
RECTANGLE: A Bit-slice Lightweight Block Cipher Suitable for
Multiple Platforms

Wentao Zhang1, Zhenzhen Bao1, Dongdai Lin1, Vincent Rijmen2, Bohan Yang2,
Ingrid Verbauwhede2

1.State Key Laboratory of Information Security, Institute of Information
Engineering, Chinese Academy of Sciences, Beijing 100093, China

2.KU Leuven, Dept. of Electrical Engineering ESAT/COSIC and iMinds, Security Dept.
{zhangwentao, baozhenzhen, ddlin}@iie.ac.cn

{vincent.rijmen, bohan.yang, ingrid.verbauwhede}@esat.kuleuven.be

Abstract. In this paper, we propose a new lightweight block cipher named RECTANGLE. The main
idea of the design of RECTANGLE is to allow lightweight and fast implementations using bit-slice
techniques. RECTANGLE uses an SP-network. The substitution layer consists of 16 4 × 4 S-boxes
in parallel. The permutation layer is composed of 3 rotations. As shown in this paper, RECTAN-
GLE offers great performance in both hardware and software environment, which provides enough
flexibility for different application scenario. The following are 3 main advantages of RECTANGLE.
First, RECTANGLE is extremely hardware-friendly. For the 80-bit key version, a one-cycle-per-round
parallel implementation only needs 1600 gates for a throughput of 246 Kbits/sec at 100 KHz clock
and an energy efficiency of 3.0 pJ/bit. Second, RECTANGLE achieves a very competitive software
speed among the existing lightweight block ciphers due to its bit-slice style. Using 128-bit SSE instruc-
tions, a bit-slice implementation of RECTANGLE reaches an average encryption speed of about 3.9
cycles/byte for messages around 3000 bytes. Last, but not least, we propose new design criteria for
the RECTANGLE S-box. Due to our careful selection of the S-box and the asymmetric design of the
permutation layer, RECTANGLE achieves a very good security-performance tradeoff. Our extensive
and deep security analysis shows that the highest number of rounds that we can attack, is 18 (out of
25).

Key words: lightweight cryptography, block cipher, design, bit-slice, hardware efficiency, software
efficiency

1 Introduction

Small embedded devices (including RFIDs, sensor nodes, smart cards) are now widely used in many appli-
cations. They are usually characterized by strong cost constraints, such as area, power, energy consumption
for hardware aspect, and low memory, small code size for software aspect. Meanwhile, they also require
cryptographic protection. As a result, many new lightweight ciphers have been proposed to provide strong
security at a lower cost than standard solutions. Since symmetric-key ciphers, especially block ciphers, play
an important role in the security of small embedded devices, the design of lightweight block ciphers has
been a very active research topic over the last few years.

In the literature, quite a few lightweight block ciphers with various design strategies have been proposed,
such as DESL/DESX/DESXL [34], Hummingbird [24], KATAN/ KTANTAN [21], KLEIN [27], LBlock [51],
LED[29], PICCOLO [47], PRESENT [14], SIMON and SPECK [3], TWINE [48] and so on. PRESENT
was proposed at CHES’2007, and has attracted a lot of attention from cryptographic researchers due to
its simplicity, impressive hardware performance and strong security. The design of PRESENT is extremely
hardware-efficient, since it uses a bit permutation as its diffusion layer, which is a simple wiring in hardware
implementation. In 2012, PRESENT was adopted as ISO/IEC lightweight cryptography standard. Many
lightweight ciphers, including PRESENT, KATAN/KTANTAN and Hummingbird, succeed in achieving a
low area in hardware but the software performance is not good. For example, the permutation layer of

This paper has been published as: Wentao Zhang, Zhenzhen Bao, Dongdai Lin, Vincent Rijmen, Bohan Yang,
Ingrid Verbauwhede. RECTANGLE: A Bit-slice Lightweight Block Cipher Suitable for Multiple Platforms. SCI-
ENCE CHINA Information Sciences, December, 2015, Vol. 58: 122103(15).

PRESENT is extremely low-cost in hardware, but it is the true performance bottleneck for many software
implementations. However, high software performance is also needed from the same algorithm for many
classical lightweight applications, as pointed out in [3, 4, 27, 29, 35].

Among the new proposals, some present weaknesses, including ARMODILLO-2, Hummingbird-1 and
KTANTAN [15, 40, 45]. Furthermore, as pointed out in [29], designers of “second generation” lightweight
ciphers can learn from the progress and the omissions of the“first generation” proposals. The S-box of
PRESENT is mainly selected according to its hardware area instead of security of the underlying cipher.
Hence, the S-box of PRESENT is “weak” with respect to cipher security. As pointed out in [32], the
PRESENT S-box is among the 8 percent worst S-boxes with respect to clustering of one bit linear trails.
Along with the strong symmetry of the PRESENT permutation layer, there are very serious clustering
problems both for linear trails and differential trails [12, 16, 32, 41, 49]. We give more details in Section 3. As
a result, for PRESENT, the best distinguisher so far can reach 24 rounds [16], which can be used to mount
a shortcut attack on 26-round PRESENT (out of 31).

The bit-slice technique was introduced for speeding up the software speed of DES [6], and was used in
the design of the Serpent block cipher [2]. In a bit-slice implementation, one software logical instruction
corresponds to simultaneous execution of n hardware logical gates, where n is the length of a subblock.
JH [50], Keccak(SHA-3) [5], Noekeon [19] and Trivium [22] are 4 other primitives that can benefit from
the bit-slice technique for their software performance. It is worth noticing that JH, Keccak, Noekeon,
Serpent and Trivium not only perform well in hardware but also in software. Furthermore, a bit-slice
implementation is safe against implementation attacks such as cache and timing attacks compared with a
table-based implementation [38]. However, the main design goal of all the mentioned bit-sliced ciphers is
not “lightweight”, and there is plenty of room for improvement when it comes to a dedicated lightweight
block cipher with bit-slice style.

1.1 Contributions

In this paper, we present a new lightweight block cipher RECTANGLE. The design of RECTANGLE makes
use of the bit-slice technique in a lightweight manner, hence to achieve not only a very low cost in hardware
but also a very competitive performance in software. As a result, RECTANGLE adopts the SP-network
structure. The substitution layer (S-layer) consists of 16 4 × 4 S-boxes in parallel. The permutation layer
(P-layer) is composed of 3 rotations. The following are 3 main advantages of RECTANGLE:

1. RECTANGLE is extremely hardware-friendly. The bit-sliced design principle of RECTANGLE allows
for very efficient and flexible hardware implementations. For the 80-bit key version, using UMC 0.13µm
standard cell library at 100 KHz , our round-based implementation could obtain a throughput of 246
Kbits/sec and an energy efficiency of 3.0 pJ/bit with only 1600 gates, and our serialized implementation
could obtain a throughput of 14.0 Kbits/sec and an energy efficiency of 32.05 pJ/bit with only 1111
gates. More details are given in Section 5.1.

2. Due to its bit-slice style, RECTANGLE achieves a very competitive software speed among the existing
lightweight block ciphers. On a 2.5GHz Intel(R) Core i5-2520M CPU, for one block data, our bit-slice
implementation gives a speed of about 30.5 cycles/byte for encryption; with a parallel mode of operation,
a bit-slice implementation of RECTANGLE reaches an average encryption speed of about 3.9 cycles/byte
for messages around 3000 bytes, using Intel 128-bit SSE instructions. In addition, our implementations
of RECTANGLE on Atmel studio show that RECTANGLE also has a very impressive performance on
8-bit microcontrollers. More details are given in Section 5.2.

