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Abstract. We propose a method for integrating NTRUEncrypt into the ntor key exchange protocol 
as a means of achieving a quantum-safe variant of forward secrecy. The proposal is a minimal change 
to ntor, essentially consisting of an NTRUEncrypt-based key exchange performed in parallel with the 
ntor handshake. Performance figures are provided demonstrating that the client bears most of the 
additional overhead, and that the added load on the router side is acceptable. 
We make this proposal for two reasons. First, we believe it to be an interesting case study into the 
practicality of quantum-safe cryptography and into the difficulties one might encounter when transi­
tioning to quantum-safe primitives within real-world protocols and code-bases. Second, we believe that 
Tor is a strong candidate for an early transition to quantum-safe primitives; users of Tor may be jus­
tifiably concerned about adversaries who record traffic in the present and store it for decryption when 
technology or cryptanalytic techniques improve in the future. 

1 Introduction 

A key exchange protocol allows two parties who share 
no common secrets to agree on a common key over 
a public channel. In addition to achieving this ba­
sic goal, key exchange protocols may satisfy various 
secondary properties that are deemed important to 
security in particular settings. Modern key exchange 
protocols typically satisfy some of the following prop­
erties: 

One-way or mutual authentication. A protocol 
achieves mutual authentication if both parties exe­
cuting it can be assured of their peer’s identity. Pro­
tocols such as [4], [13], and [14] must assume that each 
party possesses a certified copy of their peer’s pub­
lic key in order to achieve this goal. While desirable, 
mutual authentication is often difficult to achieve in 
practice, and the weaker property of one-way authen­
tication, in which only one party is authenticated, is 
more common. 

Anonymity. One-way authentication is well suited 
for networks, such as Tor [6], that aim to provide 
their clients with strong anonymity guarantees. In 
such systems, one party (usually the server) pub­
lishes a long-term identity key that may be used for 
authentication, while the other party (the client) re­
mains anonymous. One-way anonymity is provided 
by some Key Encapsulation Mechanisms (KEMs) 

such as [12,23], as well as some Diffie-Hellman proto­
cols like ntor [8]. 

Forward secrecy. A protocol achieves forward secrecy 
if the compromise of any party’s long-term key ma­
terial does not affect the secrecy of session keys de­
rived prior to the compromise. This property is typi­
cally achieved by mixing long-term key material with 
ephemeral, single-use, keys. It is an essential require­
ment for some applications, particularly those where 
an attacker may be able to store encrypted data 
for long periods of time until legal, technological, or 
cryptanalytic means become available for revealing 
keys. 
This feature is more and more desirable with the 

advent of quantum computers, through which crypt-
analytic compromise of long-term keys may become 
a real possibility rather than mostly theoretical con­
cern. There are currently no widely deployed key-
exchange mechanisms capable of resisting quantum 
adversaries. 

(Forward) quantum-resistance. A protocol is 
quantum-resistant (or quantum-safe) if it remains 
secure under the assumption that the adversary can 
perform polynomial time quantum computations. 
There are no widely deployed quantum-safe key 
exchange protocols in use today. All methods based 
on discrete log (Diffie-Hellman, ECDH) and integer 
factorization (RSA) can be broken in polynomial 
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time using quantum Fourier sampling techniques 
[19,20]. 
There are several proposals for quantum-safe key 

exchange mechanisms in the literature, including sev­
eral direct constructions of Diffie-Hellman-like proto­
cols from problems thought to be hard for quantum 
computers [10,16,3]. Another approach, the one taken 
here, is to instantiate a key-encapsulation mechanism 
with a quantum-safe encryption primitive such as 
NTRUEncrypt [9,25]. An example of such an instan­
tiation was proposed in [23]. 
In order for these schemes to be fully quantum-

resistant they would need to maintain their secondary 
attributes in the presence of quantum adversaries. 
For instance, authentication could be achieved us­
ing a pre-shared symmetric key or a quantum-safe 
signature scheme, however both approaches present 
practical challenges. In the short term it seems rea­
sonable to investigate key exchange mechanisms that 
do not provide quantum-safe authenticity, but that 
otherwise resist active classical adversaries and pas­
sive quantum adversaries. We will call such schemes 
forward quantum-resistant. The scheme presented in 
[3] and the one presented here both achieve this prop­
erty. 

Disaster-resistance. We say that a protocol is 
disaster-resistant if its security rests on a heteroge­
neous set of assumptions in such a manner that the 
failure of any one assumption would not compromise 
the security of the entire scheme. This is an especially 
desirable property when deploying new cryptographic 
primitives. 

1.1 Our contribution 

We demonstrate how to incorporate NTRUEn­
crypt into the ntor protocol as a means of achieving 
forward quantum-resistance. The resulting scheme is 
easily seen to inherit the forward secrecy and one-way 
anonymity properties of ntor. 
We propose an instantiation of our scheme at the 

128-bit security level that uses ntruees439ep1 in ad­
dition to the primitives present in the production in­
stantiation of ntor. We have implemented our pro­
posal within the existing Tor codebase, and have 
made our implementation freely available [26]. 
The primary disadvantage of our scheme is the in­

creased byte-size of the handshake messages; NTRU-
Encrypt keys and ciphertexts at the recommended 
security level are approximately 600 bytes. Unfortu­
nately this exceeds the 512-byte cell size for the Tor 

protocol, so incorporating our handshake into Tor 
would not be entirely trivial and would require ei­
ther the definition of a new control message, or an 
increase in cell size. 
Furthermore, since we have avoided heavy cryp­

tographic methods such as quantum-resistant signa­
tures, our protocol does not provide security against 
active quantum adversaries. Fully quantum-resistant 
key exchange may be required in some settings, but 
we believe that a security model that includes pas­
sive, but not active, quantum adversaries is realistic 
for the near future. 

Paper Organization In the next section, we review 
the background necessary for this paper. In Section 
3, we review the building blocks of our protocol. The 
protocol will be presented in Section 4 and its security 
will be analyzed in Section 5. In Section 6, we com­
pare the performance of our protocol with ntor, and 
in Section 7 we explore the feasibility of integrating 
our handshake into the production Tor environment. 

