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Abstract. The QUARTZ digital sig
nature scheme (Patarin, Courtois and 
Goubin, 2001) is one of the best known 
multivariate PKCs, based on an adap
tation of “Hidden Field Equations with 
vinegar-minus” for very short signatures. 
Designed for a 80-bit security level, 
QUARTZ has no known flaws and is cur
rently estimated to have a security level 
∼ 292 . 
QUARTZ was never widely used, prob
ably due to its slow signing speed. The 
authors of QUARTZ had chosen ultra-
safe parameters in 2001, based on what 
they knew about HFEv-. In this paper, 
we show how to choose parameters to 
speed up such schemes at 80- and 128
bit security levels given the new research 
on HFEv- security levels since then. 
We show that reducing the degree of 
the central HFE polynomial, when com
bined with an appropriate increase in the 
number of Vinegar variables and minus 
equations, does not decrease the security 
of the scheme compared to the original 
QUARTZ design. This is backed up both 
with theory and with experiments. We 
achieve a speed-up of the signature gen
eration process by two orders of magni
tude. We call our new design Gui and 
show that the performance of Gui is com
parable to that of standard signature 
schemes, including signatures on elliptic 
curves. 

Keywords: Multivariate Cryptography, QUARTZ 
Signature Scheme, HFEv-, Direct Algebraic At
tacks 

1 Introduction 

Cryptographic techniques are an essential tool to 
guarantee the security of communication in mod
ern society. Today, the security of nearly all of the 
cryptographic schemes used in practice is based on 
number theoretic problems such as factoring large 
integers and solving discrete logarithms. The best 
known schemes in this area are RSA [25], DSA 
[16] and ECC. However, schemes like these will 
become insecure as soon as large enough quantum 
computers arrive. The reason for this is Shor’s algo
rithm [26], which solves number theoretic problems 
like integer factorization and discrete logarithms in 
polynomial time on a quantum computer. There
fore, one needs alternatives to those classical public 
key schemes, based on hard mathematical problems 
not affected by quantum computer attacks. 

Besides lattice, code and hash based cryptosys
tems, multivariate cryptography is one of the main 
candidates for this [1]. Multivariate schemes are 
in general very fast and require only modest com
putational resources, which makes them attractive 
for the use on low cost devices like smart cards and 
RFID chips [4,5]. Additionally, at least in the area 
of digital signatures, there exists a large number of 
practical multivariate schemes [10,17]. 

In 2001, Patarin and Courtois proposed a mul
tivariate signature scheme called QUARTZ [21], 
which is based on the concept of HFEv-. While 
QUARTZ produces very short signatures (128 bit), 
the signature generation process is very slow (at 
the time about 11 seconds per signature [5]). The 
main reason for this is the use of a high degree HFE 



polynomial (for QUARTZ this degree is given by 
D = 129), which makes the inversion of the central 
map very costly. 

At the time of the design of the QUARTZ 
scheme, very little was known about the com
plexity of algebraic attacks against the HFE fam
ily of systems, in particular, the HFEv- schemes. 
Therefore, the authors of QUARTZ could not base 
their parameter choice on theoretical foundations. 
Recently, there has been a fundamental break
through in terms of understanding the behavior 
of algebraic attacks on the HFE family of systems 
[8,9,11], which enables us to substantially improve 
the original design of QUARTZ without reducing 
its security. In this paper, we propose to choose 
new parameter sets for more efficient HFEv- based 
signature schemes for the low (80-bit) and high 
(112+-bit) security levels. We achieve this by re
ducing the degree of the central HFEv- polynomial 
while increasing the number of vinegar variables 
and minus equations. 

Under state-of-the-art theoretical and experi
mental analysis, this adaptation should not cost 
us in terms of security, compared to conservative 
choices like the original QUARTZ design. Referring 
to a 3-legged Chinese utensil [28] dating back to 
earthenware pottery from the 4000-year-old Long
shan culture, we call our new scheme Gui. We 
show that our new design speeds up the signature 
generation process by two degrees of magnitude 
compared to QUARTZ, and has comparable per
formance to standard signature schemes like RSA 
and ECDSA. 

