A New Distinguisher on Grain v1 for 106 rounds

Santanu Sarkar
Department of Mathematics, Indian Institute of Technology Madras Sardar Patel Road, Chennai 600036, India

NIST Gaithersburg

Presented by: Rebhu Johymalyo Josh

21 July, 2015

Outline of the Talk

- Grain v1
- Knellwolf et al. attack on Grain v1 for 97 rounds
- Our distinguisher on Grain v1 for 106 rounds

Grain Family

Proposed by Hell, Johansson and Meier in 2005
Part of eStream portfolio
Grain v1, Grain 128 and Grain 128a

Grain v1

Consists of an 80 bit LFSR and an 80 bit NFSR.

The LFSR update function is

$$
y_{t+80}=y_{t+62}+y_{t+51}+y_{t+38}+y_{t+23}+y_{t+13}+y_{t} .
$$

NFSR update

The NFSR state is updated as follows

$$
\begin{aligned}
& x_{t+80}=y_{t}+g\left(x_{t+63}, x_{t+62}, x_{t+60}, x_{t+52}, x_{t+45}, x_{t+37}, x_{t+33}, x_{t+28}, x_{t+21}\right. \\
& \left.\quad x_{t+15}, x_{t+14}, x_{t+9}, x_{t}\right) \text { where } \\
& g\left(x_{t+63}, x_{t+62}, x_{t+60}, x_{t+52}, x_{t+45}, x_{t+37}, x_{t+33}, x_{t+28}, x_{t+21}, x_{t+15}, x_{t+14}, x_{t+9}, x_{t}\right) \\
& =x_{t+62}+x_{t+60}+x_{t+52}+x_{t+45}+x_{t+37}+x_{t+33}+x_{t+28}+x_{t+21}+ \\
& \quad x_{t+14}+x_{t+9}+x_{t}+x_{t+63} x_{t+60}+x_{t+37} x_{t+33}+x_{t+15} x_{t+9}+ \\
& \quad x_{t+60} x_{t+52} x_{t+45}+x_{t+33} x_{t+28} x_{t+21}+x_{t+63} x_{t+45} x_{t+28} x_{t+9}+ \\
& \quad x_{t+60} x_{t+52} x_{t+37} x_{t+33}+x_{t+63} x_{t+60} x_{t+21} x_{t+15}+ \\
& \quad x_{t+63} x_{t+60} x_{t+52} x_{t+45} x_{t+37}+x_{t+33} x_{t+28} x_{t+21} x_{t+15} x_{t+9}+ \\
& x_{t+52} x_{t+45} x_{t+37} x_{t+33} x_{t+28} x_{t+21}
\end{aligned}
$$

Output Keystream

$$
z_{t}=\bigoplus_{a \in A} x_{t+a}+h\left(y_{t+3}, y_{t+25}, y_{t+46}, y_{t+64}, x_{t+63}\right)
$$

where $A=\{1,2,4,10,31,43,56\}$ and
$h\left(s_{0}, s_{1}, s_{2}, s_{3}, s_{4}\right)=s_{1}+s_{4}+s_{0} s_{3}+s_{2} s_{3}+s_{3} s_{4}+s_{0} s_{1} s_{2}+s_{0} s_{2} s_{3}$

$$
+s_{0} s_{2} s_{4}+s_{1} s_{2} s_{4}+s_{2} s_{3} s_{4}
$$

Key Scheduling Algorithm (KSA)

Grain v1 uses 80-bit key K, and 64-bit initialization vector $I V$. The key is loaded in the NFSR
The IV is loaded in the $0^{t h}$ to the $63^{\text {th }}$ bits of the LFSR. The remaining $64^{\text {th }}$ to $79^{\text {th }}$ bits of the LFSR are loaded with 1 . Then, for the first 160 clocks, the key-stream bit z_{t} is XOR-ed to both the LFSR and NFSR update functions.

Pseudo-Random key-stream Generation Algorithm (PRGA)

After the KSA, z_{t} is no longer XOR-ed to the LFSR and the NFSR.
Thus, the LFSR and NFSR are updated as
$y_{t+n}=f\left(Y_{t}\right), x_{t+n}=y_{t}+g\left(X_{t}\right)$.

Distinguisher on Grain v1

Knellwolf et al. in Asiacrypt 2010
80 bit key k_{0}, \ldots, k_{79} and 64 bit IV v_{0}, \ldots, v_{63}.
Grain v1 is first intialised with $X_{0}=\left[k_{0}, \ldots, k_{79}\right]$ and
$Y_{0}=[v_{0}, \ldots, v_{63}, \overbrace{1, \ldots, 1}^{16}]$.
Here X_{0} corresponds to NFSR and Y_{0} corresponds to LFSR.

