# Differential Cryptanalysis of the BSPN Block Cipher Structure 

Liam Keliher<br>Mathematics \& Computer Science<br>Mount Allison University<br>Sackville, New Brunswick

NIST Lightweight Cryptography Workshop, July 21, 2015


Sackville, NB

## SAC 2015 + S3

This year, Mount Allison University is hosting:

- SAC 2015 : 22 ${ }^{\text {nd }}$ International Conference on Selected Areas in Cryptography
- August 12-14, 2015
- SAC Summer School (S3)
- August 10-12, 2015


## Outline

- Substitution-Permutation Networks (SPNs)
- BSPN
- BSPN Linear Transformation Properties
- High Probability Differentials for BSPN
- Conclusion


## SPN Round Structure

- SPN: standard block cipher structure (e.g., AES)


## Let $\boldsymbol{n}=$ block size

- Round stages:

1. XOR $n$-bit subkey
2. apply $m \times m$ s-boxes (substitution boxes)

- invertible mappings from $\{0,1\}^{m}$ to $\{0,1\}^{m}$

3. apply linear transformation (traditionally a bitwise permutation)


## Independent Subkeys

- We assume the most general situation for the subkeys, namely: $k^{1}, k^{2}, \ldots$ are chosen independently and uniformly from $\{0,1\}^{n}$
- This is a standard assumption that facilitates analysis
- Expected values over cipher keys often approximated by expected values over independent subkeys


## BSPN

- BSPN (byte-oriented SPN) is an SPN structure presented at SAC 1996 by Youssef, Tavares, and Heys
- It was designed as a more efficient version of the bit-oriented SPN structure published earlier in 1996 in J. Cryptology by Heys and Tavares
- BSPN is meant to be involutional (self-inverting)
- has influenced other involutional ciphers such as Khazad and CURUPIRA


## BSPN Structure

- Many BSPN parameters/components are left unspecified
- only the linear transformation is given exactly
$\bullet$ A BSPN block consists of $B$ bytes (so $n=8 B$ ), where $B$ is even (e.g., $B=8, B=16$ )
- Key schedule not proposed
- we assume independent subkeys anyway
-S-boxes not given (involutional recommended)


## BSPN- $n$

- Let BSPN-n denote BSPN with block size $n$
- We focus on:
$\bullet B S P N-128$ ( $B=16$ ) (AES-like block size)
- BSPN-64 ( $B=8$ ) (lightweight cipher block size)


## BSPN Linear Transformation

$\bullet$ Let $\mathrm{x}=\left[\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{B}\right]$ be an input to the BSPN linear transformation, and let $\mathbf{y}=\left[\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{B}\right]$ be the corresponding output

- Then for each $\boldsymbol{j} \boldsymbol{\jmath}\{1,2, \ldots, B\}$

$$
\mathbf{y}_{j}=\begin{gathered}
\bigoplus \mathbf{x}_{i} \\
1 \leq i \leq \boldsymbol{B}, i \neq j
\end{gathered}
$$

- This is involutional


## BSPN Linear Transformation

- Alternatively, $\mathrm{y}=\mathrm{xM}$

$$
\begin{aligned}
& \mathbf{x}=\left[\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{B}\right] \\
& \mathbf{y}=\left[\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{B}\right] \\
& \mathbf{M}=\left[\begin{array}{cccccc}
0 & 1 & 1 & 1 & \cdots & 1 \\
1 & 0 & 1 & 1 & \cdots & 1 \\
1 & 1 & 0 & 1 & \cdots & 1 \\
1 & 1 & 1 & 0 & \cdots & 1 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
1 & 1 & 1 & 1 & \cdots & 0
\end{array}\right]
\end{aligned}
$$



## BSPN Linear Transformation

- Efficient computation of BSPN LT:

$$
\begin{aligned}
& \mathbf{x}=\left[\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{\boldsymbol{B}}\right] \\
& \mathbf{y}=\left[\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\boldsymbol{B}}\right] \\
& \text { If } \mathbf{Q}=\bigoplus_{1} \mathrm{x}_{i} \\
& 1 \leq \boldsymbol{B}
\end{aligned}
$$

then $y_{i}=Q \longleftrightarrow x_{i} \quad$ for each $i$
-BSPN-64 has been considered as a lightweight block cipher (see, e.g., Zhang et al.)

## BSPN LT Weaknesses

- The BSPN LT has two main properties that make it vulnerable to attack:

1. large number of fixed points
2. Iow diffusion

## Fixed Points

- A fixed point is an input x for which

$$
\operatorname{LT}(x)=x
$$

$\bullet$ BSPN has a fixed point $x=\left[x_{1}, x_{2}, \ldots, x_{B}\right]$ whenever

$$
\mathbf{Q}=\underset{1 \leq i \leq \boldsymbol{B}}{\bigoplus \mathbf{x}_{i}}=\mathbf{0}
$$

-So BSPN has $2^{8(B-1)}=2^{n-8}$ fixed points

## Fixed Points

- In particular, any input with two identical nonzero bytes is a fixed point, e.g.,

$$
x=[w, w, 0,0, \ldots, 0] \quad w \neq 0
$$

- We exploit fixed points of this form


## Differential Probability (DP)

$$
\text { Let } F:\{0,1\}^{N} \rightarrow\{0,1\}^{N} \text {. Fix } a, b \in\{0,1\}^{N}
$$

$$
D P(a, b)=\operatorname{Prob}_{X}\{F(X) \leftarrow F(X \leftarrow a)=b\}
$$

- For our purposes, F may be:
- an s-box
- a single SPN round
- multiple consecutive SPN rounds
- If $F$ is parameterized by key material, the expected DP value is denoted $\operatorname{EDP}(a, b)$