3. Last but not least. We propose new design criteria for the RECTANGLE S-box. Due to our careful
selection of the RECTANGLE S-box, together with the asymmetric design of the P-layer, RECTANGLE
achieves a very good security-performance tradeoff. After our extensive and deep security analysis, we
can mount a shortcut attack on 18-round RECTANGLE (out of 25), which is the highest number of
rounds that we can attack.

This paper is organized as follows. Section 2 presents a specification of RECTANGLE; Section 3 discusses
the security of RECTANGLE against known attacks; Section 4 motivates the design choices of RECTAN-
GLE; Section 5 presents the hardware and software implementation results of the cipher; Section 6 presents
the relation of RECTANGLE to several early designs. Section 7 concludes the paper.

2 The RECTANGLE Block Cipher

RECTANGLE is an iterated block cipher. The block length is 64 bits, and the key length is 80 or 128 bits.

2.1 The Cipher State and the Subkey State

A 64-bit plaintext, or a 64-bit intermediate result, or a 64-bit ciphertext is collectively called as a cipher
state. A cipher state is pictured as a 4 × 16 rectangular array of bits, which is the origin of the cipher
name RECTANGLE. Let W = w63|| · · · ||w1||w0 denote a cipher state, the first 16 bits w15|| · · · ||w1||w0

are arranged in row 0, the next 16 bits w31|| · · · ||w17||w16 are arranged in row 1, and so on, as illustrated
in Figure 1. A 64-bit subkey is similarly pictured as a 4 × 16 array. In the following, for convenience of
description, a cipher state is described in a two-dimensional way, as illustrated in Figure 2.w15 · · · w2 w1 w0

w31 · · · w18 w17 w16

w47 · · · w34 w33 w32

w63 · · · w50 w49 w48

a0,15 · · · a0,2 a0,1 a0,0

a1,15 · · · a1,2 a1,1 a1,0

a2,15 · · · a2,2 a2,1 a2,0

a3,15 · · · a3,2 a3,1 a3,0

Fig. 1. A Cipher State Fig. 2. Two-dimensional Way

2.2 The Round Transformation

RECTANGLE is a 25-round SP-network cipher. Each of the 25 rounds consists of the following 3 steps:
AddRoundkey, SubColumn, ShiftRow. After the last round, there is a final AddRoundKey.
AddRoundkey: A simple bitwise XOR of the round subkey to the intermediate state.
SubColumn: Parallel application of S-boxes to the 4 bits in the same column. The operation of SubColumn
is illustrated in Figure 3. The input of an S-box is Col(j) = a3,j ||a2,j ||a1,j ||a0,j for 0 ≤ j ≤ 15, and the
output is S(Col(j)) = b3,j ||b2,j ||b1,j ||b0,j .a0,15

a1,15

a2,15

a3,15

 · · ·

a0,2

a1,2

a2,2

a3,2

a0,1

a1,1

a2,1

a3,1

a0,0

a1,0

a2,0

a3,0

yS · · ·

yS

yS

yS
b0,15
b1,15
b2,15
b3,15

 · · ·

b0,2
b1,2
b2,2
b3,2

b0,1
b1,1
b2,1
b3,1

b0,0
b1,0
b2,0
b3,0

Figure 3. SubColumn operates on the columns of the state

The S-box used in RECTANGLE is a 4-bit to 4-bit S-box S : F 4
2 → F 4

2 . The action of this S-box in
hexadecimal notation is given by the following table.

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S(x) 6 5 C A 1 E 7 9 B 0 3 D 8 F 4 2

ShiftRow: A left rotation to each row over different offsets. Row 0 is not rotated, row 1 is left rotated over
1 bit, row 2 is left rotated over 12 bits, and row 3 is left rotated over 13 bits. Let ≪ x denote left rotation
over x bits, the operation ShiftRow is illustrated in Figure 4.

(a0,15 · · · a0,2 a0,1 a0,0)
≪0−−→ (a0,15 · · · a0,2 a0,1 a0,0)

(a1,15 · · · a1,2 a1,1 a1,0)
≪1−−→ (a1,14 · · · a1,1 a1,0 a1,15)

(a2,15 · · · a2,2 a2,1 a2,0)
≪12−−−→ (a2,3 · · · a2,6 a2,5 a2,4)

(a3,15 · · · a3,2 a3,1 a3,0)
≪13−−−→ (a3,2 · · · a3,5 a3,4 a3,3)

Figure 4. ShiftRow operates on the rows of the state

2.3 Key Schedule

RECTANGLE can accept keys of either 80 or 128 bits.
80-bit key For an 80-bit seed key (user-supplied key) V = v79|| · · · ||v1||v0, the key is firstly stored in an
80-bit key register and arranged as a 5× 16 array of bits, see Figure 5.

v15 · · · v2 v1 v0
v31 · · · v18 v17 v16
v47 · · · v34 v33 v32
v63 · · · v50 v49 v48
v79 · · · v66 v65 v64

κ0,15 · · · κ0,2 κ0,1 κ0,0

κ1,15 · · · κ1,2 κ1,1 κ1,0

κ2,15 · · · κ2,2 κ2,1 κ2,0

κ3,15 · · · κ3,2 κ3,1 κ3,0

κ4,15 · · · κ4,2 κ4,1 κ4,0

Figure 5. An 80-bit key state and its two-dimensional representation

Let Rowi = κi,15|| · · · ||κi,1||κi,0 denote the i-th row of the key register, 0 ≤ i ≤ 4. Rowi can be regarded
as a 16-bit word. At round i (i = 0, 1, · · · , 24), the 64-bit round subkey Ki consists of the first 4 rows of
the current contents of the key register, i.e., Ki = Row3||Row2||Row1||Row0. After extracting Ki, the key
register is updated as follows:

1. Applying S-box S to the bits intersected at the 4 uppermost rows and the 4 rightmost columns, i.e.,

κ′
3,j ||κ′

2,j ||κ′
1,j ||κ′

0,j := S(κ3,j ||κ2,j ||κ1,j ||κ0,j), j = 0, 1, 2, 3

2. Applying a 1-round generalized Feistel transformation, i.e.,
Row′

0 := (Row0 ≪ 8)⊕Row1, Row′
1 := Row2, Row′

2 := Row3,
Row′

3 := (Row3 ≪ 12)⊕Row4, Row′
4 := Row0.

3. A 5-bit round constant RC[i] is XORed with the 5-bit key state (κ0,4||κ0,3||κ0,2||κ0,1||κ0,0), i.e.,

κ′
0,4||κ′

0,3||κ′
0,2||κ′

0,1||κ′
0,0 := (κ0,4||κ0,3||κ0,2||κ0,1||κ0,0)⊕ RC[i].

Finally, K25 is extracted from the updated key state. The round constants RC[i] (i = 0, 1, · · · , 24) are
generated by a 5-bit LFSR. At each round, the 5 bits (rc4, rc3, rc2, rc1, rc0) are left shifted over 1 bit, with
the new value to rc0 being computed as rc4 ⊕ rc2. The initial value is defined as RC[0] := 0x1. We list all
the round constants in Appendix A.