The rest of this paper is organized as follows. In 
Section 2 we give an introduction into the area of 
multivariate cryptography and in particular Big-
Field signature schemes. Section 3 introduces the 
HFEv- signature scheme and the changes made to 
this scheme by Patarin and Courtois when defin
ing QUARTZ. Furthermore, in this section, we give 
a short overview on the security and efficiency of 
QUARTZ. Section 4 presents the results of our ex

periments with direct attacks against low degree 
versions of HFEv-. Based on these results, we pro
pose in Section 5 our new multivariate signature 
scheme Gui. Section 6 gives details on the imple
mentation and compares the efficiency of Gui with 
that of some standard signature schemes. Finally, 
Section 7 concludes the paper. 

2 Multivariate Cryptography 

The basic ob jects of multivariate cryptography are 
systems of multivariate quadratic polynomials. The 
security of multivariate schemes is based on the 

MQ Problem: Given m multivariate quadratic 
polynomials p(1)(x), . . . , p(m)(x) in n variables 
x1, . . . , xn, find a vector x̄ = ( ̄x1, . . . , x̄n) such 

(1)(¯ (m)(¯that p x) = . . . = p x) = 0. 
The MQ problem (for m ≈ n) is proven to be NP-
hard even for quadratic polynomials over the field 
GF(2) [14]. 

To build a public key cryptosystem based on the 
MQ problem, one starts with an easily invertible 
quadratic map F : Fn → Fm (central map). To 
hide the structure of F in the public key, one com
poses it with two invertible affine (or linear) maps 
S : Fm → Fm and T : Fn → Fn . The public key 
is therefore given by P = S ◦ F ◦ T . The private 
key consists of S, F and T and therefore allows to 
invert the public key. 

Note: Due to the above construction, the security 
of multivariate schemes is not only based on the 
MQ-Problem but also on the EIP-Problem (“Ex
tended Isomorphisms of Polynomials”) of finding 
the composition of P. 

In this paper we concentrate on multivariate sig
nature schemes of the BigField family. For this 
type of multivariate schemes, the map F is a spe
cially chosen easily invertible map over a degree n 
extension field E of F. One uses an isomorphism 



Φ : Fn → E to transform F into a quadratic map The standard signature generation and verification 
process of a multivariate BigField scheme works as F̄ = Φ−1 ◦ F ◦ Φ (1) 
shown in Figure 1. 

from Fn to itself. The public key of the scheme is 
therefore given by 

P = S ◦ ¯ = S ◦ Φ−1 ◦ F ◦ Φ ◦ T : Fn → Fn . (2)F ◦ T 
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Fig. 1. General workflow of BigField schemes 

Signature generation: To sign a message h ∈ Fn , 
one computes recursively x = S−1(h) ∈ Fn , X = 
Φ(x) ∈ E, Y = F−1(X) ∈ E, y = Φ−1(Y ) ∈ Fn 

and z = T −1(y). The signature of the message h 
is z ∈ Fn . 

Verification: To check the authenticity of a signa
ture z ∈ Fn, one simply computes h' = P(z) ∈ Fn . 
If h' = h holds, the signature is accepted, other
wise rejected. 

A good overview on existing multivariate schemes 
can be found in [7]. Two widely used variations of 
multivariate BigField schemes are the Minus varia
tion and the use of additional (Vinegar) variables. 

Minus-Variation: The idea of this variation is 
to remove a small number of equations from the 
public key. The Minus-Variation was first used 

in schemes like SFLASH [22] to prevent Patarins 
Linearization Equations attack [23] against the 
Matsumoto-Imai cryptosystem [20]. 

Vinegar-Variation: The idea of this variation 
is to parametrize the central map F by adding (a 
small set of ) additional (Vinegar) variables. In the 
context of multivariate BigField schemes, the Vine
gar variation can be used to increase the security 
of the scheme against direct and rank attacks. 

3 The QUARTZ Signature Scheme 

QUARTZ is a multivariate signature scheme stan
dardized by Patarin and Courtois in [21]. Roughly 
speaking, it is an HFEv- scheme with a specially 
designed signature generation process to enable se
cure short signatures of length 128 bit. 



