The Design Space of Lightweight Cryptography

Nicky Mouha

¹ESAT/COSIC, KU Leuven and iMinds, Belgium ²Project-team SECRET, Inria, France

NIST Lightweight Cryptography Workshop July 20, 2015

Lightweight Cryptography

What is Lightweight Cryptography?

- "Lightweight" vs "conventional" crypto
- Should not mean weak crypto

Lightweight Cryptography

What is Lightweight Cryptography?

- "Lightweight" vs "conventional" crypto
- Should not mean weak crypto

Focus on Three Topics

• Lightweight crypto is much more!

Lightweight Cryptography

What is Lightweight Cryptography?

- "Lightweight" vs "conventional" crypto
- Should not mean weak crypto

Focus on Three Topics

• Lightweight crypto is much more!

Main Focus: Symmetric-Key Crypto

• Maybe insights for other domains?

Three Topics

How to Measure Security

- Attack models
- Key, block and tag sizes

Three Topics

How to Measure Security

- Attack models
- Key, block and tag sizes

How to Measure Efficiency

- "Theoretical" vs "actual" efficiency
- Scaling law for symmetric-key crypto

Three Topics

How to Measure Security

- Attack models
- Key, block and tag sizes

How to Measure Efficiency

- "Theoretical" vs "actual" efficiency
- Scaling law for symmetric-key crypto

Picking the Right Tool for the Job

- Analyzing lightweight requirements
- Often wrong choices at protocol level!

Short Keys: Sometimes Okay?

Short Keys: Sometimes Okay?

• "The key is changed every half hour".

Short Keys: Sometimes Okay?

- "The key is changed every half hour".
- "The data is not worth a million dollars".

1

Short Keys: Sometimes Okay?

- "The key is changed every half hour".
- "The data is not worth a million dollars".

Statements: Often Heard, Seldom Refuted

Cell Phone Communication

- GSM
- A5/1 algorithm
- Key: 64 bits

Cell Phone Communication

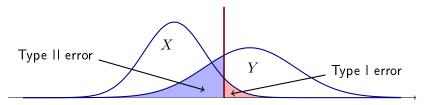
- GSM
- A5/1 algorithm
- Key: 64 bits

Nohl et al.

- Large precomputation (dozens of GPU years)
- Table of 1.6 TB
- Break in pprox 5 s on commodity hardware
- Data complexity: one 114-bit GSM burst

Information-Theoretic Framework

- Deterministic algorithms \rightarrow statistical objects
- Output: unknown until queried
- Computationally-unbounded adversaries

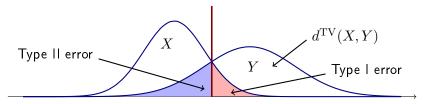


Information-Theoretic Framework

- Deterministic algorithms \rightarrow statistical objects
- Output: unknown until queried
- Computationally-unbounded adversaries

Hypothesis Test

• Distinguish between "real world" and "ideal world"



Information-Theoretic Framework

- Deterministic algorithms \rightarrow statistical objects
- Output: unknown until queried
- Computationally-unbounded adversaries

Hypothesis Test \rightarrow Total Variation Distance

• Distinguish between "real world" and "ideal world"

7

Example (Asiacrypt '14)

Let ${f D}$ be PA1-adversary for APE, ${f E}$ be plaintext extractor

$$\mathsf{PA1}_{\mathsf{APE}}^{\mathbf{E}}(\mathbf{D}) \leq \frac{\sigma^2}{2^{r+c}} + \frac{2\sigma(\sigma+1)}{2^c}$$

(σ : total # blocks of all queries, r: rate, c: capacity)

7

Example (Asiacrypt '14)

Let ${f D}$ be PA1-adversary for APE, ${f E}$ be plaintext extractor

$$\mathsf{PA1}_{\mathsf{APE}}^{\mathbf{E}}(\mathbf{D}) \leq \frac{\sigma^2}{2^{r+c}} + \frac{2\sigma(\sigma+1)}{2^c}$$

