 

patterns are described in RFC 7452 [3]. A presentation at the IETF 92 plenary by the Internet Architecture 

Board summarized the key differences of various design patterns [4]. While it will ultimately be most useful 

to measure performance in context of the different design patterns no such extended performance analysis has 

been conducted to our knowledge. 

We have focused our performance investigations so far on the most demanding computations required by 

[5], namely on elliptic curve cryptography. While our work is still ongoing a preliminary presentation has been 

given to the IETF audience, see [6], with the intention to solicit feedback and to encourage others to offer their 

performance data. Without proper performance data it is difficult to decide whether cryptographic algorithms 

available today are (in-)sufficient for a given task. Note that [5] has been written with TLS/DTLS usage with 

IoT applications and hence the choice of ciphersuites and protocol extensions differs from the use in a typical 

Web/smart phone app scenario. 

While the results are documented in detail in [6] it is useful to summarize a few key aspects. Note that 

we have used an open source TLS/DTLS library, namely mbedTLS [7], without any hardware optimization or 

ARM-assembly instructions. 

1) ECC requires performance-demanding computations and those take time. What an acceptable delay is 

depends on the application. Many applications only need to run public key cryptographic operations 

during the initial (session) setup phase and infrequently afterwards. With session resumption DTLS/TLS 

uses symmetric key cryptography most of the time. 

2) The performance of symmetric key cryptography (keyed hash functions, encryption functions) is 

negligible. 

3) Detailed performance figures depend on the enabled performance optimizations (and indirectly the 

available RAM size), the key size, the type of curve, and CPU speed. Choosing the right microprocessor 

based on the expected usage environment is important. 

4) Different curves offer quite some differences in performance. The Brainpool curves were slower than 

NIST curves and Curve25519 shows promise to be even faster than NIST curves. 

5) ECDSA signature operation is faster than ECDSA verify operation. ECDH is only slightly faster than 

ECDHE (when fixed point optimization is enabled). Taking this fact into account can play a role in the 

overal system design. 

6) ECC key sizes above 256 bits are substantially slower than ECC curves with key size 192, 224, and 

256. Key sizes around 224 bits are roughly similiar in speed. It is important to note that the chosen key 

size has to be based on the state of the art recommendations rather than on the pre-selected hardware 

April 1, 2015 DRAFT 



3 

platform. Quite often asymmetric cryptography is used on hardware that is not fit for the task and key 

sizes have to be chosen that are ridiculously small. 

7) CPU speed has a significant impact on the crypto performance. Faster CPU speeds often also have 

a positive impact on energy efficiency because the CPU can finish computations much faster and the 

sleeping cycles can be longer. 

8) Optimizations, such as NIST curve optimization and fixed point optimization, have a significant influence 

on the performance. There is a performance - RAM usage tradeoff: increased performance comes at the 

expense of additional RAM usage. We believe that the additional RAM is well spent. 

9) An ECC library increases code size (compared to a pure shared secret-based approach). 

Since various optimizations have not been utilized so far we believe that asymmetric cryptography using our 

mbedTLS stack can be used with all processors in the Cortex M family, particularly in context of TLS/DTLS, 

without noticable delay for most applications. For those applications that require very fast response times (for 

example due to user interactions) the Cortex-M3 and M4 processors provide good performance at a low cost. 

The new Cortex M7 will improve performance even further and thereby bridging the gap between M-class and 

A-class processors. 

We are interested to hear what performance data others have gathered using their crypto libraries, maybe 

using different optimization techniques, and tests executed on different processors. We are also interested in 

documenting widely used IoT design patterns (as reference designs), which would not only be useful for 

performance comparisons of IoT systems but also for interoperability testing setups. 

RE F E R E N C E S 

[1] ARM, “Cortex-M Series,” Mar. 2015, http://www.arm.com/products/processors/cortex-m/. 

[2]	 S. Ford, “Announcing our plans for mbed v3.0,” Oct. 2014, http://developer.mbed.org/blog/entry/Announcing-our-plans-for-mbed-v30/. 

[3]	 H. Tschofenig, J. Arkko, D. Thaler, and D. McPherson, “Architectural Considerations in Smart Object Networking,” Mar. 2015, RFC 

7452, Request For Comments. 

[4]	 D. Thaler and H. Tschofenig, “Architectural Considerations in Smart Object Networking,” Mar. 2015, 

http://www.ietf.org/proceedings/92/slides/slides-92-iab-techplenary-2.pdf. 

[5]	 H. Tschofenig and T. Fossati, “A TLS/DTLS Profile for the Internet of Things,” Mar. 2015, IETF draft (work in progress), draft-ietf­

dice-profile-10.txt. 

[6]	 H. Tschofenig and M. Pegourie-Gonnard, “Presentation at the IETF92 Light-Weight Implementation Guidance (lwig) working group 

meeting on Crypto Performance,” Mar. 2015, http://www.ietf.org/proceedings/92/slides/slides-92-lwig-3.pptx. 

[7] ARM, “mbedTLS,” Mar. 2015, https://tls.mbed.org. 

April 1, 2015	 DRAFT 

http:https://tls.mbed.org
http://www.ietf.org/proceedings/92/slides/slides-92-lwig-3.pptx
http://www.ietf.org/proceedings/92/slides/slides-92-iab-techplenary-2.pdf
http://developer.mbed.org/blog/entry/Announcing-our-plans-for-mbed-v30
http://www.arm.com/products/processors/cortex-m

