NIST Lightweight Cryptography Workshop 2015
Session VlI: Implementations & Performance

Performance of State-of-the-Art Cryptography
on ARM-based Microprocessors

Hannes Tschofenig & Manuel Pegourie-Gonnard
(Hannes.Tschofenig@arm.com, Manuel.Pegourie-Gonnard@arm.com)

Presented by Hugo Vincent (Hugo.Vincent@arm.com)

loT Business Unit
Tuesday, July 21,2015

The Architecture for the Digital World® ARM

mailto:Hugo.Vincent@arm.com
mailto:Manuel.Pegourie-Gonnard@arm.com
mailto:Hannes.Tschofenig@arm.com

Outline

= Why does ARM care about crypto performance!

ARM Cortex-M vs. Cortex-A Class processors.
Short overview of the Cortex-M processor family.

Internet of Things — a world full of constraints.

= Performance of crypto on Cortex-M class processors

Assumptions

Hardware used for measurement
Symmetric Key Cryptography

Public Key Crypto (with different curves)
Cortex-M3/M4 Performance
Cortex-M0/M0+ Performance
Curve25519

RAM Usage

Applying Results to TLS/DTLS

= Conclusion & Next Steps

2

ARM

Why does ARM care about Crypto Performance!

ARM

ARM Processors in Smartphones

= ARM Cortex-A family:

= Applications processors
for feature-rich OS and
3rd party applications

= ARM Cortex-R family:

= Embedded processors
for real-time signal
processing, control
applications

= ARM Cortex-M family:

= Microcontroller-
oriented processors for
MCU, ASSP, and SoC

applications

Cortex

Lerw-Pewer Leadership fram ARM

NFC
SecurCore® SC300™

WiFi-Bluetooth
Cortex®-M3

Cortex-R4

Cellular Modem Artis an

Cortex-R4 Advanced Physical IP by ARM
Cortex-R5
Cortex-R7

Sensor Hub
Cortex-M3

li
-mail

AW N sual Computing by ARM

Cortex-M4

Apps Processor
Cortex-A5 MPCore

Cortex-A7 MPCore

Cortex-A9 MPCore

Cortex-A15 MPCore
Mali™ Graphics

Flash Controller
Cortex-M3

Touchscreen Controller
Cortex-M0

Power Mgmt
Cortex-M3

TrustZone*

System Security by ARM

ARM

NEON™

Cortex-M Processors ARM® Cortex®-M7

ARM® Cortex®-M4

3

ARM® Cortex®-M3

Maximum Performance
Flexible Memory Cache

Digital Signal Control (DSC)/ Single & Double Precision FP

Examples: Automotive,

ARM® Cortex®-M0+

Processor with DSP High-end audio set
ARM Accelerated SIMD
Performance & efficiency Floating point (FP)
Feature rich connectivity Example: Sensor fusion,

motor control

Example: Weables,
Lowest power Activity trackers, Wifi receiver
Outstanding energy efficiency

Example: Sensor node
Bluetooth Smart

Lowest cost

Low power ARMvV7-M ISA

Example: Touchscreen

Controller

ARMv6-M Instruction Set Architecture (ISA) ARM

ARM

ARM powered chips shipped by our partners,
we're helping power more and more applications worldwide.

Strong and Consistent Growth Over 10 Billion

s 1
S I n C e I 99 3 ARM-powered chips :
shipped in 2013 alone. :

|

1

This curve shows overall shipments leading
to the 50 billion milestone. There’s been an
upward trend as shipments skyrocketed in

recent years.

....................................

ARM

Wide Range of Constraints

Constrained Node

Constraints may include:

Constrained Networks

Constraints may include:

o constraints on the maximum code complexity (ROM/Flash), o low a;hievable bitrate/throughput (including limits on duty
cycle),
o constraints on the size of state and buffers (RAM), .) . .
o high packet loss and high variability of packet loss (delivery
o constraints on the amount of computation feasible in a period of rate),
time ("processing power"),
o highly asymmetric link characteristics,
o constraints on the available power, and
o severe penalties for using larger packets (e.g., high packet loss
o constraints on user interface and accessibility in deployment due to link-layer fragmentation),
(ability to set keys, update software, etc.).

o limits on reachability over time (a substantial number of devices
may power off at any point in time but periodically "wake up" and
can communicate for brief periods of time), and

o lack of (or severe constraints on) advanced services such as IP
multicast.

