
 

 
   

 
     

 
 
 
   
 

     

 
   

 
  

   

NIST Lightweight Cryptography Workshop 2015 
Session VII: Implementations & Performance 

Performance of State-of-the-Art Cryptography 
on ARM-based Microprocessors 

Hannes Tschofenig & Manuel Pegourie-Gonnard 
(Hannes.Tschofenig@arm.com, Manuel.Pegourie-Gonnard@arm.com) 

Presented by Hugo Vincent (Hugo.Vincent@arm.com) 

IoT Business Unit 
Tuesday, July 21, 2015 

1 

mailto:Hugo.Vincent@arm.com
mailto:Manuel.Pegourie-Gonnard@arm.com
mailto:Hannes.Tschofenig@arm.com


 

     
         
     
        

      
   
   
 
    
 
 
 
    
     

   

 Outline
 
§ Why does ARM care about crypto performance? 

§ ARM Cortex-M vs. Cortex-A Class processors. 
§ Short overview of the Cortex-M processor family. 
§ Internet of Things – a world full of constraints. 

§ Performance of crypto on Cortex-M class processors 
§ Assumptions 
§ Hardware used for measurement 
§ Symmetric Key Cryptography 
§ Public Key Crypto (with different curves) 
§ Cortex-M3/M4 Performance 
§ Cortex-M0/M0+ Performance 
§ Curve25519 
§ RAM Usage 
§ Applying Results to TLS/DTLS 

§ Conclusion & Next Steps 
2 



 

    Why does ARM care about Crypto Performance?
 

3 



 

   

    

    
 

  

    

    
 

  
 

     

 
  

    
  

ARM Processors in Smartphones
 

§ ARM Cortex-A family: 

§ Applications processors 
for feature-rich OS and 
3rd party applications 

§ ARM Cortex-R family: 

§ Embedded processors 
for real-time signal 
processing, control 
applications 

§ ARM Cortex-M family: 

§ Microcontroller-
oriented processors for 
MCU, ASSP, and SoC 
applications 

4 



 

  

  
  
   

 
 

 

  
  

   
  

 

  
  

   

    

 
  

 
  

    
 

 
   

   
  

  

   

 

Cortex-M Processors
 

Maximum Performance
 
Flexible Memory Cache
 

Single & Double Precision FP
 
Examples: Automotive,
 

High-end audio set
 

Digital Signal Control (DSC)/
 
Processor with DSP
 
Accelerated SIMD
 
Floating point (FP)
 

Example: Sensor fusion, 
motor control 

Performance & efficiency

Feature rich connectivity
 

Example: Weables,
 

Activity trackers, Wifi receiver
 Lowest power

Outstanding energy efficiency
 

Example: Sensor node
 
Bluetooth Smart
 Lowest cost
 

Low power
 
Example:Touchscreen
 

Controller
 

ARMv7-M ISA
 

ARMv6-M Instruction Set Architecture (ISA) 

5 



 
6 



 
7 



 

 

      

     

Wide Range of Constraints
 

Constrained Node Constrained Networks
 

Text copied from RFC 7228 “Terminology for Constrained-Node Networks” 

8 



 

       
       
     
    
      

      
        
    

      

 Assumptions
 

§ Main focus of the measurements so far was on 
§ Raw crypto primitive performance, not on protocol exchanges 
§ Asymmetric crypto: ECC (with several curves) rather than RSA 
§ Symmetric crypto 
§ Run-time performance (not energy consumption, RAM usage, code size) 

§ No hardware acceleration was used, pure software 
§ Used open source software; code based on PolarSSL mbed TLS stack. 
§ No hardware-based random number generator in the development 

platform was used à Not fit for real deployment. 

9 



 

    
      

   
    

      
   
    

      
   
     

      
   
     

    
   
    

    
   
    

  

 
 

10 

Prototyping Boards used in Performance Tests 
§ ST Nucleo F401RE (STM32F401RET6) 

§ ARM Cortex-M4 CPU with FPU at 84MHz 
§ 512KB Flash, 96KB SRAM 

§ ST Nucleo F103 (STM32F103RBT6) 
§ ARM Cortex-M4 CPU with FPU at 72MHz 
§ 128KB Flash, 20KB SRAM 

§ ST Nucleo L152RE (STM32L152RET6) 
§ ARM Cortex-M3 CPU at 32MHz 
§ 512 KBytes Flash, 80KB RAM 

§ ST Nucleo F091 (STM32F091RCT6) 
§ ARM Cortex-M0 CPU at 48MHz 
§ 256 KBytes Flash, 32KB RAM 

§ NXP LPC1768 
§ ARM Cortex-M3 CPU at 96MHz 
§ 512KB Flash, 32KB RAM 

§ Freescale FRDM-KL25Z 
§ ARM Cortex-M0+ CPU at 48MHz 
§ 128KB Flash, 16KB RAM 

ST Nucleo 

LPC1768 
FRDM-KL25Z 



 

 Symmetric Key Cryptography
 

11 



 

 

         
     

  
                

        
         

     
        

    
       
           
              

        
       

Symmetric Key Cryptography
 

§ Secure Hash Algorithm (SHA) creates a fixed length fingerprint based on an arbitrarily long input.The 
output length of the fingerprint is determined by the hash function itself. For example, SHA256 produces 
an output of 256 bits. 