3.1 The HFEv- Signature Scheme 

Let F = Fq be a finite field with q elements and E 
be a degree n extension field of F. Furthermore, we 
choose integers D, a and v. Let Φ be the canonical 
isomorphism between Fn and E, i.e. 

nn 
· Xi−1Φ(x1, . . . , xn) = xi . (3) 

i=1 

The central map F of the HFEv- scheme is a map 
from E × Fv to E of the form 

q i+qnj ≤D 
+qF(X) = αij · Xq i j 

0≤i≤j 

q i≤Dn 
+	 βi(v1, . . . , vv ) · Xq i 

i=0 

+ γ(v1, . . . , vv),	 (4) 

with αij ∈ E, βi : Fv → E being linear and 
γ : Fv → E being a quadratic function. 
Due to the special form of F , the map F̄ = 
Φ−1 ◦ F ◦ Φ is a quadratic polynomial map from 
Fn+v	 ¯to Fn. To hide the structure of F in the pub
lic key, one combines it with two affine (or linear) 
maps S : Fn → Fn−a and T : Fn+v → Fn+v of 
maximal rank. 

The public key of the scheme is the composed map 
¯ : Fn+vP = S ◦ F ◦ T → Fn−a, the private key 

consists of S, F and T . 

Signature generation: To generate a signature for a 
message h ∈ Fn−a, the signer performs the follow
ing three steps. 

1. Compute	 a preimage x ∈ Fn of h under the 
affine map S. 

2. Lift x to the extension field E (using the iso
morphism Φ). Denote the result by X. 
Choose random values for the vinegar vari
ables v1, . . . , vv ∈ F and compute FV = 
F(v1, . . . , vv). 
Solve the univariate polynomial equation 

FV (Y ) = X by Berlekamp’s algorithm and 
' compute y = Φ−1(Y ) ∈ Fn . 

Set y = (y ' ||v1|| . . . ||vv). 
Fn+v3. Compute	 the signature z ∈ by z = 

T −1(y). 

Signature verification: To check the authenticity 
Fn+vof a signature z ∈ , one simply computes 

h ' = P(z) ∈ Fn−a. If h ' = h holds, the signature is 
accepted, otherwise rejected. 

3.2 QUARTZ 

Patarin and Courtois suggested the following pa
rameters for QUARTZ: 

(F, n, D, a, v) = (GF(2), 103, 129, 3, 4). 

Due to this choice, the public key P of QUARTZ 
to F100is a quadratic map from F107 . The public 

key size of QUARTZ is 71 kB, the private key size 
3 kB. 
To avoid birthday attacks, Patarin and Courtois de
veloped a special procedure for the signature gen
eration process of QUARTZ. Roughly spoken, one 
computes four HFEv- signatures (for the messages 
h, H(h||0x00), H(h||0x01) and H(h||0x02)) and 
combines them to a single 128 bit signature of the 
message h. Analogously, during the signature ver
ification process, one has to use the public key P 
four times. 

3.3 Security 

Despite of its rather complicated signature gen
eration process, breaking the QUARTZ scheme is 
still equivalent to breaking the underlying HFEv
scheme. The most important attacks against this 
scheme are 

–	 the MinRank attack and 
–	 direct algebraic attacks. 



The MinRank attack on HFE In this para
graph we describe the attack of Kipnis and Shamir 
[18] against the HFE cryptosystem. For the sim
plicity of our description we restrict ourselves to 
homogeneous maps F and P. 
The key observation of the attack is to lift the maps 
S, T and P to functions S*, T * and P* over the 
extension field E. Since S and T are linear maps, 
S* and T * have the form 

n−1 n−1n n 
S*(X) = si · Xq i 

and T *(X) = ti · Xq i 

, 
i=1 i=1 

(5) 
with coefficients si and ti ∈ E. The function P* can 
be expressed as 

n−1 n−1n n 
* +q = X · P * · XTP*(X) = pij X

q i j 

, (6) 
i=0 j=0 

0 1 n−1 
where P * = [p* ] and X = (Xq , X q , . . . , X q ) . ij 
Due to the relation P*(X) = S* ◦ F ◦ T *(X) we 
get S* −1 ◦ P *(X) = F ◦ T *(X) and 

n−1n 
· G*kP̃ = sk = W · F · W T (7) 

k=0 

* k *with g = (p )q k 
, = ij i−k mod n,j−k mod n wij 

i 

sq and F being the n × n matrix reprej−i mod n 
senting the central map F . Note that, due to the 
special structure of F , the only non zero entries in 
the matrix F are located in the upper left r × r 
submatrix (r = llog D − 1J + 1). q 

Since the rank of the matrix W · F · W T is less or 
equal to r, we can determine the coefficients sk of 
equation (7) by solving an instance of the MinRank 
problem. 
In the setting of HFEv-, the rank of this matrix 
can, for odd characteristic, be bounded from above 
by [11] 

Rank(PF) ≤ r + a + v. (8) 

Under the assumption that the vinegar maps βi 

look like random functions, we find that this bound 
is tight. 