2 Background 

2.1 Notation 

In the rest of the paper, G is always a cyclic group 
of known prime order q, and g is a fixed generator 
of G. We use multiplicative notation for group oper­
ations. Sampling the uniform distribution on a set X 
is denoted by x ←R X. We freely associate any ob ject 
with a bitstring representing it, for instance Hash(gx) 
is presumed to be well defined and unambiguous. The 
concatenation of the strings a and b is denoted by a|b. 
The protocols we will discuss involve two honest 

parties who we will call Alice and Bob. Their iden­
ˆ ˆtities are represented by A and B. In a client-server 

scenario, Bob is the server and Alice is the client. 
ˆParty P has access to a memory M ̂ in which they P 

can store session state. The state for session Ψ is de­
noted M ̂ [Ψ ].P 

2.2 Cryptographic primitives 

Public key primitives The protocols described 
below involve both Diffie-Hellman and NTRUEn­
crypt operations and thus make use of the follow­
ing PPT algorithms. Relevant parameters, G, q, g for 
Diffie-Hellman and M for NTRUEncrypt, are implic­
itly defined as functions of the security parameter λ. 



Â : B̂ : (b, B) 
(x, X) ← DHGen(1λ) (y, Y ) ← DHGen(1λ) 
(pkN , skN ) ← NTRUGen(1λ) 

X, pkN−−−−−−−−−→ 
= Xy |Xb s1 

s2 ←R M 
c ← NTRUEnc(s2, pkN )
 
(vk, K) = H(s1|B̂|X|Y |s2|pkN )
 
auth = Hmac(vk|B̂|Y |X|c|pkN )
 

Y, c, auth ←−−−−−−−−−−− 
= Y x|Bx 

s2 = NTRUDec(c, skN ) 
(vk, K) = H(s1|B̂|X|Y |s2|pkN ) 
ensure auth = Hmac(vk|B̂|Y |X|c|pkN ) 

s1 

Fig. 1. The proposed protocol: ntrutor 

x•	 DHGen(1λ) : Let x ←R [1, q − 1], and X = g . 
Outputs the Diffie-Hellman keypair (x, X), where 
x is the private key and X is the public key. 

•	 NTRUGen(1λ) : Outputs an NTRUEncrypt key-
pair (sk, pk) where sk is the secret key and pk is 
the public key. 

•	 NTRUEnc(m, pk) : Takes as input a message m ∈ 
M, and an NTRUEncrypt public key pk. Outputs 
a ciphertext c. 

•	 NTRUDec(c, sk) : Takes as input a ciphertext c, 
and an NTRUEncryptsecret key sk. Outputs a 
message m ∈ M. 

Key derivation functions A Key Derivation Func­
tion (KDF) [22,1] is a function that takes three inputs 
and outputs a string of £ bits. The three inputs are: 
a sample from a source of keying material, K ∈ K; 
a sample from a set of possible salt values, S ∈ S; 
and a bitstring specifying additional, or contextual, 
information, I. It is understood that the source from 
which the keying material is derived leaks some in­
formation to the environment1 , so the role of a key 
derivation function is to ensure that, despite this in­
evitable leakage, the £ output bits are uniformly ran­
dom. 
Krawczyk presented an instantiation of a KDF 

based on a Hash-based Message Authentication Code 
(HMAC) in [11] and provided a formal definition of 
security for KDFs called m-entropy security. This 

1	 xyFor instance, a Diffie-Hellman handshake might use g
as keying material and leak g x , gy and the group pa­
rameters to the environment. 

definition captures the idea that the output of a 
KDF should be indistinguishable from a uniform £ 
bit string so long as that the conditional min-entropy 
of the keying material, given the naturally leaked in­
formation, is at least m bits. 
The KDF appearing in our protocol is assumed to 

be λ-entropy secure. 

2.3 Related work 

From Diffie-Hellman to ntor. Two parties, Alice 
and Bob, who have publicly agreed on parameters – 
namely a generator g of a group G of prime order q – 
may derive a shared secret in the presence of passive 
eavesdroppers using the Diffie-Hellman protocol [5]. 

xAlice selects x in [1, q − 1] and sends X = g to 
Bob. Similarly, Bob selects y in [1, q − 1] and sends 
Y = gy to Alice. They arrive at the common value 
xyg by computing Y x and Xy respectively. 
The security of this protocol requires that the 

decisional Diffie-Hellman assumption holds for the 
x ygroup G. That is, given g, g , g ∈ G, the element 

gxy is indistinguishable from an element chosen 
uniformly at random from G. This is one of the core 
assumptions of modern cryptography; its apparent 
validity with respect to non-quantum distinguishers 
for some cyclic groups has enabled many crypto­
graphic schemes. 

The authenticated version of the Diffie-Hellman 
protocol presented in Figure 2 was formally analyzed 
by Shoup in [21], although it was likely known prior 



Â : (a, A) B̂ : (b, B) 
(x, X) ← DHGen(1λ) (y, Y ) ← DHGen(1λ) 
σA = Signa(X| B̂) 

X, σA 

σB = Signb(Y | Â) 

−−−−−−−−→ 
Y, σB←−−−−−−−− 

K = Y x K = Xy 

Fig. 2. The signed Diffie-Hellman key exchange pro­
tocol. 

to that analysis. It is sometimes referred to as the 
signed Diffie-Hellman protocol. 
In this protocol each party must produce a signa­

ture on their public group element and their peer’s 
identity. By verifying Alice’s signature, Bob is con­
vinced that the group element he received has come 
from Alice, and vice versa. 
Signed Diffie-Hellman suffers from several short­

comings, the most troubling being that leakage of an 
ephemeral key allows an adversary to impersonate 
the leaked key’s owner in subsequent sessions. 