§ Advanced Encryption Standard (AES) is an encryption algorithm, which has a fixed block size of 128 bits, 
and a key size of 128, 192, or 256 bits. 

§ A mode of operation describes how to repeatedly apply a cipher's single-block operation to securely transform 
amounts of data larger than a block. 

§ Examples of modes of operation: CCM, GCM, CBC. 

§ Test relevant information: 
§ SHA computes a hash over a buffer with a length of 1024 bytes. 
§ AES-CBC: 1024 input bytes are encrypted. No integrity protection is used. IV size is 16 bytes. 
§ AES-CCM and AES-GCM: 1024 input bytes are encrypted and integrity protected. No additional data is used. In 

this version of the test a 12 bytes nonce value is used together with the input data. In addition to the encrypted 
data a 16 byte tag value is produced. 

12 



 

  

  
         

 

  

2.5 

Symmetric Key Crypto: Performance of the LPC1768
 

2 
2 1.9 1.9 

1.8 
1.7 

Ti
m

e 
(m

se
c)

 

1.5 1.4 

0.5 

1 

0.6 
0.7 

0.8 
0.9 

0 
SHA-256 SHA-512 AES-

CBC-128 
AES-

CBC-192 
AES-

CBC-256 
AES-

GCM-128 
AES-

GCM-192 

Cryptographic Operation 

AES-
GCM-256 

AES-
CCM-128 

AES-
CCM-192 

AES-
CCM-256 

13 

2.1 



 

 Public Key Cryptography
 

14 



 

 

       

      
      

   

        
        

ECC Curves 

§ NIST curves: secp521r1, secp384r1, secp256r1, secp224r1, 
secp192r1 

§ “Koblitz curves”: secp256k1, secp224k1, secp192k1 
§ Brainpool curves: brainpoolP512r1, brainpoolP384r1, 

brainpoolP256r1 
§ Curve25519 (only preliminary results). 

§ Note that FIPS186-4 refers to secp192r1 as P-192, secp224r1 as P-224, 
secp256r1 as P-256, secp384r1 as P-384, and secp521r1 as P-521. 

15 



 

 

 
      
    
   
   
    

    
     
     
     

   
   
       
       

Optimizations
 

§ NIST Optimization 
§ Utilizes special structure of NIST chosen curves. 
§ Appendix 1 of http://csrc.nist.gov/groups/ST/toolkit/documents/dss/NISTReCur.pdf 
§ Longer version in FIPS PUB 186-4: 
§ http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf 
§ Relevant configuration parameter: POLARSSL_ECP_NIST_OPTIM 

§ Fixed Point Optimization: 
§ Pre-computes points 
§ Described in https://eprint.iacr.org/2004/342.pdf 
§ Relevant configuration parameter: POLARSSL_ECP_FIXED_POINT_OPTIM 

§ Window: 
§ Technique for more efficient exponentation 
§ Sliding window technique described in https://en.wikipedia.org/wiki/Exponentiation_by_squaring 
§ Relevant configuration parameter: POLARSSL_ECP_WINDOW_SIZE (min=2, max=7). 

16 

https://en.wikipedia.org/wiki/Exponentiation_by_squaring
https://eprint.iacr.org/2004/342.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
http://csrc.nist.gov/groups/ST/toolkit/documents/dss/NISTReCur.pdf


 

     

     
        

  
    

      
        

   
       

        
      

       
     

    
       

    

ECDSA, ECDHE, and ECDH
 

§ Elliptic Curve Digital Signature Algorithm (ECDSA) is the elliptic curve variant of the 
Digital Signature Algorithm (DSA) or, as it is sometimes called, the Digital Signature 
Standard (DSS). 

§ It is used in TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8 ciphersuite 
recommended in CoAP (and consequently also in the DTLS profile draft). 