For fields of even characteristic we eventually have 
to decrease this rank by 1, since over those fields, 
the matrix PF is always of even rank. The complex
ity of the MinRank attack against QUARTZ like 
schemes is therefore given roughly by 

n·(r+v+a−1)ComplexityMinRank = O(q · (n − a)3). 
(9) 

Direct attacks For the HFE family of schemes, 
the direct attack, namely the attack by directly 
solving the public equation P(x) = h by an algo
rithm like XL or a Gröbner basis method such as 
F4 [12] is a ma jor concern due to which happened 
to HFE challenge 1 [13]. At the time of the design 
of the QUARTZ scheme, very little was known the
oretically about the complexity of algebraic attacks 
against the HFE family of systems, in particular, 
the HFEv- schemes. The authors of QUARTZ did 
not actually give an explanation of their selection of 
the parameters and therefore the parameter selec
tion of their scheme was not supported by theoret
ical results. We need to point out that, as has been 
shown by experiments [19], the public systems of 
HFEv- can be solved easier than random systems. 
Recently, there has been a fundamental break
through in terms of understanding how algebraic 
attacks on the HFE family of systems [8,9,11] work. 
In particular, we now have a solid insight what hap
pens in the case of HFEv-. An upper bound for 
the degeneration degree of a Gröbner Basis attack 
against HFEv- is given by [11] 

 
(q−1)·(r−1+a+v) + 2 q even and r + a odd 2dreg ≤ (q−1)·(r+a+v) , 

+ 2 otherwise2 

(10) 
where r is given by r = llog (D − 1)J + 1. q 

Note: In [6] Courtois et al. estimated the com
plexity of a direct attack on QUARTZ by 274 oper
ations. However, they underestimated the degree of 
regularity of solving an HFEv- system drastically. 



3.4 Efficiency 

The most costly step during the signature gener
ation process of QUARTZ is the inversion of the 
univariate polynomial equation F over the exten
sion field E. This step is usually performed by 
Berlekamp’s algorithm, whose complexity can be 
estimated by [24] 

O(D3 + n · D2). (11) 

Due to the high degree of the HFEv- polynomial 
used in QUARTZ, the inversion of F is very costly. 
Furthermore, we have to perform this step four 
times during the signature generation of QUARTZ. 
Additionally, the design of QUARTZ requires the 
central equation F(Y ) = X to have a unique 
root. Since, after choosing random values for Minus 
equations and Vinegar variables, F can be seen as 
a random function, this requires about e trials to 
obtain a signature. Thus, the QUARTZ signature 
scheme is rather slow and it takes about 11 seconds 
to generate a signature [5]. 

The theoretical breakthrough mentioned above 
indicates that it might be possible to substantially 
improve the original design of QUARTZ without 
reducing the security of the scheme, if we adapt 
the number of Minus equations and Vinegar vari
ables in an appropriate way. By reducing the degree 
of the central HFEv- polynomial we can speed up 
the operations of Berlekamp’s algorithm and there
fore the signature generation process of the HFEv
scheme. 

4 The New HFEv- design 

The first question we want to answer in this section 
is the following: How should we choose the degree D 
of the central HFEv- polynomial for Gui? A small 
D will speed up the scheme, but choosing D too 
small might bring the security of the scheme into 
jeopardy. 

Surely, D = 2 (“Square” systems) or 3 seems to 
be a bad choice, since such small values of D would 
lead to maps F of rank 2. For D = 5 and D = 7 

the same can be achieved by a linear transforma
tion of the variables. So, the smallest value of D 
we feel comfortable to use is D = 9, which leads to 
matrices of rank 4. Another promising value for D 
is D = 17, which leads to matrices of rank 5. 

In this section we present the results of our 
experiments of running direct attacks on HFEv
schemes with low degree central maps. By our ex
periments we want to answer the following ques
tions: 

–	 Is the upper bound on the degree of regularity 
given by equation (10) reasonable tight? 