Â : (a, A) B̂ : (b, B) 
(x, X) ← DHGen(1λ) (y, Y ) ← DHGen(1λ) 

X−−−−−→ 
Y←−−−−− 

K = Hash(Y a|Bx|Â|B̂) K = Hash(Ay |Xb|Â|B̂) 

Fig. 3. The KEA+ key exchange protocols 

This and other weaknesses are addressed in the 
KEA+ protocol of Lauter and Mityagin [14]. KEA+ 
avoids the aforementioned impersonation attack by 
deriving the shared secret from a combination of long-
and short-term key material contributed by both par­
ties (see Figure 3). Specifically, the parties derive two 

bxshared secrets gay, and g where a, b are long-term 
secrets and x, y are short-term secrets. These values 
are hashed, along with the identities of both parties, 
produce the final key. The inclusion of the identities is 
crucial for preventing unknown key share attacks[14]. 
Finally, we have arrived at ntor [8], the one-way 

authenticated key exchange protocol that is used in 
recent versions of Tor [6]. The ntor protocol can be 
seen as a variant of KEA+ in which Alice does not 

reveal a long-term secret, is not authenticated, and 
is allowed to remain anonymous. As detailed in Fig­
ure 4, the parties derive two shared secrets, the first 
gxy combines the parties’ short-term key material, 
and the second gbx mixes Alice’s short-term key with 
Bob’s long-term key. The latter value ensures that 
Alice maintains the ability to authenticate Bob, and 
the former provides forward secrecy against leakage 
of Bob’s long-term key. 

Â : B̂ : (b, B) 
(x, X) ← DHGen(1λ) (y, Y ) ← DHGen(1λ) 

X−−−−−→ 

Y, auth 

s1 = Xy|Xb 

(vk, K) = H1(s1| B̂|X|Y ) 
auth = H2(vk| B̂|Y |X) 

←−−−−−−−−− 
= Y x|Bx 

(vk, K) = H1(s1|B̂|X|Y ) 
ensure auth = Hash1(vk|B̂|Y |X) 

s1 

Fig. 4. The ntor protocol 

Key encapsulation mechanisms. Diffie-Hellman 
protocols are far from the only method by which two 
parties may derive a common key over a public chan­
nel. Among the many alternatives are Key Encapsu­
lation Mechanisms (KEMs). 

ˆ ˆA : B : (b, B)
 
m ←R M
 
c ← EncryptB (m)
 

c−−−−→ 
m = DecryptB (c) 

K = KDF(m) K = KDF(m) 

Fig. 5. The key encapsulation mechanisms 

In a KEM, Alice encrypts a random message to 
Bob using Bob’s long-term public key. Bob then de­
crypts the received ciphertext and the parties derive 
a shared secret from Alice’s message using a Key 
Derivation Function (KDF). Such a KEM provides 
one-way authentication and one-way anonymity: Al­
ice may remain anonymous during the execution of 



the protocol, as the shared secret does not depend 
on any value linked to her identity; and Alice is able 
to authenticate Bob, as she has an authentic copy of 
his public key and only he can decrypt her message. 
Forward secrecy, however, is notably lacking. If Bob’s 
long-term key is compromised then confidentiality is 
lost for every session previously established. 

3 Security model 

The ntor protocol was analyzed in a variant of the ex­
tended Canetti-Krawczyk (eCK) model with support 
for one-way authentication [8]. For continuity with 
this work we will use essentially the same model, but 
we must make a slight modification in order to argue 
for quantum-safe forward-secrecy. Fortunately most 
of the machinery needed for this was developed in 
[15], which proposed an extension to the model of [8] 
for the purpose of analyzing authenticated quantum 
key expansion protocols. In the model of [15] (here­
after MSU) all parties, including the adversary, have 
access to a quantum Turing machine capable of exe­
cuting algorithms with runtime bounded by tq (λ) and 
memory bounded by mq(λ). The inclusion of explicit 
bounds allows us to more accurately model the types 
of quantum computations which are feasible today 
and in the near future. 

3.1 Communication and adversary model 

In the MSU model a party is an interactive classical 
Turing machine. A party has access to a memory, a 
random tape, and a bounded time/memory quantum 
Turing machine. 
Each party has a public identifier represented by 

ˆa capital letter with a hat (e.g. A). These identifiers 
are used for routing communication and for register­
ing certificates. There is a privileged party, labeled 
by Ĉ, that serves the role of certificate authority and 
with whom all communication is guaranteed to be 
authentic. As in the eCK model, parties do not prove 
knowledge of a private key when registering a public 
key with the certificate authority. This allows the ad­
versary to bind an arbitrary public key to an identity 
they control, even if that public key is owned by an­
other party. The adversary cannot, however, register 
a public key for a party that they do not control. 
Parties may have several asymmetric value pairs 

in memory at any given time. These are denoted by 
(x, X ) where x is a secret value, such as a private key, 

and X is a public label for x (often the corresponding 
public key). 
Parties communicate with each other via activation 

requests. These requests are created either directly by 
the adversary or in response to previous requests from 
the adversary. The parties are assumed to execute the 
protocol honestly, but the adversary can record, mod­
ify, delete, or attempt to forge requests made by other 
parties. A session is started when the adversary re­
quests that a party initiate a protocol with another 
party of the adversary’s choosing. Each party partic­
ipating in a session ascribes a locally unique session 
identifier, ΨP̂ , to the session. Session identifiers are 
known to the adversary. 
After running their respective parts of the protocol, 

the participating parties output either an error sym­
bol, ⊥, or a tuple of the form (sk, pid, v, u). Once all 
parties have produced an output the session is consid­
ered completed. Prior to completion a session is called 
active. 
The values in a party’s output tuple,2 

(sk, pid, v, u), respectively identify: the session 
key, the identity of the peer with whom the session 
key is believed to have been established, a nested list 
of the public values used to derive sk, and a nested 
list of the public values used for authenticating the 
peer pid. If the peer was unauthenticated (anony­
mous) during the execution of the protocol then the 
token ® is used for pid and the list u will be empty. 
The following activation requests are defined:3 

•	 Req(id, command, arguments, protocol): This ac­
tivation request directs the intended recipient 
(specified by id) to perform the action speci­
fied by command using arguments as input. The 
protocol is included to ensure that the command 
is well defined. This is the only request type that 

2	 The output tuple was introduced in [8] as an enhance­
ment to traditional AKE security models where the 
adversary-learnable values must be specified at the 
model level. The output tuple encodes which values are 
learnable at the protocol level, and thereby allows for 
the comparison of protocols that would have been in­
comparable in earlier AKE models. 