§ ECDSA, like DSA, has the property that poor randomness used during signature 
generation can compromise the long-term signing key. 
§ For this reason the deterministic variant of (EC)DSA (RFC 6979) is implemented, which uses the 

private key as a source or “entropy” to seed a PRNG. 
§ Note: Some of the prototyping boards used here provide true random number generation in 

hardware, but this hardware was not used in this work. 
§ CoAP recommends this ciphersuite TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8 

that makes use of the Ephemeral Elliptic Curve Diffie-Hellman (ECDHE). 
§ The Elliptic Curve Diffie-Hellman (ECDH) is only used for comparison purposes in this slide deck 

but not used in the recommended ciphersuites. 

17 



 

 

   

   

   

   

   

   

     
      
       
    

      

Key Length
 

§ Tradeoff between security and performance. 
§ Values based on recommendations from RFC 4492. 
§ RFC 7525 recommends at least 112 bits symmetric keys. 
§ The 2013 ENISA report states that an 80bit symmetric key is sufficient for legacy 

applications but recommends 128 bits for new systems. 

Symmetric ECC DH/DSA/RSA 

80 163 1024 

112 233 2048 

128 283 3072 

192 409 7680 

256 571 15360 

18 



 

   

    
      

   
     

     
    

   
      

Performance Figures: A few notes
 

§ ECDSA signature operation is faster than ECDSA verify operation. 
§ Brainpool curves are much slower than NIST curves because Brainpool 

curves use random primes. 
§ ECC key sizes above 256 bits are substantially slower than ECC curves 

with key size 192, 224, and 256. 
§ ECDH is only slightly faster than ECDHE 

(when fixed point optimization is enabled). 
§ CPU speed has a significant impact on the performance. 

19 



 

  

    
 

     
 

       
     

      
   

Observations: Optimizations
 

§ NIST curve optimization provides substantial benefit for NIST 
secp*r1 curves. 

§ Fixed point optimization has a significant influence on the 
performance. 

§ There is a performance – RAM usage tradeoff: increased 
performance comes at the expense of additional RAM usage. 

§ ECC library increases code size but also requires a fair amount of 
RAM for optimizations (for most curves). 

20 



 

 ECC Performance of the Cortex M3/M4
 

21 



22 
 

  
 

  
  

  
  

Performance difference between signature vs. verify 

For comparison: 
secp192r1 (signature) 

needs 66msec. 

For comparison: 
secp256r1 (signature) 

needs 122msec. 



 

 ECC Performance of the Cortex M0/M0+
 

23 



24 
 

   + FP optimization enabled 



25 
 

   + FP optimization enabled 



26 
 

   + FP optimization enabled 



27 
 

CPU Speed Impact 



28 
 

Performance of ECDHE: L152RE vs. LPC1768  
 

secp192r1 (ECDHE): 
1155 msec (L152RE) vs. 229 msec (LPC1768) 

L152RE:  
Cortex-M3 with 32MHz 

LPC1768: 
Cortex-M3 with 96MHz 

NIST optimization enabled. 
Fixed-point speed-up enabled. 



29 
 

Performance Comparison: Prototyping Boards 

0.00 

200.00 

400.00 

600.00 

800.00 

1000.00 

1200.00 

1400.00 

1600.00 

1800.00 

2000.00 

LPC1768, 96 MHz, Cortex 
M3 

L152RE, 32 MHz, Cortex 
M3 

F103RB, 72 MHz, Cortex 
M4 

F401RE, 84 MHz, Cortex 
M4 

Ti
m

e 
(m

se
c)

 

Prototyping Boards 

ECDSA Performance (Signature Operation, w=7, NIST Optimization Enabled) 

secp192r1 

secp224r1 

secp256r1 

secp384r1 

secp521r1 



30 
 

Curve25519 

(Warning: Preliminary Results) 



31 
 

Curve25519-mbedtls Curve25519-donna          P256-mbed 

ECDHE 1458 552 1145 

0 

200 

400 

600 

800 

1000 

1200 

1400 

1600 

m
se

c 
FRDM-KL46Z (Cortex-M0+, 48 MHz) 

Curve25519-mbedtls Curve25519-donna          P256-mbed 

ECDHE 506 58 391 

0 

100 

200 

300 

400 

500 

600 

m
se

c 

FRDM-K64F (Cortex-M4, 120 MHz) 
Notes:  
•  The Curve25519-mbedtls implementation uses a generic 

libary. Hence, the special properties of Curve25519 are not 
utilized.  

•  Curve25519 has very low RAM requirements (~1 Kbyte only). 
•  Curve25519-donna is based on the Google implementation. 

Improvements for M0/M0+ are likely since the code has not 
been tailored to the architecture.  

•  Question: Is Curve25519 a way to get ECC on M0/M0+? 