–	 Can we, for our choices of D, find appropriate 
values of a and v such that the HFEv- scheme 
is still intractable? 

In our experiments, we used F = GF(2) as the un
derlying field. The degree of the HFEv- polynomial 
was chosen to be D ∈ {9, 17} (see above). The 
corresponding values of r are 4 and 5 respectively. 
Furthermore, we set for simplicity reasons a = v. 
We created instances of the HFEv- signature 
scheme for our two values of D and a = v ∈ 
{0, . . . , 5} with MAGMA. Then we fixed a + v of 
the variables to get determined systems and tried 
to solve them with the F4 algorithm integrated in 
MAGMA. 
As we found, it is very important to add the field 

2equations (x − xi = 0 (i = 1, . . . , n − a)) toi 
the system before running the F4 algorithm. Table 
1 and Figure 2 show the results of our experiments. 

As our experiments show, the upper bound on the 
degree of regularity given by equation (10) is rela
tively tight. In fact, for a = v = 3 we could reach 
the upper bound for n ≥ 41 (D = 9) and n ≥ 43 
(D = 17) respectively. However, shortly after hav
ing reached this degree, we ran out of memory. 
Furthermore we saw that for both the parameter 
sets (D, a, v) = (9, 5, 5) and (D, a, v) = (17, 4, 4), 
HFEv- systems with more than 31 equations have 
a degree of regularity of ≥ 7 (although we do not 
have enough memory to solve these systems com
pletely). 



5	 The New Multivariate Signature 
Scheme Gui 

Based on our experiments presented in the previ
ous section we propose two different versions of 
our HFEv- based signature scheme over the field 
GF(2): 

–	 Gui-95 with (n, D, a, v) = (95, 9, 5, 5) with 90 
equations in 100 variables and 

–	 Gui-94 with (n, D, a, v) = (94, 17, 4, 4) with 90 
equations in 98 variables 

The complexity of direct attacks against these two 
schemes can be estimated as follows. 
According to our experiments, the degree of reg
ularity of the F4 algorithm against these schemes 
will be at least 7. 
The number T of top-level monomials in the solving 
step of the F4 algorithm is therefore given by     

n − a 90 ≥ 233.6T = ≥
dreg 7

The number of non zero elements in each row can z	 e 
n−abe estimated by τ = > 212. Therefore we get 2 

for the complexity of a direct attack against one of 
our schemes 

> 280.7ComplexityF4/F5 
≥ 3 · τ · T 2 . (12) 

Note that this number is very optimistic since 
we assume that the degree of regularity will not 
rise above 7. Additionally, for better compari
son to standard signature schemes, we propose a 
third version of Gui, Gui-127, with the parameters 
(n, D, a, v) = (127, 9, 4, 6), providing design secu
rity levels of 120 bits. 

Similarly to QUARTZ, we must repeat the 
HFEv- core map several times to avoid birthday 
attacks against Gui. One has to sign different hash 
values of the same message and combine the out
puts into a single signature. Here, we follow closely 
the design of QUARTZ and apply the core HFEv
operation 4, 3 and 4 times respectively for Gui-94, 
-95 and -127. The resulting key and signature sizes 
for our scheme can be seen from Table 3. 
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Fig. 2. Results of our experiments with the F4 algorithm against HFEv- schemes (D ∈ {9, 17}) 



# equations 20 25 30 32 

HFEv
system 
D=9 

a = v = 3 

theoretical degree of regularity (formula (10)) ≤ 6 
parameters (n,D,a,v) (23,9,3,3) (28,9,3,3) (33,9,3,3) (35,9,3,3) 

dreg 5 5 5 5 
time (s) 2.6 179 2,899 28,746 

a = v = 4 

theoretical degree of regularity (formula (10)) ≤ 8 
parameters (n,D,a,v) (24,9,4,4) (29,9,4,4) (34,9,4,4) (36,9,4,4) 

dreg 5 6 6 6 
time (s) 2.7 244 31,537 102,321 

a = v = 5 

theoretical degree of regularity (formula (10)) ≤ 8 
parameters (n,D,a,v) (25,9,5,5) (30,9,5,5) (35,9,5,5) (47,9,5,5) 