The idea

Next start with NFSR $X_{0}^{\prime}=\left[k_{0}, \ldots, k_{79}\right]$ but different LFSR
$Y_{0}^{\prime}=\left[v_{0}, \ldots, 1 \oplus v 37, v_{63}, \overline{1, \ldots, 1]}\right.$.
Thus two states S_{0} and S_{0}^{\prime} initialized by $\left(X_{0}, Y_{0}\right)$ and $\left(X_{0}^{\prime}, Y_{0}^{\prime}\right)$ different only at one position.
But when more and more KSA rounds are completed, more and more positions of the states will be differ.
Conditions of z_{12}, z_{34} and z_{40} of KSA

The idea

The idea is to delay the diffusion of the differential.
The conditions may be classified in to two types:

- Type 1: Conditions only on IV
- Type 2: Conditions on both Key and IV.

Attack Idea

z_{t} and z_{t} : Output bit produced in the t-th KSA round when states are loaded by $\left(X_{0}, Y_{0}\right)$ and $\left(X_{0}, Y_{0}\right)$.

The attack idea is as follows:

1. For $i=0, \ldots, 11$, it is not difficult to show that $z_{i}=z_{i}$.
2. When $i=12, z_{i} \oplus z_{i}=v_{15} v_{58} \oplus v_{58} k_{75} \oplus 1$.

Attack Idea

z_{t} and z_{t} : Output bit produced in the t-th KSA round when states are loaded by $\left(X_{0}, Y_{0}\right)$ and $\left(X_{0}, Y_{0}\right)$.

The attack idea is as follows:

1. For $i=0, \ldots, 11$, it is not difficult to show that $z_{i}=z_{i}$.
2. When $i=12, z_{i} \oplus z_{i}=v_{15} v_{58} \oplus v_{58} k_{75} \oplus 1$.
3. To make $v_{15} v_{58} \oplus v_{58} k_{75} \oplus 1=0$, set $v_{58}=1$ and $v_{15}=1 \oplus k_{75}$.
4. Thus we have one Type 1 condition $v_{58}=1$ and one Type 2 condition $C_{1}: v_{15}=1 \oplus k_{75}$.
5. For $i=13, \ldots, 29, z_{i}$ will be always equal to z_{i}.
6. When $i=30, z_{30}$ will be always different from z_{30}.
7. z_{i} will be always equal to z_{i} for $i=31$ and 32 .
8. When $i=34, z_{34} \oplus z_{34}$ will be an algebraic expression on Key and IV.
9. If attacker sets 13 Type 1 conditions
$v_{0}=0, v_{1}=0, v_{3}=0, v_{4}=0, v_{5}=0, v_{21}=0, v_{25}=0, v_{26}=$ $0, v_{27}=0, v_{43}=0, v_{46}=0, v_{47}=0, v_{48}=0$ and two Type 2 conditions

$$
\begin{aligned}
C_{2}: v_{13}= & v_{23} \oplus v_{38} \oplus v_{51} \oplus v_{62} \oplus k_{1} \oplus k_{2} \oplus k_{4} \oplus k_{10} \\
& \oplus k_{31} \oplus k_{43} \oplus k_{56}, \\
C_{3}: v_{2}= & v_{18} \oplus v_{31} \oplus v_{40} \oplus v_{41} \oplus v_{53} \oplus v_{56} \oplus f_{1}(K),
\end{aligned}
$$

where $f_{1}(K)$ is a polynomial over Key of degree 7 and 39 monomials, $z_{34}=z_{34}$.

Attack idea

10. $z_{i}=z_{i}$ for $35 \leq i \leq 39$.
11. When $i=40$, again $z_{40} \oplus z_{40}$ will be an algebraic expression on Key and IV.
12. However if attacker sets 13 Type 1 conditions
$v_{8}=0, v_{9}=0, v_{10}=0, v_{19}=0, v_{28}=0, v_{29}=0, v_{31}=$
$0, v_{44}=0, v_{49}=0, v_{51}=0, v_{52}=0, v_{53}=0, v_{57}=0$ and two
Type 2 conditions

$$
\begin{aligned}
& C_{4}: v_{6}=k_{7} \oplus k_{8} \oplus k_{10} \oplus k_{16} \oplus k_{37} \oplus k_{49} \oplus k_{62} \oplus 1, \\
& C_{5}: v_{7}=v_{20} \oplus v_{23} \oplus v_{32} \oplus v_{45} \oplus f_{2}(K),
\end{aligned}
$$

where $f_{2}(K)$ is a polynomial over Key of degree 15 and 2365 monomials, $z_{40}=z_{40}$.

Attack Idea

Total of 27 Type 1 conditions and 5 Type 2 conditions C_{1}, \ldots, C_{5}. Hence IV space is reduced to $\{0,1\}^{64-27}=\{0,1\}^{37}$.