Text copied from RFC 7228 “Terminology for Constrained-Node Networks” RM
8 “!\

Assumptions

= Main focus of the measurements so far was on
= Raw crypto primitive performance, not on protocol exchanges

= Asymmetric crypto: ECC (with several curves) rather than RSA
= Symmetric crypto

= Run-time performance (not energy consumption, RAM usage, code size)
= No hardware acceleration was used, pure software
= Used open source software; code based on PelarSSE mbed TLS stack.

* No hardware-based random number generator in the development
platform was used = Not fit for real deployment.

: ARM

Prototyping Boards used in Performance Tests

= ST Nucleo F401RE (STM32F401RET6)
= ARM Cortex-M4 CPU with FPU at 84MHz
= 5]2KB Flash, 96KB SRAM
= ST Nucleo FI103 (STM32FI03RBT6)
= ARM Cortex-M4 CPU with FPU at 72MHz
= |28KB Flash, 20KB SRAM
= ST Nucleo LI152RE (STM32LI52RET6)
= ARM Cortex-M3 CPU at 32MHz
= 512 KBytes Flash, 80KB RAM
= ST Nucleo FO091 (STM32F091RCT6)
= ARM Cortex-M0 CPU at 48MHz
= 256 KBytes Flash, 32KB RAM
= NXPLPCI1768
= ARM Cortex-M3 CPU at 96MHz
= 5]2KB Flash, 32KB RAM
= Freescale FRDM-KL25Z
= ARM Cortex-M0+ CPU at 48MHz
= |28KB Flash, |6KB RAM

Enabled

=4

0 LPC1768

Symmetric Key Cryptography

ARM

Symmetric Key Cryptography

= Secure Hash Algorithm (SHA) creates a fixed length fingerprint based on an arbitrarily long input.The
output length of the fingerprint is determined by the hash function itself. For example, SHA256 produces

an output of 256 bits.
= Advanced Encryption Standard (AES) is an encryption algorithm, which has a fixed block size of 128 bits,
and a key size of 128, 192, or 256 bits.

= A mode of operation describes how to repeatedly apply a cipher's single-block operation to securely transform

amounts of data larger than a block.
Examples of modes of operation: CCM, GCM, CBC.

= Test relevant information:

SHA computes a hash over a buffer with a length of 1024 bytes.
AES-CBC: 1024 input bytes are encrypted. No integrity protection is used. |V size is |16 bytes.

AES-CCM and AES-GCM: 1024 input bytes are encrypted and integrity protected. No additional data is used. In
this version of the test a |12 bytes nonce value is used together with the input data. In addition to the encrypted

data a |16 byte tag value is produced.

ARM

Symmetric Key Crypto: Performance of the LPC1768

2.5

N
a1

Time (msec)

N

0.5

0.6

SHA-256

SHA-512

AES-
CBC-128

AES-
CBC-192

AES- AES- AES-
CBC-256 GCM-128 GCM-192

Cryptographic Operation

AES-
GCM-256

AES-
CCM-128

AES-
CCM-192

AES-
CCM-256

ARM

Public Key Cryptography

ARM

ECC Curves

= NIST curves: secp52Irl, secp384rl, secp256rl, secp224rl,
secp|92rl

= “Koblitz curves™: secp256kl, secp224kl, secp|92k|

= Brainpool curves: brainpoolP512r |, brainpoolP384r 1,
brainpoolP256r |

= Curve25519 (only preliminary results).

" Note that FIPS186-4 refers to secp192r| as P-192, secp224r| as P-224,
secp256r| as P-256, secp384r| as P-384,and secp52Irl as P-521.

