RAIN RFID and the Internet of Things: Industry Snapshot and Security Needs

Matt Robshaw and Tyler Williamson
Impinj
Seattle, USA
Overview

• RAIN RFID
• The product and standardization landscape
• Security, performance, and looking forward
• Questions

Note: This presentation outlines the personal views of the authors
• Radio-frequency identification
 – Item identification using EM waves
 – Many different systems at different frequencies
 – Low frequency (LF), High frequency (HF), Ultra-high frequency (UHF), ...
 – UHF is now an established technology, solutions can be reliably deployed
 • Long read range, passive, and cheap

• The original motivation for the term “Internet of Things”
 – The cheapest way to provide connectivity to an object or device

• RAIN: RAdio-frequency IdentificatioN
 – Industry alliance to promote UHF RFID
RAIN RFID
What Does a RAIN RFID Chip Currently Do?

• Chips communicate wirelessly, *i.e.* not line-of-sight
 – Bar-code scanning < 500 units/hour; RFID scanning > 10,000 units/hour

• Chips store a chip identifier (TID) and a product identifier (EPC)
 – TID is fixed by the chip manufacturer
 – Electronic Product Code (EPC) identifies the individual object; not just the product type

• Most RAIN RFID chips, but not all, have a small amount of user memory
 – 512 bits is a lot, typically ≤ 64 bits
 – Some specialty chips provide ≥ 2k bits

• Current deployments are built around reading and writing product identifiers and/or small amounts of application data
Example RAIN RFID Applications

The diversity of RAIN RFID applications is rapidly increasing ...
What Could a RAIN RFID Chip Do?

• RAIN RFID capabilities are defined by the *over-the-air* protocol

• The revision of EPCglobal Gen2v1 to Gen2v2 brings 12 additional (optional) commands
 – Support for cryptographic solutions
 – Gen2v2.0.1 is available for download at www.gs1.org/epc-rfid

• Services such as tag/reader/mutual authentication and authenticated/encrypted communication are now possible
 – However Gen2v2.0.1 is crypto-agnostic so more work is needed

• ISO/IEC SC31 is working on a multi-part standard 29167-x
 – NIST and ISO/IEC SC27, among others, define cryptographic primitives
 – Goal is to integrate crypto technologies within Gen2v2.0.1
 – Includes a mix of encryption technologies
What Are The Issues?

• RAIN RFID is typically used for its low tag cost and long read-range

• RAIN RFID is *extremely* cost- and performance-sensitive and so adding any feature requires careful analysis

• Different use-cases may prioritize different performance attributes
 – *e.g.* sensitivity/read range, throughput, cost/area, security

• The deployment eco-system is complex
 – There are different chip vendors and different reader vendors
 – Different solution providers might address very different markets
 – Much more than just choosing an algorithm
First Steps

• The majority of chips by volume will continue to be simple “license-plate” models

• First generation RAIN RFID cryptographic chips are likely to support tag authentication
 – e.g. NXP UCODE DNA provides tag authentication using AES-128

• However more sophisticated chips will appear as the range of applications—and their security requirements—broaden
The Case for Lightweight Encryption

• For symmetric encryption 3DES and AES are excellent algorithms
 – But they bring a performance compromise to RAIN RFID

• Looking at alternatives currently provided in SC31 we see, for example, that ...
 – ... the total transaction time for block cipher-based tag authentication can be halved when using 29167-11 (PRESENT-80) instead of AES
 – ... secure channel solutions can be provided by 29167-13 (Grain-128a)

• 29167-11 and 29167-13 represent “first-generation” lightweight algorithms
 – Perhaps these are sufficient, perhaps other proposals offer more advantages

• Lightweight needn’t compromise security

• Providing the developer with sufficient implementation flexibility is key
The Case for Guidance from NIST

• There are many different initiatives to add cryptography to IoT applications
 – These are not always taking place where cryptographic expertise is available
 – Existing industry and standards bodies are not always well-equipped to deal with this

• Even something as simple as a technical survey that identifies – without formal approval – some “interesting” new designs could be helpful
 – A nudge to avoid people choosing poor or un-reviewed solutions

• At the other extreme, a full-scale competition has been successful in the past
 – Formulating the scope of such an effort would require some care (see over)
 – Likely too late for current/near-future products
 – However results would likely be of lasting value
Issues and Complexities

• Framing the parameters for a “competition” could be difficult
 – A block cipher? A stream cipher?
 – Asymmetric? Symmetric?

• To support what goals?
 – More than the primitive
 – e.g. symmetric-key authenticated encryption optimized for short payloads

• Evaluation parameters are hard to establish for the full generality of the “IoT”

• The most useful outcome could be a small portfolio of technologies addressing complementary parts of the IoT eco-system
Conclusions

• Billions of RAIN RFID tags will be sold this year
 – This is just one part of the IoT

• As deployments take hold and applications proliferate, the need for robust security with exceptional performance characteristics will grow

• There is a risk that “poor cryptography” will rush into the vacuum
 – Bad for everyone

• The expertise and reputation of NIST would be very beneficial in either guiding industry choice or in offering well-founded complements to existing standards