Curve25519-mbedtls Curve25519-donna          P256-mbed 

ECDHE 598 94 432 

0 

100 

200 

300 

400 

500 

600 

700 

m
se

c 

LPC1768 (Cortex-M3, 96 MHz) 



32 
 

The Power of Assembly Optimizations 

§  Example: micro-ecc library 
§  https://github.com/kmackay/micro-ecc/tree/old  
§  Written in C, with optional inline assembly for ARM and Thumb platforms. 
§  LPC1114 at 48MHz (ARM Cortex-M0) 
 

ECDH time (ms)	   secp192r1	   secp256r1	  

LPC1114 	   175.7	   465.1	  

STM32F091	   604,55	   1260.9	  

ECDSA verify time (ms)	   secp192r1	   Secp256r1	  

LPC1114 	   217.1	   555.2	  

STM32F091	   845.5	   1758.8	  

§ Performance improvement between 200 and 300 % 



33 
 

RAM Usage 



34 
 

What was measured? 

§ Heap using a custom memory allocation handler (instead of malloc).  
§ Memory allocated on the stack was not measured (but it is negligible). 
§ Measurement was done on a Linux PC (rather than on the embedded 

device itself) for convenience reasons.  
§ Two aspects investigated:  

§  Memory impact caused by different window parameter changes. 
§  Memory impact caused by FP performance optimization. 



35 
 

Summary 

§  To enable certain optimizations sufficient RAM is needed. A tradeoff decision between 
RAM and speed.  

§  Optimizations pays off. 
§  This slide shows 

heap usage 
(NIST optimization 
enabled). 

ECDSA-Sign ECDSA-Verify ECDHE 

W=6, FP 4568 5380 5012 

W=2, No FP 2972 3072 2692 

0 

1000 

2000 

3000 

4000 

5000 

6000 

B
yt

es
 

Heap Usage (secp256r1, LPC1768) 



36 
 

      Using ~50 % more RAM increases the performance by a factor 8 or more.  

ECDSA-Sign ECDSA-Verify ECDHE 
w=6, FP, NIST 122 458 431 
w=6, no FP, NIST 340 677 644 
w=2, no FP, NIST 378 759 734 
w=2, no FP, no NIST 1893 3788 3781 

0 

500 

1000 

1500 

2000 

2500 

3000 

3500 

4000 

m
se

c 
Performance (secp256r1,LPC1768) 



37 
 

Applying Results to TLS/DTLS 



38 
 

Raw Public Keys with TLS_ECDHE_ECDSA_* 

§  TLS / DTLS 1.2 client needs to perform the following computations: 
1.  Client verifies the signature covering the Server Key Exchange message that contains the server's 

ephemeral ECDH public key (and the corresponding elliptic curve domain parameters).  
2.  Client computes ECDHE. 
3.  Client creates signature over the Client Key Exchange message containing the client's ephemeral 

ECDH public key (and the corresponding elliptic curve domain parameters).  
§  Summary: 

§  1 x ECDSA verification for step (1) 
§  1 x ECDHE computation for step (2)  
§  1 x ECDSA signature for step (3) 

§  Example (LPC1768, secp224r1, W=7, FP and NIST optimization enabled) 
§  329 msec (ECDSA verification) 
§  303 msec (ECDHE computation) 
§  85 msec (ECDSA signature) 
Total: 717 msec 



39 
 

Applying Results to TLS/DTLS 
Certificates with TLS_ECDHE_ECDSA_* 

   1 x ECDSA verification 
for server certificate 

    

CA  
Certificate 

Server 
Certificate 

CA  
Certificate 

Intermediate CA 
Certificate 

Server 
Certificate 

CA  
Certificate 

1st Intermediate 
CA Certificate 

Server 
Certificate 

2nd Intermediate 
CA Certificate 

Same as with raw public key plus 
(assuming no OCSP and certs are signed with ECC certificates) 

1 x ECDSA verification  
for Intermediate 
CA certificate 

 
  
1 x ECDSA verification 

for server 
certificate 

 
 

   1 x ECDSA 
verification  
for 1st 
Intermediate CA 
certificate 

    
 
   1 x ECDSA 

verification  
for 2nd 
Intermediate CA 
certificate 

 

 
   1 x ECDSA 

verification 
for server 
certificate 

 
 



40 
 

Conclusion 

§  Block ciphers, hashes, MACs are fast enough already, and often hardware-
accelerated in practice anyway. 

§  ECC requires performance-demanding computations. Those take time.  
§  What an acceptable delay is depends on the application.  
§  Many applications only need to run public key cryptographic operations during the initial 

(session) setup phase and infrequently afterwards.  
§  With DTLS/TLS session resumption symmetric key cryptography is most of the time  

(which is lightning fast).  

§  Detailed performance figures depend on the enabled performance optimizations 
(and indirectly the available RAM size), the key size, the type of curve, and CPU 
speed.  

§  Choosing the MCU based on the expected usage environment is important.  