3	 Several more requests are defined in the full MSU 
model; for simplicity we have omitted requests for de­
scribing quantum communication and the requests de­
scribing the interaction of classical and quantum Tur­
ing machines. We have also merged the two variants of 
the SendC request from MSU into our Req request, and 
added id parameters where they were implicit in MSU. 
These are purely syntactic changes. 



ordinary parties can issue, the rest may only be 
issued by the adversary. 

•	 RevealNext(id, type) → X: This request allows 
the adversary to learn the public value of the spec­
ified type that the party id will use next. For in­
stance, RevealNext( ˆ Â to generate A, DH) causes 
a new Diffie-Hellman key (x, X ) ← DHGen and 
to return X to the adversary. The pair (x, X ) 

ˆis marked as unused and the next time A would 
call DHGen (in response to a request other than 
RevealNext) it will retrieve (x, X ) instead. Suc­
cessive RevealNext queries allow the adversary to 
learn the next k public values of any type that 
the party will use. 

•	 Partner(id, label) → x: This request allows the ad­
versary to learn the secret value associated with 
the given public label. For instance, in response 
to Partner( ˆ Â returnsA, X ) the Turing machine 
x. The session key is labeled by the session ID its 
owner ascribes to it, i.e. the adversary can learn 

ˆthe key for a session Ψ owned by the party A by 
querying Partner( Â, Ψ ). 

The adversary can issue any number of these requests 
in any order. 
Partnering to a value is a very important concept 

in this model. 

Definition 1 (Partnering). If (x, X ) is a value 
ˆpair owned by A, then the adversary is said to 

be a partner to X if and only if it has queried 
Partner( Â, X ). 

The structure of honest parties’ output vectors, i.e. 
the segregation of labeled values into those associated 
with keying material, v, and those associated with 
authentication, u, allows for fine grained control over 
which values the adversary may learn through part­
nering as well as when the adversary may them. With 
the exception of the session key, labeled values that 
appear in neither v nor u are not able to be learned 
by the adversary through partnering. 

3.2 Security definitions 

We now give the security definitions that will be used 
in our security arguments in Section 5. 

Definition 2 (Correctness [15]). A key exchange 
protocol is said to be correct if, when all protocol mes­
sages are relayed faithfully, without changes to con­
tent or ordering, the peer parties output the same ses­
sion key K and vector v. 

Security will be defined with respect to a game 
the adversary plays after making some (polynomial 
in λ) number of activation requests and observ­
ing/manipulating the honest parties’ results. The ad­
versary starts the game by issuing the following query 
to an oracle: 

•	 Test(id, Ψ ) → {0, 1}λ : If the party specified by id 
has not output a vector for session Ψ the oracle re­
turns ⊥. Otherwise, the oracle chooses b ← {0, 1}
uniformly. If b = 1 it returns the session key cor­
responding to Ψ . If b = 0 it returns a uniform 
random string in {0, 1}λ . 

The adversary may only issue one Test query. 

Definition 3 (Fresh session [15]). A session Ψ 
ˆowned by an honest party Pi is fresh if all of the fol­

lowing occur: 

1. For every vector vj , in P̂i’s output for session Ψ , 
there is at least one element X in vj such that 
the adversary is not a partner to X. 

2. The adversary did not issue Partner(P̂j , Ψ ') to 
any honest party P̂j for which Ψ ' has the same 
public output vector as Ψ (including the case 
where Ψ ' = Ψ and P̂j = P̂i. 

3.	 At the time of session completion, for every vec­
tor uj , in P̂i’s output for session Ψ , there was at 
least one element X in uj , such that the adver­
sary was not a partner to X. 

Note that the session is not fresh if either v or u is 
empty. In particular sessions established with anony­
mous peers are not fresh. 

Definition 4 (Security [15]). Let λ be a security 
parameter. An authenticated key exchange protocol is 
secure (or (tc(λ), tq(λ), mq(λ))-secure) if, for all ad­
versaries A with classical runtime bounded by tc(λ), 
quantum runtime bounded by tq(λ), and quantum 
memory bounded by mq(λ), the advantage of A in 
guessing the bit b used in the Test query of a fresh ses­
sion is negligible in the security parameter; in other 
words, the probability that A can distinguish the ses­
sion key of a fresh session from a random string of 
the same length is negligible in λ. 

Freshness delineates the situations in which secu­
rity is relevant. Note that with these definitions of 
freshness and security the adversary can partner to 
some of the keying material from each vi, and pre­
serve the freshness of the session, either while the 
session is active or after the session is complete, but 



cannot partner to all values in any vi at any time. 
The adversary is similarly limited in the ui compo­
nents to which it can be partnered while a session is 
active, but is allowed to partner to the entire u vector 
after completion. 

Definition 5 (Forward-secrecy). An authenti­
cated key exchange protocol provides forward secrecy 
if it is secure under Definition 4 and for every fresh 
session Ψ the following conditions are met: 

1. Every long-term value	 used by an honest party 
during the execution of session Ψ is labeled by at 
least one component of u. 

2. If the adversary is not partnered to any compo­
nent of v, then Ψ would remain fresh if the ad­
versary partnered to every component of u. 

Definition 6 (Quantum-resistance). An authen­
ticated key exchange protocol provides quantum-
resistance if it is (tc(λ), tq(λ), mq(λ))-secure for poly­
nomially bounded tc(λ) = tq(λ) = mq(λ). 

In analogy with the definition of long-term security 
provided in [15] we propose the following definition 
of forward quantum-resistance. This definition aims 
to capture the possibility of an adversary who, in an 
attempt to win the Test game, passes a transcript of 
observed activation requests to a collaborator that 
has access to a more powerful quantum Turing ma­
chine. 

