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 SPN:  standard block cipher structure (e.g., AES) 
 

  Let n = block size 
 

 Round stages: 
1. XOR n -bit subkey 
2. apply m ×m  s-boxes (substitution boxes) 
 - invertible mappings from {0,1}m  to {0,1}m 

3. apply linear transformation  (traditionally a bitwise 
permutation) 

 SPN Round Structure 





Independent Subkeys 

We assume the most general situation for the 
subkeys, namely:  k 

1, k 
2, ... are chosen 

independently and uniformly from {0,1}n 

 This is a standard assumption that facilitates 
analysis 
 Expected values over cipher keys often approximated 

by expected values over independent subkeys 



 BSPN 

 BSPN  (byte-oriented SPN) is an SPN structure 
presented at SAC 1996 by Youssef, Tavares, 
and Heys 

 BSPN is meant to be involutional  (self-inverting) 
 has influenced other involutional ciphers such as 

Khazad and CURUPIRA 

 It was designed as a more efficient version of 
the bit-oriented SPN structure published earlier 
in 1996 in J. Cryptology by Heys and Tavares 



 BSPN Structure 

Many BSPN parameters/components are left 
unspecified 
 only the linear transformation is given exactly 

 A BSPN block consists of B  bytes (so n = 8B ), 
where B  is even  (e.g., B = 8,  B = 16) 

 Key schedule not proposed 
we assume independent subkeys anyway 

 S-boxes not given (involutional recommended) 



 BSPN-n 

 Let BSPN-n  denote BSPN with block size n 

We focus on: 
 
 BSPN-128  (B  = 16)  (AES-like block size) 
 
 BSPN-64  (B  = 8)  (lightweight cipher block size) 



 BSPN Linear Transformation 

 Let x = [x1, x2, …, xB ] be an input to the BSPN 
linear transformation, and let y = [y1, y2, …, yB ] 
be the corresponding output 

 
 Then for each  j  {1, 2, …, B } 
 

𝐲𝒋 = ⊕𝐱𝒊
1 ≤ 𝑖 ≤ 𝑩, 𝑖 ≠ 𝑗 

 This is involutional 



 BSPN Linear Transformation 

 Alternatively,  y = xM 
 

       x = [x1, x2, …, xB ]  
       y = [y1, y2, …, yB ] 

         𝐌 =

0 1 1 1 ⋯ 1
1 0 1 1 ⋯ 1
1 1 0 1 ⋯ 1
1 1 1 0 ⋯ 1
⋮ ⋮ ⋮ ⋮ ⋱ ⋮
1 1 1 1 ⋯ 0

 



 BSPN Linear Transformation 

 Efficient computation of BSPN LT: 
 

       x = [x1, x2, …, xB ]  
       y = [y1, y2, …, yB ] 
 

 If Q = ⊕𝐱𝑖
1 ≤ 𝑖 ≤ 𝑩 

 

 then yi = Q  xi    for each i 

 BSPN-64 has been considered as a lightweight 
block cipher (see, e.g., Zhang et al.) 



 BSPN LT Weaknesses 

 The BSPN LT has two main properties that 
make it vulnerable to attack: 

1.  large number of fixed points 

2.  low diffusion 



 Fixed Points 

 A fixed point  is an input x for which 
   LT(x) = x 

 BSPN has a fixed point x = [x1, x2, …, xB ] 
whenever 

  Q  =  ⊕𝐱𝑖
1 ≤ 𝑖 ≤ 𝑩  =  0 

 So BSPN has 28(B -1) = 2n - 8 fixed points 



 Fixed Points 

 In particular, any input with two identical 
nonzero bytes is a fixed point, e.g., 
 

   x = [w, w, 0, 0, …, 0]      w ≠ 0 

We exploit fixed points of this form 



 Differential Probability (DP) 
Let  F : {0,1}N → {0,1}N .  Fix  a, b ∈ {0,1}N 
 

DP (a, b ) = ProbX { F (X)  F (X  a ) = b  } 

 For our purposes, F  may be: 
 an s-box 
 a single SPN round 
multiple consecutive SPN rounds 

 If F  is parameterized by key material, the 
expected DP value is denoted EDP (a, b ) 



 Differential Cryptanalysis (DC) 