. ARM

Optimizations

NIST Optimization
= Utilizes special structure of NIST chosen curves.
= Appendix | of http://csrc.nist.gov/groups/ST/toolkit/documents/dss/NISTReCur.pdf
= Longer version in FIPS PUB [86-4:
= http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS. | 86-4.pdf
= Relevant configuration parameter: POLARSSL_ECP_NIST_OPTIM
Fixed Point Optimization:
= Pre-computes points
= Described in https://eprint.iacr.org/2004/342.pdf
= Relevant configuration parameter: POLARSSL_ECP_FIXED POINT_OPTIM

* Window:
= Technique for more efficient exponentation

= Sliding window technique described in https://en.wikipedia.org/wiki/Exponentiation_by squaring
= Relevant configuration parameter: POLARSSL _ECP_WINDOW_SIZE (min=2, max=7).

. ARM

https://en.wikipedia.org/wiki/Exponentiation_by_squaring
https://eprint.iacr.org/2004/342.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
http://csrc.nist.gov/groups/ST/toolkit/documents/dss/NISTReCur.pdf

ECDSA, ECDHE, and ECDH

= Elliptic Curve Digital Signature Algorithm (ECDSA) is the elliptic curve variant of the
Digital Signature Algorithm (DSA) or, as it is sometimes called, the Digital Signature
Standard (DSS).

= |tis used in TLS_ECDHE_ ECDSA WITH_AES 128 CCM_8 ciphersuite
recommended in CoAP (and consequently also in the DTLS profile draft).

= ECDSA, like DSA, has the property that poor randomness used during signature
generation can compromise the long-term signing key.

= For this reason the deterministic variant of (EC)DSA (RFC 6979) is implemented, which uses the
private key as a source or “entropy” to seed a PRNG.

= Note: Some of the prototyping boards used here provide true random number generation in
hardware, but this hardware was not used in this work.

= CoAP recommends this ciphersuite TLS ECDHE _ECDSA WITH_AES 128 CCM_8
that makes use of the Ephemeral Elliptic Curve Diffie-Hellman (ECDHE).

= The Elliptic Curve Diffie-Hellman (ECDH) is only used for comparison purposes in this slide deck
but not used in the recommended ciphersuites.

; ARM

Key Length

= Tradeoff between security and performance.
= Values based on recommendations from RFC 4492.
= RFC 7525 recommends at least | |2 bits symmetric keys.

= The 2013 ENISA report states that an 80bit symmetric key is sufficient for legacy
applications but recommends 128 bits for new systems.

Symmetric ECC DH/DSA/RSA
80 163 1024
| 12 233 2048
128 283 3072
192 409 7680
256 571 15360

. ARM

Performance Figures: A few notes

= ECDSA signature operation is faster than ECDSA verify operation.

= Brainpool curves are much slower than NIST curves because Brainpool
curves use random primes.

= ECC key sizes above 256 bits are substantially slower than ECC curves
with key size 192,224, and 256.

= ECDH is only slightly faster than ECDHE
(when fixed point optimization is enabled).

= CPU speed has a significant impact on the performance.

, ARM

Observations: Optimizations

= NIST curve optimization provides substantial benefit for NIST
secp®r| curves.

= Fixed point optimization has a significant influence on the
performance.

= There is a performance — RAM usage tradeoff: increased
performance comes at the expense of additional RAM usage.

= ECC library increases code size but also requires a fair amount of
RAM for optimizations (for most curves).

. ARM

ECC Performance of the Cortex M3/M4

ARM

Time (msec)
800 1000 1200 1400

600

400

Performance difference between signature vs. verify

ECDSA Performance (Verify Operation, LPC1 W=7)

1414

For comparison:

secp256r1 (signature)
needs 122msec.

806

For comparison:

secp192r1 (signature)
needs 66msec.