Definition 7 (Forward quantum-resistance). 
Let π be a (tc(λ), tq (λ), mq(λ))-secure authenticated 
key exchange protocol. Let A be an adversary as in 
Definition 4, let κ ∈ {0, 1}λ be the result of A’s 
query, Test( ˆ on fresh Ψ .P , Ψ ), a session Finally 
let T be a transcript of classical and quantum bits 
output by A after a (tc(λ), tq (λ), mq(λ))-bounded 
computation. 
We say π is forward quantum-resistant with re­

spect to A if, for al l quantum Turing machines M 
with runtime bounded by tq 

' = tc(λ) and memory 
' bounded by mq = tc(λ), the advantage of M, given 

(T , κ), in guessing the bit b that was used in the Test 
query is negligible in λ. 
We say that π is forward quantum-resistant if it is 

forward quantum resistant with respect to all adver­
saries A meeting the above criteria. 

4 Protocols 

4.1 The ntor protocol 

The general outline of ntor was provided in the Sec­
tion 2.3. So as to fully illustrate our method, we first 
present the construction from [8] using the model of 
[15] before presenting our protocol. 
The protocol identifier ntor implicitly defines a se­

curity parameter, λ, Diffie-Hellman parameters, and 
two hash functions: 

Hmac : {0, 1} ∗ → {0, 1}λ 

H : {0, 1} ∗ → {0, 1}λ × {0, 1}λ 

Under normal operation the ntor protocol can be 
modeled by the following sequence of activation re­

ˆ ˆquests involving the parties A, B and the certificate 
ˆauthority C: 

1.	 Req( ˆ “init server”, (∅), ntor),B , 
2.	 Req( Â, “f etch certif icates”, (∅), ntor), 
3.	 Req( ˆ B), ntor),A, “start”, ( ˆ

4.	 Req(B , ˆ “respond”, (Ψ ̂ A, ˆA, 
ˆ B, X ), ntor)), 

5.	 Req( ˆ , Y , auth), ntor).A, “f inish”, (Ψ ̂A 

At each step the parties’ behavior is governed by the 
following rules: 

1. On Req( ˆ	 B̂:B, “init server”, (∅), ntor) 
• Generates a long-term keypair, 

(b, B) ← DHGen(1λ). 

• Issues Req( ˆ B), ntor).C , “register”, (B, ˆ

2. On Req( ˆ	 Â:A, “f etch certif icates”, (∅), ntor) 
•	 Retrieves a list of all registered certificates 

ˆfrom C. 
• Stores the received certificates in memory, 

M ̂ [“certs”] ← (cert1, . . . , certn).A 

3. On Req(A,ˆ “start”, (B̂), ntor) Â: 
• Searches M ̂ [“certs”] for a valid certificate A 

ˆfor B or outputs ⊥ if none is found. 
• Creates a new session, ΨÂ. 
• Generates an ephemeral DH keypair 

(x, X ) ← DHGen(1λ). 

• Stores M ̂ [Ψ ̂ ] ← ( B̂, (x, X ), ntor).A	 A 
ˆ• Issues Req(B, ˆ “respond”, (ΨÂ, A, B̂, X ), ntor)). 

ˆ ˆ4. On Req( ˆ A, A, ˆ B:B, “respond”, (Ψ ̂ B, X ), ntor)) 
• Verifies X ∈ G, or outputs ⊥. 
• Creates a new session, ΨB̂ . 



•	 Generates an ephemeral DH keypair 

(y, Y ) ← DHGen(1λ). 

•	 Sets s1 = Xy|Xb . 
•	 Sets (vk, K ) = H(s1|B|X|Y |ntor). 
•	 Sets auth = Hmac(vk|B|Y |X|ntor|“Server”). 
•	 Issues Req( ˆ , Y, auth), ntor).A, “f inish”, (Ψ ̂A 
•	 Deletes y, s1. 
•	 Outputs (K, ®, ((X), (Y , B)), ((∅))). 

5. On Req( ˆ “f inish”, (Ψ ̂ Â:A, , Y , auth), ntor)A 
• Verifies M ̂ [Ψ ̂ ] exists or outputs ⊥.A A 
•	 Verifies Y ∈ G and that c is a valid ciphertext 
or outputs ⊥. 

•	 Sets s1 = Y x|Bx . 
•	 Sets (vk, K ) = H(s1|B|X|Y |ntor). 
•	 Ensures auth = 

Hmac(vk|B|Y |X|ntor|“Server”) 
or outputs ⊥. 

•	 Deletes M ̂ [Ψ ̂ ] and s1.A A 

•	 Outputs (K, B̂, ((X), (Y, B)), ((B))). 

If either party outputs ⊥, it is assumed that both 
parties abort the protocol and delete all temporary 
state. 

4.2 The proposed protocol 

The protocol identifier ntrutor implicitly defines a se­
curity parameter, λ, a DH group G, and two hash 
functions: 

Hmac : {0, 1} ∗ → {0, 1}λ 

H : {0, 1} ∗ → {0, 1}λ × {0, 1}λ 

It additionally specifies a λ-bit secure NTRUEncrypt 
parameter set. 
Under normal operation the ntrutor protocol can 

be modeled by the following sequence of activation 
requests involving the parties Â, B̂ and the certificate 

ˆauthority C: 

1.	 Req( B̂, “init server”, (∅), ntrutor), 
2.	 Req( Â, “f etch certif icates”, (∅), ntrutor), 
3.	 Req( ˆ B), ntrutor),A, “start”, ( ˆ

ˆ4.	 Req( ˆ A, B , X, pkN ), ntrutor)),B, “respond”, (Ψ ̂ A, ˆ

5.	 Req( ˆ , Y, c, auth), ntrutor).A, “f inish”, (Ψ ̂A 

At each step the parties’ behavior is governed by the 
following rules: 

1. On Req( ˆ	 B̂:B, “init server”, (∅), ntrutor) 
•	 Generates a long-term keypair, 

(b, B) ← DHGen(1λ) 

•	 Issues Req( ˆ B), ntrutor).C , “register”, (B, ˆ

2. On Req( ˆ Â:A, “f etch certif icates”, (∅), ntrutor) 
•	 Retrieves a list of all registered certificates 

ˆfrom C. 
•	 Stores the received certificates in memory, 

[“certs”] ← (cert1, . . . , certn).MÂ

3. On Req(A,ˆ “start”, (B̂), ntrutor) Â: 
•	 Searches M ̂ [“certs”] for a valid certificate A 

ˆfor B or outputs ⊥ if none is found. 
•	 Creates a new session, ΨÂ. 
•	 Generates an ephemeral DH keypair 

(x, X ) ← DHGen(1λ). 