Corresponding to 5 Type 2 conditions, attacker divides this space into $2^{5}=32$ partitions.

That is since there are 5 expressions on unknown Key, attacker chooses all 32 options. Among these 32 options, one must be correct.

Attack idea

Knellwolf et al. observed experimentally for the correct guess on 5 key expressions, $z_{97} \oplus z_{97}$ is more likely to be zero.

This gives a distinguisher on Grain v1 for reduced round.
Five Type 2 conditions are crucial for Key recovery.

Attack idea

Knellwolf et al. observed experimentally for the correct guess on 5 key expressions, $z_{97} \oplus z_{97}$ is more likely to be zero.

This gives a distinguisher on Grain v1 for reduced round.
Five Type 2 conditions are crucial for Key recovery.

Differential on v_{61} : Banik's attack for 105 round

Attack for 106 rounds

Differential on v_{62}

1. For $i=0, \ldots, 15, z_{i}=z_{i}$.
2. When $i=16$, set $v_{19}=v_{41}=1, v_{46}=0$ and $v_{0}=$ $k_{1} \oplus k_{2} \oplus k_{4} \oplus k_{10} \oplus k_{31} \oplus k_{43} \oplus k_{56} \oplus v_{3} \oplus v_{13} \oplus v_{23} \oplus v_{25} \oplus v_{38} \oplus v_{51}$.
3. For $i=17, \ldots, 26, z_{i}$ will be always equal to z_{i}.
4. When $i=27, z_{27}$ will be always different from z_{27}.
5. z_{i} will be always equal to z_{i} for $i=28, \ldots, 33$.
6. When $i=34, z_{34} \oplus z_{34}$ will be an algebraic expression on Key and IV.
17 Type 1 conditions
$v_{2}=v_{15} \oplus v_{18} \oplus v_{25} \oplus v_{31} \oplus v_{40} \oplus v_{53} \oplus v_{56} \oplus v_{59}, v_{63}=$
$0, v_{14}=v_{24} \oplus v_{39} \oplus v_{52}, v_{13}=v_{23} \oplus v_{38} \oplus v_{51}, v_{17}=v_{42}, v_{43}=$
$0, v_{47}=0, v_{38}=0, v_{4}=0, v_{1}=0, v_{5}=0, v_{20}=0, v_{21}=$
$0, v_{26}=0, v_{27}=0, v_{37}=0, v_{48}=0$ and one Type 2 condition

$$
C_{2}: v_{59}=f_{1}(K)
$$

where $f_{1}(K)$ is a polynomial over Key of degree 16 and 9108 monomials, $z_{34}=z_{34}$.
7. $z_{i}=z_{i}$ for $i=35,36$.
8. When $i=37$, again $z_{37} \oplus z_{37}$ will be an algebraic expression on Key and IV. However if attacker sets 7 Type 1 conditions $v_{15}=v_{18} \oplus v_{25} \oplus v_{31} \oplus v_{53} \oplus v_{55} \oplus v_{56} \oplus v_{59}, v_{16}=v_{54}, v_{49}=$ $1, v_{28}=0, v_{6}=0, v_{50}=0, v_{23}=v_{45}$ and two Type 2 conditions

$$
\begin{aligned}
& C_{3}: v_{3}=k_{4} \oplus k_{5} \oplus k_{7} \oplus k_{13} \oplus k_{34} \oplus k_{46} \oplus k_{59} \oplus k_{66} \\
& C_{4}: v_{7}=v_{29} \oplus f_{2}(K),
\end{aligned}
$$

where $f_{2}(K)$ is a polynomial over Key of degree 15 and 1535 monomials, $z_{37}=z_{37}$.
9. $z_{i}=z_{i}$ for $i=38,39$.
10. If we set 7 Type 1 conditions $v_{58}=v_{7}, v_{57}=v_{44} \oplus v_{29}, v_{51}=$ $0, v_{52}=0, v_{10}=0, v_{32}=0, v_{53}=0$ and 2 Type 2 conditions

$$
\begin{aligned}
& C_{5}: v_{9}=k_{7} \oplus k_{8} \oplus k_{10} \oplus k_{16} \oplus k_{37} \oplus k_{49} \oplus k_{62} \oplus v_{31} \\
& C_{6}: v_{8}=f_{3}(K),
\end{aligned}
$$

where $f_{3}(K)$ is a polynomial over Key of degree 15 and 1572 monomials, $z_{40}=z_{40}$.

Attack up to 106 rounds

Type 1: 34
Type 2: 6
IV space is reduced to $\{0,1\}^{64-34}=\{0,1\}^{30}$
Experiment shows success probability of the distinguisher is 63%

Thank you! when (hat