(σ : total # blocks of all queries, r: rate, c: capacity)

Interpretation

- Upper bound on success probability of any attack
- "Secure up to about $\sigma = 2^{c/2}$ blocks"

Types of Queries

- Data complexity (D): access to device under attack (under *any* key?)
- Time complexity (T): knowledge of the algorithm (Kerckhoffs's principle)

Types of Queries

- Data complexity (D): access to device under attack (under *any* key?)
- Time complexity (T): knowledge of the algorithm (Kerckhoffs's principle)
- Attacks with rekeying: often overlooked (CRYPTO '15)

Types of Queries

- Data complexity (D): access to device under attack (under *any* key?)
- Time complexity (T): knowledge of the algorithm (Kerckhoffs's principle)
- Attacks with rekeying: often overlooked (CRYPTO '15)

Do Not Use:

- Short keys: see earlier (GSM)
- Short blocks: degrades security of mode of operation
- Short tags: tag guessing (works regardless of rekeying!)

How to Measure Efficiency

Examples of Efficiency Metrics

- # modular exponentiations
- # block cipher calls / plaintext block
- # permutation calls / message block

How to Measure Efficiency

Examples of Efficiency Metrics

- # modular exponentiations
- # block cipher calls / plaintext block
- # permutation calls / message block

Scaling Law

- More refined metric for symmetric-key crypto
- Better understanding of lightweight

Scaling Law

"When the input size of a symmetric-key primitive doubles, the number of operations (roughly) doubles as well".

Scaling Law

"When the input size of a symmetric-key primitive doubles, the number of operations (roughly) doubles as well".

Remarks

- Not intuitive: $b \rightarrow b$ bits: $(2^b)^{2^b} = 2^{b2^b}$ functions
- Not rigorous: based on design choices and attacks
- How to count "operations"?

Scaling Law

"When the input size of a symmetric-key primitive doubles, the number of operations (roughly) doubles as well".

Remarks

- Not intuitive: $b \rightarrow b$ bits: $(2^b)^{2^b} = 2^{b2^b}$ functions
- Not rigorous: based on design choices and attacks
- How to count "operations"?

Next Slides: Scaling Law Examples

Scaling Law: Fixed Word Size

PHOTON: 4-bit Words

- 100/144/196/256-bit permutation: 12 rounds
- (288-bit permutation: 12 rounds, but 8-bit word size)

Scaling Law: Fixed Word Size

PHOTON: 4-bit Words

- 100/144/196/256-bit permutation: 12 rounds
- (288-bit permutation: 12 rounds, but 8-bit word size)

Rijndael (256-bit key): 8-bit Words

• 128/192/256-bit block size: 14 rounds

Scaling Law: Fixed Word Size

PHOTON: 4-bit Words

- 100/144/196/256-bit permutation: 12 rounds
- (288-bit permutation: 12 rounds, but 8-bit word size)

Rijndael (256-bit key): 8-bit Words

• 128/192/256-bit block size: 14 rounds

Skein: 64-bit Words

- 256/512-bit block/key size: 72 rounds
- 1024-bit block/key size: 80 rounds
- Overdesign? Best (non-biclique) attack is on 36 rounds (Yu et al., SAC '13)

Scaling Law: Variable Word Size

BLAKE

- 960-to-256-bit: 14 rounds (32-bit words)
- 1920-to-512-bit: 16 rounds (64-bit words)

Scaling Law: Variable Word Size

BLAKE

- 960-to-256-bit: 14 rounds (32-bit words)
- 1920-to-512-bit: 16 rounds (64-bit words)

SHA-2

- SHA-256: 768-to-256-bit: 64 rounds (32-bit words)
- SHA-512: 1536-to-512 bit: 80 rounds (64-bit words)

Scaling Law: Variable Word Size

2

BLAKE

- 960-to-256-bit: 14 rounds (32-bit words)
- 1920-to-512-bit: 16 rounds (64-bit words)