•	 Generates an ephemeral NTRU keypair 

(skN , pkN ) ← NTRUGen(1λ). 

•	 Stores 

] ← ( ˆM ̂ [Ψ ̂ B, (x, X ), (skN , pkN ), ntrutor).A A 

ˆ•	 Issues Req( ˆ A, B, X, pkN ), ntrutor)).B, “respond”, (Ψ ̂ A, ˆ

ˆ4. On Req( ˆ A, B, X, pkN ), ntrutor))B, “respond”, (Ψ ̂ A, ˆ

B̂: 
•	 Verifies X ∈ G and that pkN is a valid 
NTRUEncrypt key, or outputs ⊥; 

•	 Creates a new session, ΨB̂ . 
•	 Generates an ephemeral DH keypair 

(y, Y ) ← DHGen(1λ). 

•	 Samples s2 ←R {0, 1}λ . 
•	 Encrypts s2 under pkN : 

c ← NTRUEnc(s2, pkN ). 

•	 Sets s1 = Xy |Xb . 
•	 Sets (vk, K ) = H(s1|B|X|Y |s2|pkN |ntrutor). 
•	 Sets auth = 

Hmac(vk|B|Y |X|c|pkN |ntrutor|“Server”). 
•	 Issues
 
Req( ˆ , Y , c, auth), ntrutor).
A, “f inish”, (Ψ ̂A 

•	 Deletes y, s1 and s2. 
•	 Outputs (K, ®, ((X, pkN ), (Y, B, pkN )), ((∅))). 

5. On Req(A,ˆ “f inish”, (Ψ ̂ , Y, c, auth), ntrutor) Â:A 
•	 Verifies M ̂ [Ψ ̂ ] exists or outputs ⊥.A A 
•	 Verifies Y ∈ G and that c is a valid ciphertext 
or outputs ⊥. 

•	 Decrypts c using skN and sets 

s2 = NTRUDec(c, skN ). 

•	 Sets s1 = Y x|Bx . 
•	 Sets (vk, K ) = H(s1|B|X|Y |s2|pkN |ntrutor). 



• Ensures auth = 

Hmac(vk|B|Y |X|c|pkN |ntrutor|“Server”) 
or outputs ⊥. 

• Deletes M ̂ [Ψ ̂ ], s1 and s2.A	 A 
•	 Outputs
 

(K, ˆ
B, ((X, pkN ), (Y , B, pkN )), ((B), (X))). 

If either party outputs ⊥, it is assumed that both 
parties abort the protocol and delete all temporary 
state. 

4.3 Comparison 

ˆIn ntor the initiating party, A, outputs 

(K, B̂, (v0 = (X), v1 = (Y, B)), (u0 = (B))). 

Since the output vector dictates the conditions under 
which a session is deemed fresh, and freshness is a 

ˆnecessary precondition for security, we can read A’s 
output as specifying the scenarios that would defi­
nitely compromise an ntor session. Clearly each party 
must contribute some non-compromised keying mate­
rial in order for the session to be secure. Consequently 
we see that the component v0 dictates that the adver­
sary must never partner to the initiator’s ephemeral 
key, and v1 dictates that the adversary must never 
partner to both B and Y . Likewise, an ntor session 
cannot possibly be secure if the authenticated party’s 
longterm key was compromised prior to or during the 
session; and so, u0 requires that the adversary does 
not partner to B prior to session completion. 
In ntrutor the initiating party outputs 

(K, B̂, ((X, pkN ), (Y , B, pkN )), ((B), (X))). 

By a similar reading, we see that the adversary may 
partner to Y or pkN at any time, but must not part­
ner to X or B while the session is active. After the 
session is completed the adversary may partner to any 
subset (or all) of the DH values provided it does not 
partner to pkN , or it may partner to pkN provided it 
does not partner to X. Collectively these rules model 
the claim that ntrutor is secure against the failure 
of either the Diffie-Hellman or the NTRU assump­
tion after session completion, but that it relies on the 
Diffie-Hellman assumption while the session is active. 
It is also worth pointing out that, to achieve better 

efficiency, we do not rely on one-time signatures to 
bind s1 and s2. See Appendix A for more details. 

5 Security 

In this section we give an argument for the Definition 
4 security of ntrutor in the random oracle model. 

Theorem 1. If there exists an algorithm A that 
breaks the security of ntrutor when KDF is instanti­
ated with a random oracle, then one can construct an 
algorithm B that solves the gap Diffie-Hellman prob­
lem in G with non-negligible probability, or breaks the 
semantic security of NTRUEncrypt. 

Proof. Suppose that Ψ is a fresh ntrutor session owned 
by party P P , Ψ ) does not return ⊥.ˆ and Test( ˆ The 

ˆparty P is necessarily an initiator (by definition of 
Test), and has output a tuple of the form 

(K, B̂, ((X, pkN ), (Y, B, pkN ), ((B), (X)))). 

Since the KDF is modeled as a random oracle, the 
Test challenge is indistinguishable from a uniform 
random λ-bit string unless A has queried the oracle 
with exactly the same input as P̂ , specifically4: 

CDH(X, Y ) | CDH(X, B) | NTRUDec(c, skN ). 