 Chosen-plaintext attack that exploits 
differences a  and b  with relatively large EDP  
values over T  core rounds  (e.g., T = R -2) 

 Data complexity (# chosen plaintexts required) 
is given by 

 
 
    where C  is a small constant 

),( baEDP
C



 Differential Characteristics 

 A differential characteristic (trail)  is a vector 
121 ,,,, +=Ω TT aaaa 

 a t / a t +1 are input/output differences for round t 

 gives input/output differences for each s-box 

 product of resulting s-box DP values is the 
expected differential characteristic probability, 
denoted EDCP () 



 Common Approach 

 Usual approximation:  Find 
121 ,,,, +=Ω TT aaaa 

 whose EDCP  is maximal (best characteristic ) 
(there are efficient algorithms for this) 

 Set  a =a 1  and  b =a T+1  and assume 

)(),( Ω≈ EDCPbaEDP



 Differentials 

 This set is called a differential 

)(),(
,,,, 2

Ω= ∑
=Ω

EDCPbaEDP
baaa T

 However, Lai et al. (1991) showed that the 
value EDP (a, b ) is actually a sum of EDCP 
terms over a (large) set of characteristics 

 To assess the vulnerability to DC, we need to 
compute differential EDP values 



 High Prob. BSPN Differentials 

 For BSPN, the highest prob. characteristics 
consist entirely of differences of the form we 
considered earlier: 

 

   [w, w, 0, 0, …, 0]      w ≠ 0 
 

(any two fixed byte positions can be used) 

We designed a (simple) algorithm to add up 
the ELDP values of all characteristics of this 
form over any number of core BSPN rounds 



 S-Box Choice 

 In keeping with the BSPN designers’ 
recommendation, we chose the strongest 
involutional s-boxes we could find 

 Sometimes called Nyberg s-boxes, these are 
based on inversion in the finite field GF(28) 

   0  0 
   x  x-1     x ≠ 0 

 The AES s-box is derived from this formula 



 Best BSPN Characteristics 

 For a Nyberg s-box in GF(28), the maximum 
nontrivial LP value is 2-6 

 This means that the highest possible ELCP 
value over T  rounds for our characteristics 
(2 active s-boxes per round) is 

    2-12T 

 Implies:  DC of BSPN-64 impossible for T  > 5 
          DC of BSPN-128 impossible for T  > 10 



 Results 

Our algorithm 
produced the 
following EDP 
values as a 
function of T  
(#core rounds) 

T EDP 
2 2-20.8 

3 2-28.9 

4 2-35.9 

5 2-42.9 

6 2-49.9 

7 2-56.8 

8 2-63.8 

9 2-70.8 

10 2-77.8 

⋯ ⋯ 
15 2-112.7 

16 2-119.6 

17 2-126.6 

18 2-133.6 



 Concluding Analysis 

 Since our ELP value for T = 7 is 2-56.8, we can 
attack (say) 8 or 9 rounds of BSPN-64 with a 
data complexity around 259 

 And since our ELP value for T = 16 is 2-119.6, 
we can attack 17 or 18 rounds of BSPN-128 
with a data complexity around 2122 









 Low Diffusion 

 The branch number  of a byte-oriented linear 
transformation is the minimum number of 
nonzero bytes over all input/output pairs: 

 

 B = min {wt8(x) + wt8(y) : y = LT(x),  x ≠ 0 } 
 

where wt8( ) = byte-oriented Hamming weight 
(number of nonzero bytes) 

  2  ≤  B  ≤ m +1 



 Low Diffusion 

 The branch number quantifies the ability of 
the linear transformation to spread (diffuse) 
the influence of the input bytes over the 
output bytes (or vice versa) 

  2  ≤  B  ≤ m +1 

 However, the BSPN LT branch number is 4 
(independent of m ) 

 A high branch number is desirable 



 Low Diffusion 

 Use our “special” fixed points: 
 x = [w, w, 0, 0, …, 0]      w ≠ 0 
 y = LT(x) = x 
 wt8(x) + wt8(y) = 4  

branch number of BSPN LT = 4 

 If wt8(x) = 1, then wt8(y) = m 

 If wt8(x) = 3, then wt8(y) ≥ 3 
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