SHA-2

- SHA-256: 768-to-256-bit: 64 rounds (32-bit words)
- SHA-512: 1536-to-512 bit: 80 rounds (64-bit words)

Keccak

- 800-bit permutation: 22 rounds (32-bit words)
- 1600-bit permutation: 24 rounds (64-bit words)
- Note: zero-sum distinguisher for full-round 1600-bit permutation (Boura et al., Duan-Lai)

Grøstl

- 512-bit permutation: 10 rounds
- 1024-bit permutation: 14 rounds

Grøstl

- 512-bit permutation: 10 rounds
- 1024-bit permutation: 14 rounds
- If 15 rounds: three n-bit or one 2n-bit: same cost

Grøstl

- 512-bit permutation: 10 rounds
- 1024-bit permutation: 14 rounds
- If 15 rounds: three *n*-bit or one 2*n*-bit: same cost
- Best attacks: resp. 9/10 rounds (Jean et al., FSE '12)

Grøstl

- 512-bit permutation: 10 rounds
- 1024-bit permutation: 14 rounds
- If 15 rounds: three *n*-bit or one 2*n*-bit: same cost
- Best attacks: resp. 9/10 rounds (Jean et al., FSE '12)

Spongent

- b-bit permutation, r=b/2 rounds, b/4 S-boxes/round: $b^2/8$ S-boxes in total

Grøstl

- 512-bit permutation: 10 rounds
- 1024-bit permutation: 14 rounds
- If 15 rounds: three *n*-bit or one 2*n*-bit: same cost
- Best attacks: resp. 9/10 rounds (Jean et al., FSE '12)

Spongent

- b-bit permutation, r=b/2 rounds, b/4 S-boxes/round: $b^2/8$ S-boxes in total
- Four *n*-bit or one 2*n*-bit permutation: same cost

Grøstl

- 512-bit permutation: 10 rounds
- 1024-bit permutation: 14 rounds
- If 15 rounds: three *n*-bit or one 2*n*-bit: same cost
- Best attacks: resp. 9/10 rounds (Jean et al., FSE '12)

Spongent

- b-bit permutation, r=b/2 rounds, b/4 S-boxes/round: $b^2/8$ S-boxes in total
- Four n-bit or one 2n-bit permutation: same cost
- 272-bit Spongent: 5x lower throughput than 256-bit PHOTON (Bogdanov et al., IEEE Trans. Comp. 2013)

Picking the Right Tool for the Job

Targets

- Hardware area or code size, RAM, ROM
- Latency, throughput, power and/or energy
- Secure implementation!

Picking the Right Tool for the Job

Targets

- Hardware area or code size, RAM, ROM
- Latency, throughput, power and/or energy
- Secure implementation!

Considerations

- Collision resistance needed?
- Ciphertext expansion? Computation vs communication
- Misuse resistance?

Picking the Right Tool for the Job

Targets

- Hardware area or code size, RAM, ROM
- Latency, throughput, power and/or energy
- Secure implementation!

Considerations

- Collision resistance needed?
- Ciphertext expansion? Computation vs communication
- Misuse resistance?

Goal of Lightweight Crypto

- When standard solutions fail to satisfy constraints
- Not less secure, but using new academic insights
- Most widely usable algorithm that satisfies all constraints

Conclusion

What is Lightweight Cryptography?

- Not "weak crypto"
- Do not use short key/block/tag sizes

Conclusion

What is Lightweight Cryptography?

- Not "weak crypto"
- Do not use short key/block/tag sizes

Focus on Three Topics

- Security model: T and D queries, rekeying
- Scaling law: data doubles: computation doubles
- Match algorithm with application

Conclusion

What is Lightweight Cryptography?

- Not "weak crypto"
- Do not use short key/block/tag sizes

Focus on Three Topics

- Security model: T and D queries, rekeying
- Scaling law: data doubles: computation doubles
- Match algorithm with application

Questions?