128-bit key For a 128-bit seed key, the key is firstly stored in a 128-bit key register and arranged as
a 4 × 32 array of bits. Let Rowi = κi,31|| · · · ||κi,1||κi,0 denote the i-th row of the key register, 0 ≤ i ≤ 3.
Rowi can be regarded as a 32-bit word. At round i(i = 0, 1, · · · , 24), the 64-bit round subkey Ki consists of
the 16 rightmost columns of the current contents of the key. After extracting the round subkey Ki, the key
register is updated as follows:

1. Applying the S-box S to the 8 rightmost columns, i.e.,

κ′
3,j ||κ′

2,j ||κ′
1,j ||κ′

0,j := S(κ3,j ||κ2,j ||κ1,j ||κ0,j), 0 6 j 6 7

2. Applying a 1-round generalized Feistel transformation, i.e.,
Row′

0 := (Row0 ≪ 8)⊕Row1, Row′
1 := Row2,

Row′
2 := (Row2 ≪ 16)⊕Row3, Row′

3 := Row0.
3. A 5-bit round constant RC[i] is XORed with the 5-bit key state (κ0,4||κ0,3||κ0,2||κ0,1||κ0,0), where RC[i]

(i = 0, 1, · · · , 24) are the same as those used in the 80-bit key schedule.

Finally, K25 is extracted from the updated key state.

3 Security Analysis

In this section, we present the results of our security analysis of RECTANGLE.

Table 1. Probabilities of the best differential trails of RECTANGLE

♯ R Prob. ♯ R Prob. ♯ R Prob. ♯ R Prob. ♯ R Prob.

1 2−2 2 2−4 3 2−7 4 2−10 5 2−14

6 2−18 7 2−25 8 2−31 9 2−36 10 2−41

11 2−46 12 2−51 13 2−56 14 2−61 15 2−66

3.1 Differential Cryptanalysis

Differential [9] and linear [36] cryptanalysis are among the most powerful techniques available for block
ciphers. To attack an n-bit block cipher using differential cryptanalysis (DC), there must be a predictable
difference propagation over all but a few rounds with a probability significantly larger than 21−n. A difference
propagation is composed of a set of differential trails, where its probability is the sum of the probabilities of
all differential trails that have the specified input difference and output difference [20]. For RECTANGLE, to
be resistant against DC, it is a necessary condition that there is no difference propagation with a probability
higher than 2−63.

M.Matsui has presented a search algorithm for the best differential/linear trail of DES in [37], which
uses branch-and-bound methods. Based on this algorithm, we have written a program to search for the best
differential trails of RECTANGLE from 1 round to 15 rounds , and the results are presented in Table 1.
The probability of the best 15-round differential trail is 2−66.

Because of the simplicity of the ShiftRow transformation, we also need to consider the security of
RECTANGLE against multiple differential cryptanalysis [12] and the structure attack [49]. From a differ-
ential point of view, since all the operations in RECTANGLE have rotational symmetry, every trail has up
to 16 rotation equivalent variants. For 15-round RECTANGLE, based on the branch-and-bound algorithm,
we have searched for all the differential trails with probability between 2−66 and 2−76 (up to a rotation
equivalence) and examined all the difference propagations made up of the investigated trails. The following
are the experimental results:

1. There are 32 best difference propagations with probability 1300×2−76 ≈ 2−65.66 each. Each is composed
of 7 differential trails. Among the 7 trails, one with probability 2−66, two with probability 2−69 each,
one with probability 2−72, one with probability 2−75, and two with probability 2−76 each.

2. Among all the difference propagations, the maximum number of trails of a difference propagation is 131,
i.e., a difference propagation is composed of at most 131 different differential trails.

From result 1, the probability of the best difference propagation is lower than 2−63. From the two results,
it can be seen that the clustering of differential trails of RECTANGLE is very limited, which can not be
used to construct an effective difference propagation with more than 14 rounds.

For comparison, we give some statistical data concerning the serious clustering of differential trails of
16-round PRESENT from [49]. For 16-round PRESENT, the probability of the best differential trail is 2−70.
There exists a 16-round difference propagation satisfying the following properties:

1. It includes 31996 differential trails when the probability is restricted between 2−70 and 2−80. The
probability is 2−62.175 when only considering these 31996 trails;

2. It includes 83720 differential trails when the probability is restricted between 2−70 and 2−92. The
probability is 2−62.133 when considering all the 83720 trails.

Therefore, we believe that it is impossible to construct an effective 15-round (multiple) differential
distinguisher for RECTANGLE. Full dependency is reached already after 4 rounds, hence we believe 25-
round RECTANGLE is enough to resist against (multiple) differential cryptanalysis.

Using one 14-round difference propagation, we can mount an attack on 18-round RECTANGLE, which
is the highest number of rounds that we can attack.

3.2 Linear Cryptanalysis

Assume a linear trail hold with probability p , define the bias ϵ as (p − 1
2), the correlation contribution C

as 2ϵ. To attack an n-bit block cipher using linear cryptanalysis (LC), there must be a predictable linear

Table 2. Correlation potentials of the best linear trails of RECTANGLE

♯ R Cor. Pot. ♯ R Cor. Pot. ♯ R Cor. Pot. ♯ R Cor. Pot. ♯ R Cor. Pot.

1 2−2 2 2−4 3 2−8 4 2−12 5 2−16

6 2−20 7 2−26 8 2−32 9 2−38 10 2−44

11 2−50 12 2−56 13 2−62 14 2−68 15 2−74

propagation over all but a few rounds with an amplitude significantly larger than 2−
n
2 . A linear propagation

is composed of a set of linear trails, where its amplitude is the sum of the correlation contributions of all
linear trails that have the specified input and output selection patterns [20]. The correlation contributions
of the linear trails are signed and their sign depends on the value of the round keys. For RECTANGLE, to
be resistant against LC, it is a necessary condition that there is no linear propagation with an amplitude
higher than 2−32. Since the strong round key dependence of interference makes locating the input and output
selection patterns for which high correlations occur practically infeasible [20], we have to use the following
theorem for an estimation.

Theorem 1 ([20]). The square of a correlation (or correlation contribution) is called correlation potential.
The average correlation potential between an input and an output selection pattern is the sum of the corre-
lation potentials of all linear trails between the input and output selection patterns:

E(C2
t) =

∑
i

(Ci)
2

where Ct is the overall correlation, and Ci the correlation contribution of a linear trail.

We have modified the search program used in the differential case to search for the best linear trails of
RECTANGLE from 1 round to 15 rounds, and the results are presented in Table 2. Similarly, we also need
to consider the security of RECTANGLE against multiple linear cryptanalysis [11] and multidimensional
linear cryptanalysis [26]. For 15-round RECTANGLE, the correlation potential of the best linear trail is
2−74. Also based on the branch-and-bound algorithm, we have searched for all the linear trails with a
correlation potential between 2−74 and 2−80 (up to a rotation equivalence) for 15-round RECTANGLE and
examined all the linear propagations made up of the investigated trails. The following are the experimental
results:

1. There are 128 best linear propagations with an average correlation potential 1860×2−80 ≈ 2−69.14 each,
which is lower than 2−64. Each is composed of 891 linear trails. Among the 891 trails, 2 with correlation
potential 2−74 each, 26 with correlation potential 2−76 each, 151 with correlation potential 2−78 each,
and 712 with correlation potential 2−80 each.

