JAMBU
A Lightweight Authenticated Encryption Mode

HONGJUN WU TAO HUANG

NANYANG TECHNOLOGICAL UNIVERSITY

LIGHTWEIGHT CRYPTOGRAPHY WORKSHOP
20 JUL 2015
Outline

- Design Goal
- The JAMBU Authenticated Encryption Mode
- JAMBU Features
- Examples of JAMBU
- Security of JAMBU
- Performance of JAMBU
- Conclusion
JAMBU
Design Goal

- To design a **lightweight AE mode**
 - Introduce small extra state size
 - For n-bit block size, the extra state sizes are
Mode	Size
CCM	n-bit (authenticate-then-encrypt)
GCM	2n-bit
OCB3	2n-bit
EAX	3n-bit
JAMBU	0.5n-bit
Design Goal

- To design a lightweight AE mode
 - Use simple operations
 - Only XOR is used other than the block cipher call
- Reasonably secure when IV is misused
The JAMBU Mode:
– Initialization

Block cipher: n-bit block size
IV: n/2-bit
The JAMBU Mode:
– Process Associated Data

Data block size: \(\frac{n}{2} \) bits
Pad the associated data with: 10*
The JAMBU Mode:
– Process Plaintext

Data block size: \(n/2 \) bits
Pad the plaintext with: 10*
The JAMBU Mode: – Finalization

Tag: n/2-bit
JAMBU Features

- Use the existing block ciphers directly
- Lightweight mode
 - Only $\frac{n}{2}$ extra state is introduced (for n-bit block size)
 - Only simple XORs are introduced at each step
- Reasonably strongly when IV is misused
- Use only block cipher encryption in both authenticated encryption and decryption
The JAMBU Example: AES-JAMBU

- Use the currently most widely implemented block cipher AES

- Recommended parameters:
 - 128-bit block size
 - 128-bit key
 - 64-bit tag
The JAMBU Example: SIMON-JAMBU

- Use the lightweight block cipher SIMON proposed by NSA

- Flexible parameters:
 - 128-bit block size, 128-bit key, 64-bit tag
 - 96-bit block size, 96/128-bit key, 48-bit tag
 - 64-bit block size, 96/128-bit key, 32-bit tag
Security of JAMBU

- Encryption
 - When IV is unique
 - similar to the CFB mode
 - When IV is reused
 - if the first n plaintext blocks are the same, then the blocks after the $(n+2)$-th plaintext blocks are secure. (The $(n+2)$-th block is insecure according to the analysis by Thomas Peyrin, Siang Meng Sim, Lei Wang, and Guoyan Zhang)
Security of JAMBU

- Authentication
- n/2-bit tag
- Provide **n/2-bit security** when \(2^{n/2}\) message blocks get protected
- We analyzed the forgery probability, and it is upper bounded by \(O(2^{-n/2})\)
Performance of JAMBU

- Software
 - Around half of the underlying block cipher for long messages
 - Tested with AES-JAMBU and SIMON-JAMBU

- Hardware
 - The hardware area cost of JAMBU is very close to that of the underlying block cipher
Conclusion

- **JAMBU**: A lightweight authenticated encryption mode
 - Reasonably strong when nonce is misused
 - Probably the most compact authenticated encryption mode
Thank you!

Questions?