488
458

400

325 329

251

T T T T T T T T
secp192k1 secp192r1 secp224k1 secp224r1 secp256k1 secp256r1 secp384r1 secp521r1

Curves

ECC Performance of the Cortex M0O/M0O+

ARM

Time (msec)

6000

5000

4000

3000

2000

1000

ECDHE Handshake Performance (STM F091, W=7, NIST optimization enabled)
+ FP optimization enabled

1070

796

1404

1785

1119

1672

3254

6537

T
secp192k1

T
secp192r1

T
secp224k1

T T
secp224r1 secp256k1

Curves

T
secp256r1

T
secp384r1

T
secp521r1

Time (msec)

1600

1400

1200

1000

800

600

400

200

ECDSA Performance (Sign Operation, STM F091, W=7, NIST optimization enabled)
+ FP optimization enabled

291

225

375

486

307

459

811

1602

I
secp192k1

I
secp192r1

I
secp224k1

I |
secp224r1 secp256k1

Curves

I
secp256r1

I
secp384r1

|
secp521r1

Time (msec)

6000

5000

4000

3000

2000

1000

ECDSA Performance (Verify Operation, STM F091, W=7, NIST optimization enabled)
+ FP optimization enabled

1131

845

1461

1872

1185

1759

3361

6693

T
secp192k1

T
secp192r1

T
secp224k1

T T
secp224r1 secp256k1

Curves

T
secp256r1

T
secp384r1

T
secp521r1

CPU Speed Impact

ARM

Performance of ECDHE: LI52RE vs. LPC|768

L152RE: LPC1768:
Cortex-M3 with 32MHz Cortex-M3 with 96MHz
ECDHE Handshake Performance (L152RE , W=7) ECDHE Handshake Performance (LPC1768, W=7)

111111111111111111111111111

secp192r1 (ECDHE):

1155 msec (L152RE) vs. 229 msec (LPC1768)

-8 NIST optimization enabled. A R M

Fixed-point speed-up enabled.

Performance Comparison: Prototyping Boards

ECDSA Performance (Signature Operation, w=7, NIST Optimization Enabled)

2000.00
1800.00
1600.00
5 1400.00 Osecp192r1
& 120000 Bsecp224r1
g 1000.00 Osecp256r1
= 800.00 Osecp384r1
600.00 Bsecp521r1
400.00
200.00]
000 | =i I | :- | i

LPC1768, 96 MHz, Cortex L152RE, 32 MHz, Cortex = F103RB, 72 MHz, Cortex = F401RE, 84 MHz, Cortex
M3 M3 M4 M4

Prototyping Boards RM
29 A

30

Curve25519

(Warning: Preliminary Results)

ARM

FRDM-KL46Z (Cortex-M0+, 48 MHz)

1600

1400 -

1200 -

1000 -

800 -

msec

600 -

400 -

200 -

0 -
Curve25519-mbedtls

Curve25519-donna

P256-mbed

|ECDHE 1458

552

1145

Notes:

The Curve25519-mbedtls implementation uses a generic
libary. Hence, the special properties of Curve25519 are not

utilized.

Curve25519 has very low RAM requirements (~| Kbyte only).

Curve25519-donna is based on the Google implementation.
Improvements for MO/M0O+ are likely since the code has not
been tailored to the architecture.

Question: Is Curve25519 a way to get ECC on MO/M0+!?

700

600 -

500 -

msec

300 -

200 -

100 -

LPC1768 (Cortex-M3,96 MHz)

400 -

Curve25519-mbedtls

.

Curve25519-donna

P256-mbed

|ECDHE

598

94

432

600

500 -

400 -

msec

200 -

100 -

FRDM-Ké64F (Cortex-M4, 120 MHz)

300 -

Curve25519-mbedtls

I

Curve25519-donna

P256-mbed

|ECDHE

506

58

391

The Power of Assembly Optimizations

= Example: micro-ecc library
= https://github.com/kmackay/micro-ecc/tree/old

= Written in C, with optional inline assembly for ARM and Thumb platformes.
= LPCI 114 at 48MHz (ARM Cortex-M0)

ECDH time (ms) secpl92rl secp256rl|

ECDSA verify time (ms) secp|92rl Secp256rl
LPCI | 14 175.7 465.1 LPC1114 217.1 555.2
STM32F091 604,55 1260.9 STM32F09| 8455 1758.8

= Performance improvement between 200 and 300 % ARM

32

RAM Usage

ARM

What was measured?