dreg 5 6 6 7 
time (s) 2.8 255 32,481 ooM 1 

HFEv
system 
D=17 

a = v = 3 

theoretical degree of regularity (formula (10)) ≤ 7 
parameters (n,D,a,v) (23,17,3,3) (28,17,3,3) (33,17,3,3) (35,17,3,3) 

dreg 5 6 6 6 
time (s) 2.4 245 28,768 87,726 

a = v = 4 

theoretical degree of regularity (formula (10)) ≤ 8 
parameters (n,D,a,v) (24,17,4,4) (29,17,4,4) (34,17,4,4) (36,17,4,4) 

dreg 5 6 6 7 
time (s) 2.4 248 31,911 ooM 1 

a = v = 5 

theoretical degree of regularity (formula (10)) ≤ 9 
parameters (n,D,a,v) (25,17,5,5) (30,17,5,5) (35,17,5,5) (37,17,5,5) 

dreg 5 6 6 7 
time (s) 2.4 250 32,350 ooM 1 

for comparison: 
random system 

dreg 5 6 6 7 
time (s) 3.5 310 32,533 ooM 1 

1) out of memory
 

Table 1. Results of our experiments with the F4 algorithm against HFEv- schemes (D ∈ {9, 17})
 

6 Implementation and Comparison 

6.1 Arithmetics over Finite Fields 

Large binary field operations with PCLMULQDQ 
Time records for arithmetic operations over large 
binary fields were changed since the emerging 
of new instructions of carry-less multiplication: 
PCLMULQDQ [27]. Although we would rely on 
PCLMULQDQ to take the burden off from multiplica
tion, in some cases old tricks help to avoid the use 
of PCLMULQDQ and therefore its long latency even 

in the latest Intel Haswell cpu (lantency 7 cycles, 
throughput 2 cycles)[15]. 

In our targeted field size (≤ 128 bit), we 
choose Karatsuba algorithm to avoid 3 calls of 
PCLMULQDQ in the multiplication phase. The reduc
tion phase of the field multiplication is heavily re
lated to the field representation. For the original 
QUARTZ (GF(2103)) the authors used GF(2103) := 

103GF(2)[x]/(x +x9+1) [21]. For Gui, we choose the 
field representations GF(294) := GF(2)[x]/(x + 

95x21 + 1), GF(295) := GF(2)[x]/(x + x11 + 1) and 
127GF(2127) := GF(2)[x]/(x + x + 1) respectively. 

94 



In the GF(2127) case, for example, reduction costs 
128only 2 128-bit shifts for the x part and 1 con

ditional XOR for x127, avoiding at least 2 calls of 
PCLMULQDQ while reducing the high 128 bit register. 

6.2 Inverting the HFEv- core 

For inverting the central HFE equation F(Y ) = y 
+2jY D + 0≤i≤j,2i+2j <D aij Y 2

i 
= X, we have to 

perform Berlekamp’s algorithm to find its roots. 
Since the design of QUARTZ and Gui requires F 
to have a unique solution (probability 1/e for a ran
dom X), we will only need to perform the first step 
of Berlekamp’s algorithm: 

gcd(F(Y ) − X, Y 2
n 

− Y ) 
= gcd(F(Y ) − X, (Y − i)) 

i∈F2n ,i =0  
= (Y − i), 

i:F(i)=X 

and therefore the main process in creating a signa
ture is to compute gcd(F(Y ) − X, Y 2

n − Y ). The 
number of roots to F(Y ) = X (as well as the only 
solution when that happens) can obviously be read 
off from the result. 

How do we optimize the computation of the 
gcd? The main computation consumption in this 
step comes from the division of the extreme high 
power polynomial Y 2

n − Y mod F(Y). Naive long 
division is unacceptable due to its slow reduction 
pace. Instead, we choose to recursively raise the 
lower degree polynomial Y 2

m 
to the power of 2. 

(Y 2
m 

mod F(Y ))2 mod F(Y ) n 
= ( biY i)2 mod F(Y ) 

i<2m n 
= ( bi 

2Y 2i) mod F(Y ) 
i<2m 

By multiplying Y to the naive relation Y D = 
+2j

y 
0≤i≤j,2i+2j <D aij Y 2

i 
from F(Y ), we can pre

pare a table for Y 2i mod F(Y ) first. The rest of 
computation of raising is to square all coefficients 

Y 2
m 

bi in mod F(Y ) and multiply them to the 
Y 2is in the table. Although the starting relation y 

+2jF(Y ) = Y D + 0≤i≤j,2i+2j <D aij Y 2
i 

is a sparse 
polynomial, the polynomials become dense quickly 
while raising and the number of terms is restricted 
by D because of mod F(Y ). We expect the num
ber of terms be in average D during the compu
tation. The number of field multiplications needed 
to compute the Y 2i table is O(2 · D2). The number 
of field multiplications needed for raising Y 2

m 
to 

Y 2
n 
is O((n − m) · D: squ + (n − m) · D2: mul). 