## Differential Cryptanalysis (DC)

- Chosen-plaintext attack that exploits differences $a$ and $b$ with relatively large EDP values over $T$ core rounds (e.g., $T=R-2$ )
- Data complexity (\# chosen plaintexts required) is given by

where $C$ is a small constant


## Differential Characteristics

- A differential characteristic (trail) is a vector

$$
\Omega=\left\langle a^{1}, a^{2}, \ldots, a^{T}, a^{T+1}\right\rangle
$$

- $a^{t /} a^{t+1}$ are input/output differences for round $t$
- gives input/output differences for each s-box
- product of resulting s-box DP values is the expected dififerential characteristic probability, denoted $E D C P\left({ }_{\llcorner }\right)$


## Common Approach

- Usual approximation: Find

$$
\Omega=\left\langle a^{1}, a^{2}, \ldots, a^{T}, a^{T+1}\right\rangle
$$

whose EDCP is maximal (best characteristic) (there are efficient algorithms for this)
$\checkmark$ Set $a=a^{1}$ and $b=a^{T+1}$ and assume

$$
E D P(a, b) \approx E D C P(\Omega)
$$

## Differentials

- However, Lai et al. (1991) showed that the value EDP $(a, b)$ is actually a sum of EDCP terms over a (large) set of characteristics

$$
E D P(a, b)=\sum_{\Omega=\left\langle a, a^{2}, \ldots, a^{T}, b\right\rangle} E D C P(\Omega)
$$

- This set is called a differential
- To assess the vulnerability to DC, we need to compute differential EDP values


## High Prob. BSPN Differentials

- For BSPN, the highest prob. characteristics consist entirely of differences of the form we considered earlier:

$$
[w, w, 0,0, \ldots, 0] \quad w \neq 0
$$

(any two fixed byte positions can be used)
$\checkmark$ We designed a (simple) algorithm to add up the ELDP values of all characteristics of this form over any number of core BSPN rounds

## S-Box Choice

- In keeping with the BSPN designers' recommendation, we chose the strongest involutional s-boxes we could find
- Sometimes called Nyberg s-boxes, these are based on inversion in the finite field GF( $2^{8}$ )

$$
\begin{aligned}
& 0 \leftarrow 0 \\
& x \leftarrow x^{-1} \quad x \neq 0
\end{aligned}
$$

- The AES s-box is derived from this formula


## Best BSPN Characteristics

- For a Nyberg s-box in GF $\left(2^{8}\right)$, the maximum nontrivial LP value is $2^{-6}$
- This means that the highest possible ELCP value over $T$ rounds for our characteristics ( 2 active s-boxes per round) is

2-12T

- Implies: DC of BSPN-64 impossible for $T>5$ DC of BSPN-128 impossible for $T>10$


## Results

- Our algorithm produced the following EDP values as a function of $T$ (\#core rounds)

| $T$ | EDP |
| :---: | :---: |
| 2 | $2^{-20.8}$ |
| 3 | $2^{-28.9}$ |
| 4 | $2^{-35.9}$ |
| 5 | $2^{-42.9}$ |
| 6 | $2^{-49.9}$ |
| 7 | $2^{-56.8}$ |
| 8 | $2^{-63.8}$ |
| 9 | $2^{-70.8}$ |
| 10 | $2^{-77.8}$ |
| $\ldots$ | $\ldots$ |
| 15 | $2^{-112.7}$ |
| 16 | $2^{-119.6}$ |
| 17 | $2^{-126.6}$ |
| 18 | $2^{-133.6}$ |

## Concluding Analysis

- Since our ELP value for $T=7$ is $2^{-56.8}$, we can attack (say) 8 or 9 rounds of BSPN-64 with a data complexity around $2^{59}$
- And since our ELP value for $T=16$ is $2^{-119.6,}$ we can attack 17 or 18 rounds of BSPN-128 with a data complexity around $2^{122}$



## Low Diffusion

- The branch number of a byte-oriented linear transformation is the minimum number of nonzero bytes over all input/output pairs:

$$
B=\min \left\{w_{8}(\mathbf{x})+w_{8}(\mathbf{y}): \mathbf{y}=\operatorname{LT}(\mathbf{x}), \mathbf{x} \neq 0\right\}
$$

where $w_{8}(\mathrm{O})=$ byte-oriented Hamming weight (number of nonzero bytes)

$$
2 \leq B \leq m+1
$$

## Low Diffusion

$$
2 \leq B \leq m+1
$$

- The branch number quantifies the ability of the linear transformation to spread (diffuse) the influence of the input bytes over the output bytes (or vice versa)
- A high branch number is desirable
- However, the BSPN LT branch number is 4 (independent of $m$ )


## Low Diffusion

## branch number of BSPN LT = 4

- Use our "special" fixed points:

$$
\begin{aligned}
& \mathbf{x}=[\mathbf{w}, \mathrm{w}, 0,0, \ldots, 0] \quad \mathrm{w} \neq 0 \\
& \mathrm{y}=\mathrm{LT}(\mathrm{x})=\mathrm{x} \\
& w t_{8}(\mathrm{x})+w t_{8}(\mathrm{y})=4
\end{aligned}
$$

If $w t_{8}(\mathrm{x})=1$, then $w t_{8}(\mathrm{y})=m$

- If $w t_{8}(x)=3$, then $w t_{8}(\mathrm{y}) \geq 3$