= Heap using a custom memory allocation handler (instead of malloc).
= Memory allocated on the stack was not measured (but it is negligible).

= Measurement was done on a Linux PC (rather than on the embedded
device itself) for convenience reasons.

= Two aspects investigated:

= Memory impact caused by different window parameter changes.
= Memory impact caused by FP performance optimization.

. ARM

Summary

= To enable certain optimizations sufficient RAM is needed. A tradeoff decision between

RAM and speed.
= Optimizations pays off.

Heap Usage (secp256rl,LPCI1768)

6000

= This slide shows
heap usage 5000

(NIST optimization

enabled). 4000 -

Bytes

2000 -

1000 -

3000 -

ECDSA-Sign ECDSA-Verify ECDHE

= W=6, FP

B 'W=2,No FP

35

4568 5380 50
2972 3072

4000

Performance (secp256r|,LPC1768)

3500

3000

2500

2000

é 1500

£ 1000

500

O _
ECDSA-Sign ECDSA-Verify ECDHE

B w=6, FP NIST 122 458 43|
B w=6, no FP, NIST 340 677 644
“w=2,no FP NIST 378 759 734
®w=2,no FP. no NIST 1893 3788 378l

Using ~50 % more RAM increases the performance by a factor 8 or more.

36

ARM

Applying Results to TLS/DTLS

ARM

Raw Public Keys with TLS_ ECDHE_ECDSA_*

= TLS/DTLS 1.2 client needs to perform the following computations:

|. Client verifies the signature covering the Server Key Exchange message that contains the server's
ephemeral ECDH public key (and the corresponding elliptic curve domain parameters).

2. Client computes ECDHE.

3. Client creates signature over the Client Key Exchange message containing the client's ephemeral
ECDH public key (and the corresponding elliptic curve domain parameters).

= Summary:
= | x ECDSA verification for step (1)
= | x ECDHE computation for step (2)
= | x ECDSA signature for step (3)
= Example (LPC1768, secp224r|,W=7, FP and NIST optimization enabled)
= 329 msec (ECDSA verification)
= 303 msec (ECDHE computation)
= 85 msec (ECDSA signature)
Total: 717 msec

, ARM

Applying Results to TLS/DTLS
Certificates with TLS ECDHE ECDSA _*

Same as with raw public key plus
(assuming no OCSP and certs are signed with ECC certificates)

CA
Certificate

(
[
[
|
[
—————————————————— \ I
[[
[I . . .
CA B Intermediate CA |akidebtuiissmiv
Certificate ! ifi feate
: I Certificate CA certificate
I |
| : : | x ECDSA verification
| x ECDSA verification for server
Se_rYer for server certificate : : Server certificate
Certificate L Certificate
[[
|
~ _39 ________________ /I N\

M S EEE BEE BN BEEE BEEE BEEE BEEE NS B B B G S S S e e e

e TEm Em o o EE EE S S O RN M M M O R M M M R D E

Certificate

1st Intermediate
CA Certificate

2"d Intermediate
CA Certificate

Server

Certificate

| x ECDSA
verification
for Ist
Intermediate CA
certificate

| x ECDSA
verification
for 2nd
Intermediate CA
certificate

| x ECDSA

AARM

Conclusion

= Block ciphers, hashes, MACs are fast enough already, and often hardware-
accelerated in practice anyway.

= ECC requires performance-demanding computations. Those take time.
* What an acceptable delay is depends on the application.

= Many applications only need to run public key cryptographic operations during the initial
(session) setup phase and infrequently afterwards.

= With DTLS/TLS session resumption symmetric key cryptography is most of the time
(which is lightning fast).
* Detailed performance figures depend on the enabled performance optimizations
(and indirectly the available RAM size), the key size, the type of curve, and CPU
speed.

= Choosing the MCU based on the expected usage environment is important.

; ARM