2. Among all the linear propagations, the maximum number of trails of a linear propagation is 891.

For comparison with PRESENT, there are the two facts:

1. There exists a 16-round linear propagation of PRESENT, which is composed of 435, 600 linear trails with
a correlation potential 2−64 each [41]. Thus, the average correlation potential is 435600×2−64 ≈ 2−45.26.

2. There exists a 23-round linear propagation of PRESENT, which is composed of 367, 261, 713 linear trails
with a correlation potential 2−92 each [41]. Thus, the average correlation potential is about 2−63.54.

From the above results and a comparison with PRESENT, it can be seen that the clustering of linear
trails of RECTANGLE is limited, which can not be used to construct an effective linear propagation with
more than 14 rounds. Therefore, we believe that it is impossible to construct an effective 15-round (multiple,
multidimensional) linear distinguisher for RECTANGLE. Full dependency is reached already after 4 rounds,
hence we believe 25-round RECTANGLE is enough to resist against linear cryptanalysis and its extension
attacks.

: 9 concerned bits

Figure 6. A weak property of ShiftRow

3.3 Statistical Saturation Attack

The statistical saturation (SS) attack [17] is specially designed for PRESENT. Using the weak diffusion of
the PRESENT permutation, there exists a theoretical SS attack against 24-round PRESENT.

Due to the weak diffusion of the permutation layer of RECTANGLE, we must consider the security of
RECTANGLE against statistical saturation attack. Consider the 4 columns with an index set {0, 1, 12, 13},
then 9 out of 16 bits are still directed to the same 4 column positions after ShiftRow. Figure 6 illustrates
this property, and Algorithm 1 presents the basic procedure of our experiment. Based on our experimental
results, we expect that the distance can be estimated by multiplying about 2−4 when adding a round to
the distinguisher. According to the estimate of data complexity in [13], we estimate that the longest SS
distinguisher of RECTANGLE can reach 15 rounds at most, and the distinguisher can be used to attack
18-round RECTANGLE at most. Considering the full rounds is 25, we believe there is enough security
margin for RECTANGLE against the SS attack.

Algorithm 1
Set the subkey in each round to a random value.
for r = 1 to 10 do

{ 1. Choose a set of 240 plaintexts which have a constant value in the 4 columns with an index set {0, 1, 12, 13}, while having
random values in the other 64 − 16 = 48 bits.

2. Calculate the distribution of the outputs in the concerned 9 bit positions after r-round encryption, and compute the squared
Euclidian distance between this distribution and uniform distribution. Let O denote the output after r-round encryption, j
denote the value of the 9-bit string O3,13||O2,13||O2,12||O1,13||O1,1||O0,13||O0,12||O0,1||O0,0, the distance is defined as:

Dis =
∑29−1

j=0 (
counter[j]

2m − 1
29

)2

where counterj denotes the times of occurence of j among all the 2m values.
}

3.4 Impossible Differential Cryptanalysis

Impossible differential cryptanalysis [8] exploits differential trails with probability 0. Impossible differential
distinguishers are usually constructed by meet-in-the-middle approach. We found some 8-round impossible
differential distinguishers for RECTANGLE. Since 4-round RECTANGLE reaches the full dependency, it is
expected that full-round RECTANGLE has enough security against impossible differential cryptanalysis.

3.5 Integral Cryptanalysis

Integral cryptanalysis (or square attack) [18, 31] considers the propagation of sums of many values. An
integral distinguisher holds with probability 1. We found some 7-round higher-order integral distinguishers.
Similarly, it is expected that full-round RECTANGLE has enough security against integral cryptanalysis.

3.6 Key Schedule Attacks

Among key schedule attacks, the most effective ones are slide attack [10] and related-key cryptanalysis [7].
For RECTANGLE, the adding of different round constants in the key schedule prevents slide attacks. For
80-bit seed keys, the union of subkey bits of any consecutive 2 rounds depends on each of the 80 bits of
the seed key. For 128-bit seed keys, the union of subkey bits of any consecutive 4 rounds depends on each
of the 128 bits of the seed key. The generalized Feistel transformations are designed to provide appropriate
diffusion. We believe that the above properties are sufficient for RECTANGLE to resist against key schedule
attacks.

4 Motivation for Design Choices of RECTANGLE

In this section, we justify the choices we took during the design of RECTANGLE.

4.1 Bit-Slice Technique and Lightweight Block Cipher

Consider a 64-bit SP-network block cipher, the S-layer consists of 16 4 × 4 S-boxes in parallel, thus the
subblock length is 16 for a bit-slice implementation. Let a 64-bit state be arranged as a 4× 16 array. First,
apply the same S-box to each column independently. Then, the P-layer should make each column dependent
on some other columns, aiming to provide good diffusion. In such a situation, 16-bit rotations are probably
the best choice: they are simple wirings in hardware implementation; they can achieve the goal of mixing
up different columns; they can be easily implemented in software using bit-slice technique. So far, we got
the framework of RECTANGLE.

4.2 The ShiftRow Transformation

Let ci (i = 0, 1, 2, 3) denote the left rotation offset of the i-th row. The choice criteria of ci are as follows:

1. The four offsets are different;
2. c0 < c1 < c2 < c3, and c0 = 0;
3. Full dependency after a minimal number of rounds.

Our experimental result shows that there are 16 candidates satisfying the above criteria. For each of the
16 candidates, after 4 rounds each of the 64 input bits influences each of the 64 output bits. From them, we
choose (c1, c2, c3) = (1, 12, 13) as the rotation offsets of the ShiftRow transformation.

4.3 Design Criteria of the S-box

Let S denote a 4×4 S-box. Let △I,△O ∈ F 4
2 , define NDS(△I,△O) ≡ ♯{x ∈ F 4

2 |S(x)⊕S(x⊕△I) = △O}.
Let ΓI, ΓO ∈ F 4

2 , define the imbalance ImbS(ΓI, ΓO) ≡ |♯{x ∈ F 4
2 |ΓI • x = ΓO • S(x)} − 8|, where •

denotes the inner product on F 4
2 . The design criteria of the S-box of RECTANGLE are as follows:

1. Bijective, i.e., S(x) ̸= S(x′) for any x ̸= x′.
2. For any non-zero input difference △I ∈ F 4

2 and any non-zero output difference △O ∈ F 4
2 , we require:

NDS(△I,△O) ≤ 4.
3. Let △I ∈ F 4

2 be a non-zero input difference and △O ∈ F 4
2 a non-zero output difference. Let wt(x) denote

the Hamming weight of x. Define SetD1S as: SetD1S = {(△I,△O) ∈ F 4
2 × F 4

2 |wt(△I) = wt(△O) =
1 and NDS(△I,△O) ̸= 0}. Let CarD1S denote the cardinality of SetD1S , we require CarD1S = 2.

4. For any non-zero input selection pattern ΓI ∈ F 4
2 and any non-zero output selection pattern ΓO ∈ F 4

2 ,
we require: ImbS(ΓI, ΓO) ≤ 4.

5. Let ΓI ∈ F 4
2 be a non-zero input selection pattern and ΓO ∈ F 4

2 a non-zero output selection pattern,
define SetL1S as: SetL1S = {(ΓI, ΓO) ∈ F 4

2 × F 4
2 |wt(ΓI) = wt(ΓO) = 1 and ImbS(ΓI, ΓO) ̸= 0}.

Let CarL1S denote the cardinality of SetL1S , we require CarL1S = 2.
6. No fixed point, i.e., S(x) ̸= x for any x ∈ F 4

2 .

