
Algebraic EraserTM: A lightweight, efficient 
asymmetric key agreement protocol for use in 

no-power, low-power, and IoT devices 

Derek Atkins, Paul E. Gunnells 

SecureRF Corporation 

NIST Lightweight Cryptography Workshop 2015 (7/21/15) 



Algebraic Eraser (AE)
 

�	 I. Anshel, M. Anshel, D. Goldfeld, and S. Lemieux, Key 
agreement, the Algebraic EraserTM, and lightweight 
cryptography, Algebraic methods in cryptography, Contemp. 
Math., vol. 418, Amer. Math. Soc., Providence, RI, 2006, 
pp. 1–34. 

�	 Asymmetric key agreement protocol that achieves 40X to 
150X performance gains over ECC at comparable security 
levels. 

�	 Designed for low-cost platforms with constrained 
computational resources:
 

� RFID
 
� Bluetooth
 
� NFC
 
�	 “Internet of Things” 



�

�

�

�

�

�

Algebraic Eraser (AE)
 

Complexity scales linearly with desired security level, unlike 
RSA, DH, ECC. 

In public domain for 10 years with several published attacks 
(e.g. Kalka–Teicher–Tsaban (2008), Myasnikov–Ushakov 
(2008)). None successful. 

Presented at NSA/CCR 
In standards-body discussions at 

IETF: CFRG, OpenPGP, TLS
 
ISO SC31/WG7: Stage II (Pre-CD)
 



�

�

�

�

�

�

�

�

Overview of AE I
 

The AE key exchange is a Diffie–Hellman exchange.
 
Unlike RSA/DH/ECC, the AE uses noncommutative groups.
 
Instead of (Z/NZ)× or E (Fq), AE uses
 

Mn(Fq ) (n × n matrices over Fq), 
Bn (the braid group on n strands). 

Private keys: a pair R = (m, µ) of a matrix and braid. 

Public keys: a pair P = (M, σ) of a matrix and a permutation 
in Sn. 

Each user also knows a fixed ordered list of elements of Fq 

(T -values). 

The shared secret: same kind of pair as the public key. 



�

�

�

Overview of AE II
 

The security level depends on n, q and the lengths of the 
private braids (and scales linearly with the lengths of the 
braids). 

The (maximum) security level for AE is n · lg q, not (lg q)/2 
as in ECC. In particular one can use moderately sized finite 
fields, not multiprecision finite fields. This is one of the big 
computational savings: the possibility of using n and lg q 
together to set basic security levels instead of just lg q. 

The hard computational problem underlying AE takes place in 
the braid group Bn, and is known as the Simultaneous 
conjugacy separation search problem. This is not the same 
computational problem underlying earlier braid group 
schemes, and AE is not “Braid Group Cryptography.” 



�

�

Braids 
A braid on n strands is a collection of n entangled strings. 

We can represent a braid by a left-right crossing sequence of 
signed nonzero integers i1i2 · · · ik , (“Artin generators”) each of 
which lies between −n and n. 

A positive integer i means “cross the ith strand under the
 
(i + 1)st strand.”
 
A negative integer −i means “cross the ith strand over the
 
(i + 1)st strand.”
 

1 2 3 1 2 1 3 3̄ 2̄ 2 1 ¯ 3̄ 1̄




�

�

�

�

E -multiplication
 

E -multiplication is an action of Bn on pairs of matrices Mn(Fq) 
and permutations from Sn. 

Each Artin generator determines an n × n sparse matrix, a 
colored Burau matrix. 

This matrix depends on the T -values (the fixed set of 
elements in Fq), but the correspondence between generators 
and matrices changes as one moves down the braid in the 
private key. (This is the “eraser” part.) 

The sparsity is important: complexity of an E -multiplication 
increases linearly with n instead of (worse than) quadratic. 

The sparsity also means that one can do one E -multiplication 
per clock cycle in lightweight hardware. 



�

�

�

�

Setting up the protocol I
 

A TTP sets up the protocol by choosing the following data: 

A braid group Bn (n even), Fq, and the T -values.
 

A conjugator z ∈ Bn.
 

An n × n matrix m0 over Fq.
 

