Thanks, But No Thanks
Current Cryptographic Standards Are Sufficient for Software
Dan Shumow
MSR Security and Cryptography Group
Microsoft Research
Introduction

• Disclaimer: I am a Software Developer, so this talk is from the software perspective.

• Goals
 • Identify and discuss what “lightweight cryptography” means in the context of the software development community.
 • Explain the conclusion that software does not require specialized lightweight cryptography standards.

• This is not an argument against a lightweight cryptography standard in general.
 • By removing software scenario from consideration, the design requirements for the standard can be most effectively focused on hardware use cases.
Outline

• Identify the Internet of Things (IoT) as the primary “lightweight cryptography” scenario in software.
• Brief overview of the current state of IoT security protocols.
• Discuss some of the problems with adding new cryptographic primitives.
• Conclusion for software: IoT does not require new cryptographic primitives.
Goal: Identify Lightweight Cryptography Scenarios

• From the description of this workshop: “NIST is currently investigating whether there is a need for NIST to standardize lightweight cryptography.”

• What does “lightweight” mean?
 • means different things in software and hardware.

• Potentially refers to:
 • Mobile platforms
 • Low powered RFID Cards
 • Microcontrollers
 • Dedicated hardware
 • Internet of Things (IoT)
 • ...
What counts as lightweight?
IoT Platforms

<table>
<thead>
<tr>
<th>Development Board</th>
<th>Processor</th>
<th>Memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beaglebone Black</td>
<td>1 GHz ARM Cortex-A8</td>
<td>512 MB</td>
</tr>
<tr>
<td>Raspberry Pi 2</td>
<td>900 MHz quad-core ARM Cortex-A7</td>
<td>1 GB</td>
</tr>
<tr>
<td>Raspberry Pi</td>
<td>700 MHz ARM</td>
<td>256 MB</td>
</tr>
<tr>
<td>Intel Galileo</td>
<td>400 MHz Intel Quark</td>
<td>256 MB</td>
</tr>
<tr>
<td>Arduino Due</td>
<td>84 MHz Cortex-M3</td>
<td>96 KB</td>
</tr>
<tr>
<td>Arduino Uno</td>
<td>16 MHz AVR (8 bit)</td>
<td>2 KB</td>
</tr>
</tbody>
</table>

This is a list of sample platforms and not meant to be exhaustive.
Computational Platforms by Power

What counts as lightweight?
IoT Protocols

• AllJoyn
 • Open Source project run by AllSeen Alliance.
 • Industry stakeholders include Qualcomm, Microsoft and AT&T.

• Iotivity
 • Open source project that has recently announced an association with the AllSeen Alliance.
 • Backed by the Open Interconnect Consortium
 • Industry stakeholders include Intel, Samsung and Cisco.

• Thread
 • Open protocol run by the Thread Group.
 • Industry stakeholders include ARM, Samsung and Qualcomm.
IoT Security Protocol

- **AllJoyn**
 - Protocol derived from TLS hand shake and message protocol.
 - Only asymmetric algorithms are negotiable, not authenticated encrypt.
- **Iotivity and Thread both rely on DTLS for security.**

Cryptographic Algorithms Used:

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Asymmetric</th>
<th>Bulk Encryption</th>
<th>Authentication</th>
</tr>
</thead>
<tbody>
<tr>
<td>AllJoyn</td>
<td>RSA, ECDSA/ECDHE P256</td>
<td>AES-CCM</td>
<td>AES-CCM</td>
</tr>
<tr>
<td>Iotivity</td>
<td>RSA, DSA/DHE, ECDSA/ECDHE (NIST Curves)</td>
<td>AES, AES-CCM, AES-GCM, 3DES</td>
<td>HMAC-SHA1, HMAC-SHA2</td>
</tr>
<tr>
<td>Thread</td>
<td>RSA, DSA/DHE, ECDSA/ECDHE (NIST Curves)</td>
<td>AES, AES-CCM, AES-GCM, 3DES</td>
<td>HMAC-SHA1, HMAC-SHA2</td>
</tr>
</tbody>
</table>
IoT Does Not Need Its Own Crypto Standards

• Any NIST standardization of cryptography for IoT is late to the party.
 • Current IoT protocols (AllJoyn, Thread, IoTivity) already use current cryptographic standards.
 • The protocols have already been deployed with existing algorithms. For backwards compatibility and interoperability these will need to remain in deployment.

• Current cryptographic standards work for IoT
 • Current standards are not a limit on IoT performance.
 • Perspective: Common IoT platforms are approximately as powerful as PCs from 15 years ago when AES was standardized.
Lightweight Crypto Standards: Why Not?

• We already have a set of cryptographic primitives.
 • Some may say *too many* cryptographic primitives.
 • Paradox of choice: more options is not necessarily better.

• Adding new standards can be problematic:
 • New standards, especially with lower key sizes could be used in scenarios where they aren’t intended.
 Example: Standardizing ECC over 160bit prime for an RFID card and it ends up being used for https; block cipher with 80bit key space ends up being used to encrypt hard drives.
 • Giving developers more choices can lead to security vulnerabilities.
 Example: MAC-then-Encrypt vs Encrypt-then-MAC
Computational Platforms by Flexibility

What does this have to do with lightweight cryptography?

Thanks, But No Thanks
Possible Overlap
Lightweight cryptography goes here
Conclusion For Lightweight Cryptography Standard

• The usage scenarios for lightweight cryptography are limited to non-existent for software platforms.
 • Developers already have too many choices for cryptography.
 • Current standards are good enough.

• This is not to say “No lightweight cryptography.”
 • “No lightweight cryptography in software.” (With a possible exception for Microcontrollers.)

• Any such standard should apply to hardware only.
 • Focus on hardware implementation for performance, side channel security etc.
 • Limit standards to apply only to low powered hardware platforms (RFID etc.)
Thank You