One can refer to [53] for more details on the selection of the RECTANGLE S-box.

4.4 The Key Schedule

The design criteria of 80-bit (resp. 128-bit) key schedule are as follows:

1. The union of subkey bits of any 2 (resp. 4) consecutive rounds depends on each of the 80 bits of the
seed key;

2. The 1-round 5-subblock (resp. 4-subblock) generalized Feistel transformation is used to provide appro-
priate diffusion;

3. Use round constants to eliminate symmetries.

4.5 The Number of Rounds

Our analysis showed that the highest number of attacked rounds is 18. We decide to add 7 rounds as a
security margin, and take 25 as the round number of RECTANGLE.

5 Performance in Various Environments

5.1 Hardware Implementation

We implemented RECTANGLE in Verilog HDL and used Mentor Graphics Modelsim SE PLUS 6.6d for
functional simulation. All proposed hardware designs in this paper were synthesized with Synopsys Design
Compiler D-2010.03-SP4 to the UMC’s 0.13µm.1P8M Low Leakage Standard cell Library with the following
typical values: voltage of 1.2V and temperature of 25◦C. We used a round-based architecture which is a
direct mapping of the algorithm, frequently used for implementation evaluation. The source code of our
hardware implementations can be found in [43].

Round-based Architecture Round-based RECTANGLE-80 uses 64/80-bit datapaths for state and key
respectively. It performs one round in one clock cycle. The state datapath consists of the 64-bit register (for
storing), the S-layer, the P-layer and the 64-bit XOR for key addition. Besides the 80-bit register for key
storing, the S-boxes, P-layer and XORs are utilized to update the subkey. A Finite State Machine is used
to generate control logic. The plaintext and the key are loaded into each register via multiplexers. Then on
each of the following 25 clock cycles, data is read out from the registers, passed through the state and key
datapaths and stored back to register respectively. Finally, we can obtain the ciphertext at the output of
the 64-bit XOR. Figure 7 illustrates the design diagram of RECTANGLE-80. For the 128-bit version, the
state datapath is the same as the 80-bit version, and the key datapath has four more S-boxes and a different
generalized Feistel transformation.

The area consumption of a round-based RECTANGLE-80 is 1600 GE (Gate Equivalent: The size of one
NAND gate under specified technology). Based on this specified CELL Library, our S-box consumes around
18.8 GE. The P-layer of round function is only wiring. The round-based RECTANGLE-80 has a simulated
power consumption of 74.31µw at 10MHz. For the round-based RECTANGLE-128, the area consumption
is 2064 GE and the simulated power consumption is 72.15µw at 10MHz.

Table 3. Comparison of lightweight cipher implementations (Area vs. Throughput)

Key Block Cycles per Tech. Area Tput.At
size size Block µm (GE) 100KHz(Kbps)

Block Ciphers
AES-128[39] 128 128 226 0.13 2400 56.6
LED-64[29] 64 64 1248 0.18 966 5.1
PICCOLO-80[47] 80 64 27 0.13 1496 237
PRESENT-80[44] 80 64 32 0.18 1570 200
RECTANGLE-80 80 64 26 0.13 1599.5 246
RECTANGLE-128 128 64 26 0.13 2063.5 246

Stream Ciphers
Grain[28] 80 1 1 0.13 1294 100
Trivium[28] 80 1 1 0.13 2599 100

D

Q
S

D

Q
S

P

S

Read/Iteration

Plaintext
Key

Ciphertext

Round
counter

64 80

64

64
80

64

The top 4 rows

80

8080
64

64

4 4

64

...

16 x

4
64

The
rightmost
4 columns

5
The rightmost
5 bits in Row0

75

SSS

444

Row4 Row3 Row2 Row1 Row0

1616 16 16 16

<<<12 <<<8

Row4 Row3 Row2 Row1 Row0

Figure 7. The datapath of the round-based RECTANGLE-80

Table 4. Comparison of 3 different architectures of implementations

Tech. Datapath Freq. Area Tput Energy/Bit
(µm) (Bit) (MHz) (GE) (pJ/bit)

Round-based
HWang AES[30] 0.18 128 50 79K 582Mbps 93
PRESENT80[44] 0.18 64 10 1570 20.6Mbps 3.74
RECTANGLE-80 0.13 64 10 1600 24.6Mbps 3.0

Parallel
PRESENT80[44] 0.18 64 200 27027 10.22Gbps 0.67
RECTANGLE-80 0.13 64 200 24512 12.8Gbps 0.32

Serial
AES-128[39] 0.13 8 0.1 2400 56.6Kbps −
LED-64[29] 0.18 4 0.1 966 5.1Kbps −
PRESENT80[44] 0.18 4 0.1 1075 11.4Kbps 221.1
RECTANGLE-80 0.13 4 0.1 1111 14.0Kbps 32.05

“-” means the value is unavailable at the time of writing.

Results and Comparisons A comparison of round-based implementations of RECTANGLE and other
ciphers is presented in Table 3. The throughput is calculated in bits per second. The result in Table 3
illustrates that RECTANGLE has a rather high throughput with a compact area consumption.

Table 4 gives a comparison of the 3 architectures of RECTANGLE-80 and other ciphers. The power
consumption is estimated on the gate level by PowerCompiler, based on the switching activates generated
by a real testbench. The power strongly depends on the clock frequency and technology. To draw a fair
comparison, energy per bit is used to represent the energy efficiency. The results show that RECTANGLE
meets the needs under different scenarios and has a rather low energy consumption.

5.2 Software Implementation

On 64-bit Processors We implemented RECTANGLE on a 2.5GHz Intel(R) Core i5-2520M CPU running
a 64-bit operating system with an Intel C++ compiler.

For one block data, our bit-slice implementation gives a speed of about 30.5 cycles/byte for encryption
and 32.2 cycles/byte for decryption. The S-box S can be implemented using a sequence of 12 logical instruc-
tions (see Appendix B), the P-layer only needs 3 rotations, and the subkey addition needs 4 XORs. The
inverse S-box can be also implemented using 12 logical instructions. Our implementation is quite straight-
forward, it only uses 6 basic instructions: AND, OR, NOT, XOR, ROL and MOV. The key schedule cost is
about 293 cycles for an 80-bit seed key and 259 cycles for a 128-bit seed key.

In the case of a parallel mode of operation such as CTR, using Intel 128-bit SSE instructions can give
RECTANGLE a very impressive performance. Since RECTANGLE is designed as a bit-sliced cipher, the
cost of data load and data format conversion is very low, which takes less than 0.2 cycles/byte when the

Table 5. Comparison of software performance of LED, PICCOLO, PRESENT and RECTANGLE

LED PICCOLO PRESENT RECTANGLE

block length 64 64 64 64

key length 64 80 80 80

one block enc. 65 67.1 [4] 62 30.5

SSE enc. 4.57 [35] 4.73 [35] 3.9

(cycles/byte) - 16 para. blocks 32 para. blocks 8 para. blocks

“one block enc.” is for a single block encryption.
“SSE enc.” is for multiple parallel encryptions using 128-bit SSE instructions.

“para.” means parallel. “-” means the value is unavailable at the time of writing.