Two sets of braids a1, . . . , ak and b1, . . . , bk . The first is for
 
Alice, the second for Bob. These are chosen from the left and 
right halves of Bn. In particular the ai (respectively, bi ) only 
involve strands 1, . . . , n/2 (resp., n/2 + 1, . . . , n), and thus 
ai bj = bj ai for all i , j . 



Setting up the protocol II
 

The TTP then computes the conjugates 

−1 −1A = {za1z , . . . , z ak z 
−1} and B = {zb1z , . . . , z bk z 

−1}. 

The left set is given to Alice and the right to Bob, along with the
 
matrix m0.
 
The hard problem underlying breaking the protocol is determining
 
z from the knowledge of the sets A, B .
 
As mentioned before, this is not the same computational problem
 
underlying earlier cryptographic schemes based on braid groups.
 



�

�

Constructing private keys
 

Alice and Bob each compute matrices mA, mB by taking 
random polynomials over Fq in m0. These are their private 
matrices. 

They form braids µA, µB by taking random products in their 
conjugates and their inverses. Alice, for instance, computes a 
random product 

N 
µA = (z aij z 

−1)εj , εj ∈ {±1}. 
j=1 

The braids µA, µB are their private conjugate factor. 



Constructing public keys
 

This is where E -multiplication comes in. Alice and Bob use 
E -multiplication to produce their public keys from their private 
data: 

(PA, σA) = (mA, 1) * µA and (PB , σB ) = (mB , 1) * µB . 



�

�

�

Shared secret computation
 

Bob and Alice take each others public keys 
PA = (MA, σA), PB = (MB , σB ), and multiply their private 
matrices mA, mB against them. 

Then they E -multiply the result by their braids µA, µB : 

SA = (PB mA, σB ) * µA, SB = (PAmB , σA) * µB . 

We have SA = SB . 



AE Performance vs ECC (Hardware)
 

2128 Security level (AES–128) 

ECC 283 AE B16, F256 Gain 
Cycles Gates Wtd. Perf. Cycles Gates Wtd. Perf. 

164,823 29,458 4,855,355,934 71.7x 
85,367 77,858 6,646,503,866 3,352 20,206 67,730,512 98.1x 
70,469 195,382 13,768,374,158 203.3x 

Wtd. Perf. is Weighted Performance (clock cycles × gate count) and represents time and power usage. Gate 

counts are for 65nm CMOS. ECC data taken from A Flexible Soft IP Core for Standard Implementations of Elliptic 

Curve Cryptography in Hardware, B. Ferreira and N. Calazans, 2013 IEEE 20th International Conference on 

Electronics, Circuits, and Systems (ICECS), 12/2013. 



AE Performance vs ECC (ARM Cortex M3)
 

Security Level Algorithm Language ROM RAM Speed (48MHz) 
128 AE C+Assembly 2065 544 15ms 
128 AE C 3339 521 34ms 
128 ECC(i) Assembly (M0) 7168 540 233ms 
128 ECC(ii) C (ARM) (?) (?) 864ms 
128 ECC(iii) C (WolfSSL) 9780 7456 889ms 
310 AE C 656 820 74ms 

ECC data: (i) Shades of Elliptic Curve Cryptography on Embedded Processors, Wenger, Unterluggauer, and 

Werner, Progress in Cryptology (Indocrypt 2013); (ii) Crypto Performance on ARM Cortex-M Processors, H. 

Tschofenig, M. Pégourié-Gonnard, IETF-92 (March 2015); (iii) SecureRF implementation 



�

�

�

�

�

�

Conclusion
 

AE is a novel public key method suitable for low-power and 
passive devices 

Significantly faster than ECC, RSA, and DH 

Performance scales linearly (as opposed to quadratically) as 
security increases 

The underlying core technology (E -multiplication) can also be 
used to form block cipher, hash, prng, and signature 
algorithms 

In public domain for 10 years with no successful attacks 

Has a small footprint for hardware and software 
implementations 

We believe AE has a big future in the IoT universe 



Thank You!
 

SecureRF Corporation
 
100 Beard Sawmill Rd, Suite 350
 

Shelton, CT 06484
 
(203) 227-3151
 

Derek Atkins (datkins@securerf.com)
 
Paul Gunnells (pgunnells@securerf.com)
 

mailto:pgunnells@securerf.com
mailto:datkins@securerf.com