We can further reduce the number of computa-
Y 2

m 
tions by raising the with a higher degree 
Y i table. For example, if we raise Y 2

m 
to Y 2

4m 

in one step, the number of multiplications be
(n−m)comes O((n − m) · D: squ + · D2: mul), 2 

but the computation for preparing the Y i table 
increases. Table 2 shows the time needed to com
pute gcd(Y 2

n − Y , F(Y )) on two different CPUs. 

scheme security 
level (bit) 

time needed for 
inverting F (kilo-cycles) 1 

HFEv-(95,9,5,5) 80 159 / 135 
HFEv-(94,17,4,4) 80 533 / 453 

HFEv-(103,129,3,4) 80 25,793 / 20,784 
HFEv-(127,9,4,6) 123 170 / 156 
1 [1] running time on AMD Opteron 6212, 2.5 GHz / 
Intel Xeon CPU E5-2620, 2.0 GHz 

Table 2. Time to compute gcd(Y 2
n 
− Y, F(Y )) for 

HFEv- instances 

6.3 Experiments and Comparison 

Table 3 shows key sizes and running time for sig
nature generation and verification of Gui and com
pares these data with those of some standard signa
ture schemes. The data are benchmarked according 
to specifications given by the eBACS pro ject [3]. 



scheme security 
level(bits) 

public key 

size (Bytes) 

private key 

size (Bytes) 

signature 

size(bits) 

signing time 

(k-cycles) 1 

verify time 

(k-cycles) 1 

Gui-95 (95,9,5,5) 80 60,600 3,053 120 1,479/1,186 325/230 
Gui-94 (94,17,4,4) 80 58,212 2,943 124 4,945/5,421 357/253 
Gui-127 (127,9,4,6) 123 142,576 5,350 160 1,966/1,249 707/427 

QUARTZ (103,129,3,4) 80 75,514 3,774 128 167,485/168,266 375/235 

RSA-1024 80 128 128 128 2,080/1,058 74/ 32 
RSA-2048 112 256 256 256 8,834/5,347 138/ 76 

ECDSA P160 80 40 60 320 1,283/ 558 1,448/635 
ECDSA P192 96 48 72 384 1,513/ 773 1,715/867 
ECDSA P256 128 64 96 512 830/ 388 2,111/920 

1 Tested on AMD Opteron 6212, 2.5 GHz / Intel Xeon CPU E5-2620, 2.0 GHz 

Table 3. Comparison between Gui and standard signature schemes 

We should note that the timings for Gui given 
by Table 3 are for C programs with a few intrin
sic function calls to invoke PCLMULQDQ. The PKCs 
benchmarked in the eBACs pro ject (represented by 
the eBATs programs as their implementations) also 
do not represent optimal implementations of RSA 
and ECC. We present these numbers in an effort to 
compare apples to apples by using only reference 
implementations. 

7 Conclusion and Future Work 

In this paper, we analyzed the behavior of direct 
attacks against the HFEv- signature scheme. Ex
periments show that the upper bound on the degree 
of regularity found by Ding and Yang in [11] is rel
atively tight. Based on our results, we can give 
new recommendations on the parameter choice of 
HFEv- based schemes, by which it is possible to 
speed up the signature generation process by two 
orders of magnitude (nearly 150×) compared to 
the original QUARTZ. We name our new design 
Gui and show that the running time of Gui is 
comparable to that of standard signature schemes, 
including signatures on elliptic curves. 

The most obvious future work would be to cre
ate for every common existing platform an opti

mal implementation of HFEv- (Gui) and compare 
it with some of the best optimized code for ECC 
and RSA, such as Ed25519 [2]. The other would be 
to verify such optimal Gui code for formal correct
ness. In short, we believe that there is still much to 
be done about the HFEv- digital signature schemes. 
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