The algorithm B is given black-box access to A 
and simulates the environment with which A inter­
acts. B takes as input a CDH instance (U, V ) and an 
instance of the semantic security game for NTRUEn­
crypt, specifically a pair of messages m0, m1, a public 
key k c promised to be an encryp­pk, and a ciphertext C
tion of either m0 or m1 under kpk. 
Let n = poly(λ) be the number of parties A will 

initialize in the responder role and let ki = poly(λ) 
ˆfor i ∈ [1, n] be the number of sessions in which Pi 

will participate.5 

The algorithm B begins by selecting distinct party 
indices i, j ∈ [1, n], session indices £ ∈ [1, ki], m ∈ 
[1, kj ], and a bit r uniformly at random. We denote 
by P̂1 and P̂2 the parties indexed by i and j; similarly 
we let Ψ1 and Ψ2 denote the sessions involving P̂1 and 
P̂2 indexed by £ and m respectively. 
Having fixed these values B begins the simulation 

and handles A’s activation requests in accordance 
with the ntrutor protocol with the following excep­
tions6: 

4	 Here we have rearranged the inputs and omitted public 
values such as the parties’ public keys and the string 
ntrutor for compactness 

5 We fix these quantities for convenience, B could search 
for the correct values with polynomial overhead. 

6 Not included in this list, but still important to note, 
ˆis that if r = 1 then B does not know P1’s long-term 

secret and is unable to handle any “respond” requests 
ˆinvolving P1 honestly. However since B simulates all of 

the parties it can use the initiator’s ephemeral secret 
to produce s1 as Xy |Bx and can, otherwise, still follow 
the protocol in these situations. 



1. If r = 1, then in response to “init server” request 
number	 i, B registers V as the longterm public 

ˆkey of P1. 
2. We assume that “start” request number £ involv­

ˆ ˆing P1 is directed at an anonymous party, A1 

(otherwise B aborts). In response to this request, 
ˆB simulates A1 by performing the normal input 

validation, session creation, and NTRUGen rou­
tines, but skips DHGen and inserts U into the out­
going “respond” request in place of an ephemeral 
DH key. 

ˆIf r = 0 then B simulates the response of P1 by 
generating c honestly, selecting K and auth uni­
formly at random, and inserting V into the out­
going “finish” request instead of the ephemeral 
DH key. 

ˆIf r = 1 then B simulates the response of P1 by 
generating both c and Y honestly, and selecting 
K and auth uniformly at random. 
Finally B simulates the response of Â1 to the “fin­
ish” request by outputting 

(K, P̂1, ((U, pkN ), (V, B, pkN )), ((B), (U))) 

in the r = 0 case and 

(K, P̂1, ((U, pkN ), (Y, V, pkN )), ((V ), (U))) 

in the r = 1 case. 
3. We assume that “start” request number m involv­

ing P̂2 is directed at an anonymous party, Â2. In 
ˆresponse to this request, B simulates A2 by per­

forming the normal input validation, session cre­
ation, and DHGen routines, but skips NTRUGen 
and inserts k re­pk into the outgoing “respond” 
quest in place of an ephemeral NTRU key. 

ˆB simulates the response of P2 by selecting K 
and auth uniformly at random, and inserting Cc 
into the “finish” request. The simulated output 

ˆof A2 in response is 

(K, P̂2, ((X, k pk)), ((B), (X))).pk), (Y , B, k
4. If	 B cannot simulate one of A’s activation re­

quests, for instance a Partner query involving U , 
then B aborts the simulation. 

Suppose that B has not aborted the simulation and 
A queries Test on some session. Since B chose the ses­
sions to modify uniformly at random, and A cannot 
distinguish these sessions from the others, there is 
a non-negligible probability that A selects either Ψ1 

or Ψ2 for its Test query. There are now two cases to 
consider. 

Case 1. A has queried Test on session Ψ1. Since B 
did not abort, A has not issued a Partner query for 

the initator’s ephemeral DH key, and is partner to at 
most one of the responder’s DH keys depending on r. 
We show that B can extract a CDH solution from A. 
Suppose r = 0. The initator’s output is 

(K, P̂1, ((U, pkN ), (V , B , pkN ), ((B), (U)))), 

and since A has not issued partner requests for U 
or V it cannot distinguish this output from an hon­
estly generated one. Recall that in the random oracle 
model A wins the Test challenge iff it queries 

CDH(U, V ) | CDH(U, B ) | NTRUDec(c, skN ). 

B uses the DDH oracle to recognize this query among 
all of the those made by A, and in doing so extracts 
the solution CDH(U, V ) to its input. 
Now suppose r = 1. The initator’s output is 

(K, P̂1, ((U, pkN ), (Y , V , pkN ), ((V ), (U)))), 

and again A cannot distinguish this output from an 
honestly generated one. As above, B is able to extract 
CDH(U, V ) from A’s random oracle query by checking 
each query with the DDH oracle. 

Case 2. A has queried Test on session Ψ2. Since B did 
not abort, A has not issued a Partner query for the 
initator’s ephemeral NTRU key, but may be partner 
to any or all of the DH values. We show that B can 
break the semantic security of NTRUEncrypt. 
The initiator’s output is 

(K, P̂2, ((X, k pk), ((B), (X)))).pk), (Y , B, k kWithout loss of generality assume NTRUDec(C sk) = c, 
m0. Then A wins the Test challenge iff it queries 

CDH(X, Y ) | CDH(Y , B) | m0. 

Such queries are easily identified and, with all but 
negligible probability, A does not make a similar 
query containing m1. As such, by examining A’s 
queries, B can break the semantic security of NTRU-
Encrypt. 

Recall that we assume A wins the Test challenge 
with non-negligible advantage in a non-simulated en­
vironment. By the freshness condition it can do so 
either by partnering to the test session’s ephemeral 
NTRU key and at most one of the DH values, or 
without partnering to the ephemeral NTRU key. A 
cannot detect when it is in the simulated environ­
ment, so its advantage carries over. If it succeeds af­
ter partnering to the ephemeral NTRU key, then by 
case 1 above B solves its GDH instance with non-
negligible probability. Otherwise, by case 2, B breaks 
the semantic security of NTRUEncrypt. D 



5.1 Related security concerns 

One-way anonymity The one-way anonymity (as de­
fined in [8]) of our protocol follows immediately from 
the one-way anonymity of ntor as proven in [8]. In­
tuitively, the only additional information in an ntru­
tor transcript is a set of ephemeral NTRUEncrypt pub­
lic keys, and these are non-identifying. For a full 
proof, Partner(·, pkN ) queries must be forbidden in 
addition to Partner(·, X ) queries. 

