

Differential Cryptanalysis of the BSPN Block Cipher Structure

Liam Keliher
Mathematics & Computer Science
Mount Allison University
Sackville, New Brunswick

NIST Lightweight Cryptography Workshop, July 21, 2015

SAC 2015 + S3

This year, Mount Allison University is hosting:

- ◆ *SAC 2015* : 22nd International Conference on Selected Areas in Cryptography
 - ◆ August 12-14, 2015
- ◆ SAC Summer School (S3)
 - ◆ August 10-12, 2015

- Substitution-Permutation Networks (SPNs)
- BSPN
- BSPN Linear Transformation Properties
- High Probability Differentials for BSPN
- Conclusion

SPN Round Structure

SPN: standard block cipher structure (e.g., AES)

Let *n* = block size

- Round stages:
 - 1. XOR *n*-bit subkey
 - 2. apply $m \times m$ s-boxes (substitution boxes)
 - invertible mappings from $\{0,1\}^m$ to $\{0,1\}^m$
 - 3. apply linear transformation (traditionally a bitwise permutation)

Independent Subkeys

◆ We assume the most general situation for the subkeys, namely: k¹, k², ... are chosen independently and uniformly from {0,1}n

- This is a standard assumption that facilitates analysis
 - Expected values over cipher keys often approximated by expected values over independent subkeys

- BSPN (byte-oriented SPN) is an SPN structure presented at SAC 1996 by Youssef, Tavares, and Heys
- It was designed as a more efficient version of the <u>bit-oriented</u> SPN structure published earlier in 1996 in J. Cryptology by Heys and Tavares
- BSPN is meant to be involutional (self-inverting)
 - has influenced other involutional ciphers such as Khazad and CURUPIRA

BSPN Structure

- Many BSPN parameters/components are left unspecified
 - only the linear transformation is given exactly
- ◆ A BSPN block consists of B bytes (so n = 8B), where B is <u>even</u> (e.g., B = 8, B = 16)
- Key schedule not proposed
 - we assume independent subkeys anyway
- S-boxes not given (involutional recommended)

BSPN-n

- ◆ Let BSPN-*n* denote BSPN with block size *n*
- We focus on:
 - \bullet BSPN-128 (B = 16) (AES-like block size)
 - ♦ BSPN-64 (B = 8) (lightweight cipher block size)

BSPN Linear Transformation

◆ Let $\mathbf{x} = [\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_B]$ be an input to the BSPN linear transformation, and let $\mathbf{y} = [\mathbf{y}_1, \mathbf{y}_2, ..., \mathbf{y}_B]$ be the corresponding output

◆ Then for each *j* **J** {1, 2, ..., *B*}

$$\mathbf{y}_{j} = \frac{\bigoplus \mathbf{x}_{i}}{1 \leq i \leq \mathbf{B}, i \neq j}$$

This is involutional

BSPN Linear Transformation

◆ Alternatively, y = xM

$$\mathbf{x} = [\mathbf{x}_1, \, \mathbf{x}_2, \, ..., \, \mathbf{x}_B]$$

 $\mathbf{y} = [\mathbf{y}_1, \, \mathbf{y}_2, \, ..., \, \mathbf{y}_B]$

$$\mathbf{M} = \begin{bmatrix} 0 & 1 & 1 & 1 & \cdots & 1 \\ 1 & 0 & 1 & 1 & \cdots & 1 \\ 1 & 1 & 0 & 1 & \cdots & 1 \\ 1 & 1 & 1 & 0 & \cdots & 1 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & 1 & 1 & \cdots & 0 \end{bmatrix}$$

only invertible if mis even

BSPN Linear Transformation

Efficient computation of BSPN LT:

$$\mathbf{x} = [\mathbf{x}_1, \, \mathbf{x}_2, \, ..., \, \mathbf{x}_B]$$

 $\mathbf{y} = [\mathbf{y}_1, \, \mathbf{y}_2, \, ..., \, \mathbf{y}_B]$

If
$$\mathbf{Q} = \bigoplus_{1 \le i \le \mathbf{B}} \mathbf{x}_i$$

then $y_i = Q \leftarrow x_i$ for each i

 BSPN-64 has been considered as a lightweight block cipher (see, e.g., Zhang et al.)