Table 6. Performance of RECTANGLE on Atmel ATtiny45 Processor

Method Key size Code size [bytes]
RAM
[bytes]

Cycles

[bits] enc.+k.s. dec.+k.s. enc./dec. enc. dec. k.s.
Static 80 636 638 226 1920 1945 1878

128 614 616 232 1920 1945 1462

Method Key size Code size [bytes]
RAM
[bytes]

Cycles

[bits] enc.+e.k. dec.+e.k. enc./dec. enc. dec. k.s.
Fixed 80/128 574 576 8 2129 2154 -

Method Key size Code size [bytes]
RAM
[bytes]

Cycles

[bits] enc.+k.s. dec.+i.k.s. enc./dec. enc.+k.s. dec.+i.k.s.
On-the- 80 500 504 18 2801 2851

fly 128 488 492 24 2438 2488

“enc.”, “dec.”,“k.s. ”, “i.k.s. ” and “e.k. ”means encryption, decryption, key schedule,
inverse key schedule and expanded key respectively.

message length is more than 6 blocks. Our bit-slice implementation of RECTANGLE reaches an average
speed of about 3.9 cycles/byte for messages with a length of around 3000 bytes.

Table 5 gives software performance comparisons of RECTANGLE with LED, PICCOLO and PRESENT.
For one block encryption, we implemented LED, PICCOLO and PRESENT on our platform using the codes
found in [4]. For LED and PRESENT, our test timings are consistent with those in [4]. For PICCOLO, we
obtained a slower timing result, hence, we cite the result in [4] for PICCOLO. From Table 5, we can see
that the software performances of RECTANGLE on 64-bit processors are quite impressive.

On 8-bit Micro-controllers We implemented RECTANGLE on Atmel ATtiny45, which uses an 8-bit
RISC processor with 32 single-byte general purpose registers, 256 bytes of SRAM and 4K bytes of pro-
grammable flash memory. All the implementations are assembly coded, and the codes are compiled using
Atmel studio 6.2.

Table 6 shows the performance metrics of RECTANGLE. The codes for encryption, decryption and key
schedule are one-round unrolled. The encryption cost is the number of cycles for transforming a plaintext
into a ciphertext, including any data & key loading and data write-back. Three cases are considered. In the
first case, the seed key is expanded and the round keys are loaded into SRAM, which is denoted as “static”.
The second case, the key schedule is not implemented, and the round keys are stored in flash. We include the
time to load the key from flash into registers. This case is denoted as “fixed”. The third case, the round keys
are generated “on-the-fly”. The computation of the key schedule(resp. the inverse key schedule) is included
in the encryption (resp. decryption) costs. This case is denoted as “on-the-fly”. During the execution, all
the running states are held in registers, thus there is no need for extra SRAM and additional data loading.
The flash requirement includes the memory used to store the code, the lookup tables, one input block and
the master key (the “fixed” case also includes the round keys).

The S-box and the P-layer are respectively implemented using a sequence of logical instructions. With
four additional registers, the RECTANGLE S-box needs 26 instructions, and the inverse S-box needs 27
instructions. Both the P-layer and the inverse P-layer need 20 instructions. Note that each of the above
mentioned instructions needs one single cycle. For the key schedule, the round constant additions are im-
plemented as lookup tables.

In [23], the authors provide implementations of 12 block ciphers on an ATMEL ATtiny45 8-bit micro-
controller. Compare our implementations for RECTANGLE in Table 6 with the results reported in [23], it
can be concluded that RECTANGLE has an outstanding performance on 8-bit microcontrollers.

6 Relation to Early Designs

The main idea of the design of RECTANGLE is to allow lightweight and fast implementations using bit-slice
techniques. Serpent and Noekeon are two early bit-sliced block ciphers. However, the design goal of the two
ciphers is general-purpose instead of lightweight, almost all aspects need to be reconsidered when it comes to
a dedicated lightweight block cipher, including the block length, the key length, the selection of the S-box,
the design of the P-layer and the design of the key schedule.

Many block ciphers use parallel 4×4 S-boxes to provide confusion such as Serpent, Noekeon, PRESENT,
LED, KLEIN, LBlock and TWINE. In this paper, we proposed new design criteria for the RECTANGLE
S-box, i.e. CarD1S = CarL1S = 2. The new criteria are mainly motivated by the existing security analysis
of PRESENT, specifically (multiple) differential/linear cryptanalysis on reduced-round PRESENT [16, 41,
49]. Moreover, one can get more confidence in the security of RECTANGLE by comparing the security
of PRESENT and RECTANGLE against (multiple) differential/linear cryptanalysis, which were shown in
subsections 3.1 and 3.2.

The design of the P-layer of RECTANGLE depends largely on the bit-slice technique, which is determined
by 3 rotation offsets. Compared with the P-layers of Serpent and Noekeon, the P-layer of RECTANGLE is
much more friendly in hardware. Compared with the P-layer of PRESENT, the P-layer of RECTANGLE
is much more friendly in software.

7 Conclusion

We have proposed RECTANGLE, a new lightweight block cipher based on the bit-slice technique. RECT-
ANGLE is a simple design. The bit-sliced design principle allows for both low-cost hardware and efficient
software implementations. Largely due to our careful selection of the S-box, RECTANGLE achieves a very
good security-performance tradeoff. We want to point out that the selection of the P-layer is also important.
The RECTANGLE P-layer is composed of 3 rotations, which is not only extremely low-cost in hardware but
also very efficient in software. In addition, the combination of the S-box and the P-layer brings the cipher
a very limited clustering of differential/linear trails. We believe that RECTANGLE is an interesting design
and we feel that it can trigger several new problems in cryptographic design and analysis. In the end, we
encourage further security analysis of RECTANGLE.

Acknowledgements

We are very grateful to Begül Bilgin, Joan Daemen, Junfeng Fan, Benedikt Gierlichs, Zheng Gong and
Nicky Mouha for their helpful comments. The research presented in this paper is supported by the National
Natural Science Foundation of China (No.61379138), the Research Fund KU Leuven (OT/13/071), the
“Strategic Priority Research Program” of the Chinese Academy of Sciences (No.XDA06010701), and the
National High Technology Research and Development 863 Program of China (No.2013AA014002).

References

1. Atmel Corporation. 8-bit AVR Instruction Set, Rev.0856D-AVR-08/02, http://www.atmel.com/images/

doc0856.pdf

2. Anderson R J, Biham E, Knudsen L R. Serpent: A Proposal for the Advanced Encryption Standard. NIST AES
proposal, 1998

3. Beaulieu R, Shors D, Smith J, et al. The SIMON and SPECK Families of Lightweight Block Ciphers. Cryptology
ePrint Archive, Report 2013/404, 2013. http://eprint.iacr.org/

4. Benadjila R, Guo J, Lomné V, et al. Implementing Lightweight Block Ciphers on x86 Architectures. In: Lange T,
Lauter K, Lisonek P, Eds. Selected Areas in Cryptography: 20th International Workshop, SAC’2013, Burnaby,
Canada, 2010. 324–351

5. Bertoni G, Daemen J, Peeters M, et al. Keccak Specifications. NIST SHA-3 Submission, 2008, http://keccak.
noekeon.org/

6. Biham E. A Fast New DES Implementation in Software. In: Biham E, ed. The Fourth International Workshop
on Fast Software Encryption, Haifa, Israel, 1997. 260–272

7. Biham E. New Types of Cryptanalytic Attacks Using Related Keys. Journal of Cryptology, 1994, 7: 229–246

8. Biham E, Biryukov A, Shamir A. Cryptanalysis of Skipjack Reduced to 31 Rounds Using Impossible Differentials.
In: Stern J, ed. Advances in Cryptology - EUROCRYPT ’99, Prague, Czech Republic, 1999. 12–23

9. Biham E, Shamir A. Differential Cryptanalysis of DES-like Cryptosystems. Journal of Cryptology, 1991, 4: 3–72

10. Biryukov A, Wagner D. Slide Attacks. In: Knudsen L R, ed. The 6th International Workshop on Fast Software
Encryption, Rome, Italy, 1999. 245–259

11. Biryukov A, De Cannière C, Quisquater M. On Multiple Linear Approximations. In: Franklin M, ed. Advances
in Cryptology - CRYPTO’2004, Santa Barbara, California, USA, 2004. 1–22

12. Blondeau C, Gérard B. Multiple Differential Cryptanalysis: Theory and Practice. In: Joux A, ed. The 18th
International Workshop on Fast Software Encryption, Lyngby, Denmark, 2011. 35–54

13. Blondeau C, Nyberg K. Links Between Truncated Differential and Multidimensional Linear Properties of Block
Ciphers and Underlying Attack Complexities. In Nguyen P Q, Oswald E, eds. Advances in Cryptology - EURO-
CRYPT ’2014, Copenhagen, Denmark, 2014. 165–182

14. Bogdanov A, Knudsen L R, Leander G, et al. PRESENT: An Ultra-Lightweight Block Cipher. In: Paillier P,
Verbauwhede I, eds. Cryptographic Hardware and Embedded Systems - CHES’2007, Vienna, Austria, 2007.
450–466

15. Bogdanov A, Rechberger C. A 3-Subset Meet-in-the-Middle Attack: Cryptanalysis of the Lightweight Block Ci-
pher KTANTAN. In: Biryukov A, Gong G, Stinson D R, eds. Selected Areas in Cryptography: 17th International
Workshop, SAC’2010, Waterloo, Ontario, Canada, 2010. 229–240

16. Cho J Y. Linear Cryptanalysis of Reduced-Round PRESENT. In: Pieprzyk J, ed. The Cryptographers’ Track
at the RSA Conference 2010, San Francisco, CA, USA, 2010. 302–317

17. Collard B, Standaert F X. A Statistical Saturation Attack against the Block Cipher PRESENT. In: Fischlin M,
ed. The Cryptographers’ Track at the RSA Conference 2009, San Francisco, CA, USA, 2009. 195–210

18. Daemen J, Knudsen L R, Rijmen V. The block cipher Square. In: Biham E, ed. The Fourth International
Workshop on Fast Software Encryption, Haifa, Israel, 1997. 149–165

19. Daemen J, Peeters M, Van Assche, et al. Nessie Proposal: the Block Cipher Noekeon, Nessie submission, 2000.
http://gro.noekeon.org/

20. Daemen J, Rijmen V. The Design of Rijndael: AES - The Advanced Encryption Standard. Springer, 2002

21. De Cannière C, Dunkelman O, Knežević M. KATAN and KTANTAN - A Family of Small and Efficient
Hardware-Oriented Block Ciphers. In: Clavier C, Gaj K, eds. Cryptographic Hardware and Embedded Systems
- CHES’2009, Lausanne, Switzerland, 2009. 272–288

22. De Cannière C, Preneel B. Trivium. In: Robshaw M, Billet O, eds. New Stream Cipher Designs - The eSTREAM
Finalists, LNCS, vol. 4986, Springer, 2008, 244–266

23. Eisenbarth T, Gong Z, Güneysu T, et al. Compact Implementation and Performance Evaluation of Block Ciphers
in ATtiny Devices. In: Mitrokotsa A, Vaudenay S, eds. Progress in Cryptology - AFRICACRYPT’2012, Ifrance,
Morocco, 2012. 172–187

24. Engels D, Saarinen M -J O, Schweitzer P, et al. The Hummingbird-2 Lightweight Authenticated Encryption
Algorithm. In: Juels A, Paar C, eds. RFID. Security and Privacy:7th International Workshop, Amherst, USA,
2011. 19–31

25. Feldhofer M, Wolkerstorfer J, Rijmen V. AES Implementation on A Grain of Sand. IEE Proceedings on Infor-
mation Security, 2005, 152: 13–20

26. Hermelin M, Cho J Y, Nyberg K. Multidimensional Extension of Matsui’s Algorithm 2. In: Dunkelman O, ed.
The 16th International Workshop on Fast Software Encryption, Leuven, Belgium, 2009. 209–227

27. Gong Z, Nikova S, Law Y W. KLEIN: A New Family of Lightweight Block Ciphers. In: Juels A, Paar C, eds.
RFID. Security and Privacy:7th International Workshop, Amherst, USA, 2011. 1–18

28. Good T, Benaissa M. Hardware Results for Selected Stream Cipher Candidates. In: Preproceedings of SASC
2007, eSTREAM, ECRYPT Stream Cipher Project, http://www.ecrypt.eu.org/stream, 2007. 191–204

29. Guo J, Peyrin T, Poschmann A, et al. The LED Block Cipher. In: Preneel B, Takagi T, eds. Cryptographic
Hardware and Embedded Systems - CHES 2011, Nara, Japan, 2011. 326–341

30. Hwang D D, Tiri K, Hodjat A, et al. AES-Based Security Coprocessor IC in 0.18um CMOS with resistance to
differential power analysis side-channel attacks. IEEE Journal of Solid-State Circuits, 2006, 41: 781–791

31. Knudsen L R, Wagner D. Integral Cryptanalysis. In: Daemen J, Rijmen V, eds. The 9th International Workshop
on Fast Software Encryption, Leuven, Belgium, 2002. 112–127

32. Leander G. On Linear Hulls, Statistical Saturation Attacks, PRESENT and a Cryptanalysis of PUFFIN. In:
Paterson K G, ed. Advances in Cryptology - EUROCRYPT ’2011, Tallinn, Estonia, 2011. 303–322

33. Leander G, Poschmann A. On the Classification of 4 bit S-boxes. In: Sunar B, Carlet C, eds. Arithmetic of Finite
Fields, First International Workshop, WAIFI’2007, Madrid, Spain, 2007. 159–176

34. Leander G, Paar C, Poschmann A, et al. New Lightweight DES Variants. In: Biryukov A, ed. The 14th Interna-
tional Workshop on Fast Software Encryption, Luxembourg city, Luxembourg, 2007. 196–210

35. Matsuda S, Moriai S. Lightweight Cryptography for the Cloud: Exploit the Power of Bitslice Implementation. In:
Prouff E, Schaumont P, eds. Cryptographic Hardware and Embedded Systems - CHES 2012, Leuven, Belgium,
2012. 408–425

36. Matsui M. Linear Cryptanalysis Method for DES Cipher. In: Helleseth T, ed. Advances in Cryptology - EURO-
CRYPT 93, Lofthus, Norway, 1993. 386–397

37. Matsui M. On Correlation between the Order of S-Boxes and the Strength of DES. In: Santis A D, ed. Advances
in Cryptology - EUROCRYPT ’94, Perugia, Italy, 1994. 366–375

38. Matsui M, Nakajima J. On the Power of Bitslice Implementation on Intel Core2 Processor. In: Paillier P,
Verbauwhede, eds. Cryptographic Hardware and Embedded Systems - CHES’2007, Vienna, Austria, 2007. 121–
134