BSPN LT Weaknesses

The BSPN LT has two main properties that make it vulnerable to attack:

- 1. large number of fixed points
- 2. low diffusion

Fixed Points

◆ A *fixed point* is an input x for whichLT(x) = x

◆ BSPN has a fixed point x = [x₁, x₂, ..., x_B] whenever

$$Q = \bigoplus_{1 \le i \le B} \mathbf{x}_i = \mathbf{0}$$

♦ So BSPN has $2^{8(B-1)} = 2^{n-8}$ fixed points

Fixed Points

In particular, any input with two identical nonzero bytes is a fixed point, e.g.,

$$x = [w, w, 0, 0, ..., 0]$$
 $w \neq 0$

We exploit fixed points of this form

Differential Probability (DP)

Let $F: \{0,1\}^N \to \{0,1\}^N$. Fix $a, b \in \{0,1\}^N$

$$DP(a, b) = Prob_{X} \{ F(X) + F(X + a) = b \}$$

- ◆ For our purposes, F may be:
 - ♦ an s-box
 - ♦ a single SPN round
 - multiple consecutive SPN rounds
- ◆ If F is parameterized by key material, the expected DP value is denoted EDP (a, b)

Differential Cryptanalysis (DC)

Chosen-plaintext attack that exploits
differences a and b with relatively large EDP
values over T core rounds (e.g., T = R-2)

Data complexity (# chosen plaintexts required)
 is given by

EDP(a,b)

where C is a small constant

Differential Characteristics

◆ A differential characteristic (trail) is a vector

$$\Omega = \left\langle a^1, a^2, \dots, a^T, a^{T+1} \right\rangle$$

- ◆ a^t / a^{t+1} are input/output differences for round t
- gives input/output differences for each s-box
- product of resulting s-box DP values is the expected differential characteristic probability, denoted EDCP(_)

Common Approach

Usual approximation: Find

$$\Omega = \left\langle a^1, a^2, \dots, a^T, a^{T+1} \right\rangle$$

whose *EDCP* is maximal (*best characteristic*) (there are efficient algorithms for this)

♦ Set $a = a^1$ and $b = a^{T+1}$ and assume

$$EDP(a,b) \approx EDCP(\Omega)$$

Differentials

◆ However, Lai et al. (1991) showed that the value EDP (a, b) is actually a sum of EDCP terms over a (large) set of characteristics

$$EDP(a,b) = \sum_{\Omega = \left\langle a, a^2, \dots, a^T, b \right\rangle} EDCP(\Omega)$$

- ◆ This set is called a differential
- To assess the vulnerability to DC, we need to compute differential EDP values

High Prob. BSPN Differentials

For BSPN, the highest prob. characteristics consist entirely of differences of the form we considered earlier:

$$[\mathbf{w}, \mathbf{w}, 0, 0, ..., 0] \quad \mathbf{w} \neq 0$$

(any two fixed byte positions can be used)

 We designed a (simple) algorithm to add up the ELDP values of all characteristics of this form over any number of core BSPN rounds

S-Box Choice

- In keeping with the BSPN designers' recommendation, we chose the strongest involutional s-boxes we could find
- Sometimes called Nyberg s-boxes, these are based on inversion in the finite field GF(28)

$$0 \leftarrow 0$$
$$x \leftarrow x^{-1} \qquad x \neq 0$$

The AES s-box is derived from this formula

Best BSPN Characteristics

- ◆ For a Nyberg s-box in GF(2⁸), the maximum nontrivial LP value is 2⁻⁶
- ◆ This means that the highest possible ELCP value over *T* rounds for our characteristics (2 active s-boxes per round) is

2-12*T*

◆ Implies: DC of BSPN-64 impossible for T > 5
 DC of BSPN-128 impossible for T > 10

Results

Our algorithm produced the following EDP values as a function of *T* (#core rounds)

T	EDP	
2	2 -20.8	
3	2 -28.9	
4	2 -35.9	
5	2 -42.9	
6	2 -49.9	
7	2 -56.8	4
8	2 -63.8	+
9	2 -70.8	
10	2 -77.8	
15	2 ^{-112.7}	
16	2 -119.6	4
17	2 -126.6	4
18	2 -133.6	

Concluding Analysis

- ◆ Since our ELP value for T = 7 is 2^{-56.8}, we can attack (say) 8 or 9 rounds of BSPN-64 with a data complexity around 2⁵⁹
- ◆ And since our ELP value for T = 16 is 2^{-119.6}, we can attack 17 or 18 rounds of BSPN-128 with a data complexity around 2¹²²

Low Diffusion

The branch number of a byte-oriented linear transformation is the minimum number of nonzero bytes over all input/output pairs:

$$B = \min \{ wt_8(x) + wt_8(y) : y = LT(x), x \neq 0 \}$$

where $wt_8()$ = byte-oriented Hamming weight (number of nonzero bytes)

$$2 \leq B \leq m+1$$

Low Diffusion

$$2 \leq B \leq m+1$$

- ◆ The branch number quantifies the ability of the linear transformation to spread (diffuse) the influence of the input bytes over the output bytes (or vice versa)
- A high branch number is desirable
- ◆ However, the BSPN LT branch number is 4 (independent of *m*)

Low Diffusion

branch number of BSPN LT = 4

Use our "special" fixed points:

$$x = [w, w, 0, 0, ..., 0]$$
 $w \neq 0$
 $y = LT(x) = x$
 $wt_8(x) + wt_8(y) = 4$

• If $wt_8(x) = 1$, then $wt_8(y) = m$

• If $wt_8(x) = 3$, then $wt_8(y) \ge 3$