39. Moradi A, Poschmann A, Ling S, et al. Pushing the Limits: A Very Compact and a Threshold Implementation
of AES. In: Paterson K G, ed. Advances in Cryptology - EUROCRYPT ’2011, Tallinn, Estonia, 2011. 69–88

40. Naya-Plasencia M, Peyrin T. Practical Cryptanalysis of ARMADILLO2. In: Canteaut A, ed. The 19th Interna-
tional Workshop on Fast Software Encryption, Washington, USA, 2012. 146–162

41. Ohkuma K. Weak Keys of Reduced-Round PRESENT for Linear Cryptanalysis. In: Jacobson J M, Rijmen V,
Safavi-Naini R, eds. Selected Areas in Cryptography: 16th International Workshop, SAC’2009, Calgary, Alberta,
Canada, 2009. 249–265

42. Plos T, Dobraunig C, Hofinger M, et al. Compact Hardware Implementations of the Block Ciphers mCrypton,
NOEKEON, and SEA. In Galbraith S, Nandi M, eds. Progress in Cryptology-INDOCRYPT 2012, Kolkata,
India, 2012. 358–377

43. RECTANGLE hardware impelementation codes, http://homes.esat.kuleuven.be/~byang/rectangle/
44. Rolfes C, Poschmann A, Leander G, et al. Ultra-Lightweight Implementations for Smart Devices - Security for

1000 Gate Equivalents. In: Grimaud G, Standaert F X, eds. Smart Card Research and Advanced Applications,
8th IFIP WG 8.8/11.2 International Conference, CARDIS’2008, London, UK, 2008. 89–103

45. Saarinen M -J O. Cryptanalysis of Hummingbird-1. In: Joux A, ed. The 18th International Workshop on Fast
Software Encryption, Lyngby, Denmark, 2011. 328–341

46. Shan J Y, Hu L, Song L, et al. Related-Key Differential Attack on Round Reduced RECTANGLE-80, Cryptology
ePrint Archive: Report 2014/986. http://eprint.iacr.org/2014/986

47. Shibutani K, Isobe T, Hiwatari H, et al. Piccolo: An Ultra-Lightweight Blockcipher. In: Preneel B, Takagi T,
eds. Cryptographic Hardware and Embedded Systems - CHES 2011, Nara, Japan, 2011. 342–357

48. Suzaki T, Minematsu K, Morioka S, et al. Twine: A Lightweight Block Cipher for Multiple Platforms. In:
Biryukov A, Gong G, Stinson D R, eds. Selected Areas in Cryptography: 19th International Workshop, SAC’2012,
Toronto, ON, Canada, 2012. 339–354

49. Wang M Q, Sun Y, Tischhauser E, et al. A Model for Structure Attacks, with Applications to PRESENT and
Serpent. In: Canteaut A, ed. The 19th International Workshop on Fast Software Encryption, Washington, USA,
2012. 49–68

50. Wu H J. The Hash Function JH. Submission to NIST, 2008. http://icsd.i2r.a-star.edu.sg/staff/hongjun/
jh/jh.pdf

51. Wu W L, Zhang L. LBlock: A Lightweight Block Cipher. In: Lopez J, Tsudik G, eds. Applied Cryptography and
Network Security, 9th International Conference, ACNS’2011. Nerja, Spain, 2011. 327–344

52. Zhang W T, Bao Z Z, Lin D D, et al. RECTANGLE: A Bit-slice Ultra-Lightweight Block Cipher Suitable for
Multiple Platforms. Cryptology ePrint Archive: Report 2014/084, http://eprint.iacr.org/2014/084

53. Zhang W T, Bao Z Z, Rijmen V, et al. A New Classification of 4-bit Optimal S-boxes and its Application
to PRESENT, RECTANGLE and SPONGENT. In: Leander G, ed. The 22th International Workshop on Fast
Software Encryption, Istanbul, Turkey, 2015.

A The round constants

RC[0] = 0X01, RC[1] = 0X02, RC[2] = 0X04, RC[3] = 0X09, RC[4] = 0X12, RC[5] = 0X05,

RC[6] = 0X0B, RC[7] = 0X16, RC[8] = 0X0C, RC[9] = 0X19, RC[10] = 0X13, RC[11] = 0X07,

RC[12] = 0X0F, RC[13] = 0X1F, RC[14] = 0X1E, RC[15] = 0X1C, RC[16] = 0X18, RC[17] = 0X11,

RC[18] = 0X03, RC[19] = 0X06, RC[20] = 0X0D, RC[21] = 0X1B, RC[22] = 0X17, RC[23] = 0X0E,

RC[24] = 0X1D.

B A Bit-slice Description of RECTANGLE

In the following, we present an equivalent description of SubColumn and ShiftRow transformations. Based on them,
one can easily write a code for a software implementation of RECTANGLE, i.e., a bit-slice implementation.
SubColumn A 64-bit state is described as a 4 × 16 array (Figure 2). Let Ai = ai,15|| · · · ||ai,2||ai,1||ai,0 denote the
i-th row, i = 0, 1, 2, 3. Ai can be regarded as a 16-bit word.

Let A0, A1, A2, A3 be 4 16-bit inputs of SubColumn, B0, B1, B2, B3 be the 4 16-bit outputs, where Ai and Bi

denote the i-th row of the cipher state. Let Ti denote 16-bit temporary variables, i = 1, 2, 3, 5, 6, 8, 9, 11, 12. The
SubColumn transformation can be computed in the following 12 steps:

1. T1 =∼ A1, 2. T2 = A0 &T1, 3. T3 = A2 ⊕A3, 4. B0 = T2 ⊕ T3,
5. T5 = A3|T1, 6. T6 = A0 ⊕ T5, 7. B1 = A2 ⊕ T6, 8. T8 = A1 ⊕A2,
9. T9 = T3 &T6, 10. B3 = T8 ⊕ T9, 11. T11 = B0|T8, 12. B2 = T6 ⊕ T11.
where “∼” is NOT, “&” is bitwise AND, “ | ” is bitwise OR.

ShiftRow Let B0, B1, B2, B3 be 4 16-bit inputs of ShiftRow transformation, C0, C1, C2, C3 the 4 16-bit outputs.
Then, C0 = B0, C1 = B1 ≪ 1, C2 = B2 ≪ 12, C3 = B3 ≪ 13, where “A ≪ x” denotes a left rotation over
x bits within a 16-bit word A.

C Historical Remarks

The initial version of RECTANGLE [52] was presented in Cryptology ePrint Archive in February 2014. The version
presented in this paper is different from the initial version. For clarity, the initial version of RECTANGLE is called
REC-0, and the version presented in this paper is called RECTANGLE. There are two changes between REC-0 and
RECTANGLE:

1. The S-box of RECTANGLE is the inverse S-box of REC-0. The S-box of RECTANGLE has a better software
performance than its inverse S-box, as indicated in Section 5.2. On the other hand, RECTANGLE and REC-0
have the same security margin against single-key attacks.

2. The key schedule is revised. Firstly, the software performance of the key schedule of REC-0 is not good, compared
to its encryption algorithm. Secondly, the diffusion of the REC-0 key schedule is not strong enough. In [46], Shan
et al. presented a 15-round related-key differential distinguisher of REC-0, which means, one can construct a
longer distinguisher in related-key environments. Therefore, we decided to revise the key schedule of REC-0. As
a result, the key schedule of RECTANGLE has a much better software performance and better security against
related-key attacks, at the cost of an acceptable increase in hardware area.