Forward Secrecy Our protocol clearly meets the cri­
teria for forward secrecy in Definition 5. The respon­
der’s certified key, B, is the only long-term value ap­
pearing in the protocol, and B is included in a u 
component of the initiator’s output. Furthermore, the 
adversary who does not partner to X, Y or pkN may 
partner to B after session completion without violat­
ing freshness. 

Quantum resistance Our protocol is not quantum-
resistant under Definition 6, as a fully quantum ad­
versary can compute the discrete logarithm of a long-
term authentication key and use it to violate the au­
thenticity of new sessions. 

Forward quantum-resistance Our protocol is forward 
quantum-resistant under Definition 7. We model 
cryptanalytic attacks on DH components as Partner 
queries. If an adversary uses a quantum computer to 
solve the relevant CDH instances they are partner to 
X, Y , and B. This precludes them from partnering 
to pkN without violating the freshness of the session. 
By Theorem 1, since the attacker is not partner to 
pkN , violating the security of ntrutor implies break­
ing the semantic security of NTRUEncrypt. Since this 
is assumed to be hard even for quantum adversaries, 
the protocol is forward quantum-resistant. 

Multiple Encryptions In [7], Dodis and Katz pre­
sented the notion of CCA security of multiple en­
cryptions. 
In a multiple encryption setting, one party splits a 

message into many blocks, and encrypts each block 
using a (different) ciphersuit. The other party then 
decrypts those ciphertext and combines the blocks 
to recover the message. It is observed in [7] that al­
though individual ciphersuits are secure, combining 
them together may leak information. In such scenar­
ios, depending on the security level, an attacker is 
given different powers. We provide more details in 
the Appendix. 

Those assumptions are adequate for encryptions 
since it is quite usual for different encrypted blocks 
to be transmitted via different links, and assuming 
that some of the links are compromised is quite nat­
ural. While in a key agreement protocol, those set­
tings appear to be unnecessarily strong: the attacker 
is allowed to query each encryption scheme on its 
challenge ciphertext, just not at the same time. In 
other words, the attacker can query PartialReveal on 
both s1 and s2 without compromising the freshness 
of a session - which violates the 1-AKE freshness of 
our model. 
Nevertheless, we remark that our protocol is weak 

Multiple CCA secure. Indeed, a proper security 
model for our protocol with respect to MCCA lies 
in between weak MCCA and normal MCCA. See the 
Appendix for more details. 

6	 Implementation and performance 
characteristics 

TAP ntor ntrutor 
client → server bytes 
server → client bytes 

186 
148 

84 
64 

693 
673 

client computation (stage 1) 
server computation 

client computation (stage 2) 

280 µs 
771 µs 
251 µs 

84 µs 
263 µs 
180 µs 

272 µs 
307 µs 
223 µs 

total computation time 
% client 

1302 µs 
40.8% 

527 µs 
50.1% 

802 µs 
61.7% 

Table 1. Performance comparison of TAP, ntor, and 
ntrutor 

We have implemented our protocol [18] with 
curve25519, ntruees439ep1 and sha256 and integrated 
it into Tor-0.2.5.6-alpha [17]. This parameteriztation 
provides an estimated λ = 128 bit security level 
against both active classical adversaries and passive 
quantum adversaries. 
Benchmarks comparing our instantiation’s perfor­

mance with that of ntor and that of the legacy Tor 
handshake (TAP) are presented in Table 1. The data 
was gathered using Tor’s internal benchmarking util­
ity on an Intel Core i7-2640M CPU at 2.80GHz with 
TurboBoost disabled. RSA and Z∗ Diffie-Hellman op­p 
erations for TAP were provided by OpenSSL 1.0.1i. 
The elliptic curve DH operations for ntor and ntru­
tor were performed by the donna c64 implementa­
tion of curve25519 from NaCL-20110221 [2]. The 



ntruees439ep1 operations were provided by the NTRU 
reference code from Security Innovation [24] compiled 
with SSSE3 support. 

7 Conclusion and future work 

We have presented a key exchange protocol that 
satisfies reasonable definitions of security, one-way 
authenticity, forward secrecy, quantum forward-
resistance. We have also demonstrated that the 
scheme is practical, and compares favorably with pro­
tocols that are currently widely deployed. 
Our proposal inherits all of the security properties 

of the original ntor protocol, but also enjoys forward 
quantum-resistance due to NTRUEncrypt. We leave 
the development of a protocol satisfying our notion 
of quantum-resistance (Definition 6), as well as the 
definition of a model in which disaster-resistance can 
be considered, to future work. While it would be rel­
atively straightforward to define a quantum-resistant 
authenticated key exchange protocol using available 
quantum-safe authentication mechanisms, more re­
search needs to be done into making these mecha­
nisms efficient before a fully quantum-resistant au­
thenticated key exchange protocols are practical. 

References 

1.	 Carlisle M. Adams, Guenther Kramer, Serge Mis­
ter, and Robert J. Zuccherato. On the security of 
key derivation functions. In Kan Zhang and Yuliang 
Zheng, editors, ISC, volume 3225 of Lecture Notes in 
Computer Science, pages 134–145. Springer, 2004. 

2.	 Daniel J. Bernstein, Tanja Lange, and Peter 
Schwabe. NaCL: Networking and Cryptography Li­
brary. http://nacl.cr.yp.to/, 2011. 

3.	 Joppe W. Bos, Craig Costello, Michael Naehrig, and 
Douglas Stebila. Post-quantum key exchange for the 
tls protocol from the ring learning with errors prob­
lem, August 2014. 

4.	 Ran Canetti and Hugo Krawczyk. Analysis of key-
exchange protocols and their use for building secure 
channels. In Birgit Pfitzmann, editor, EUROCRYPT, 
volume 2045 of Lecture Notes in Computer Science, 
pages 453–474. Springer, 2001. 

5.	 Whitfield Diffie and Martin E. Hellman. New direc­
tions in cryptography. IEEE Transactions on Infor­
mation Theory, 22(6):644–654, 1976. 

6.	 Roger Dingledine, Nick Mathewson, and Paul F. 
Syverson. Tor: The second-generation onion router. 
In Matt Blaze, editor, USENIX Security Symposium, 
pages 303–320. USENIX, 2004. 

7.	 Yevgeniy Dodis and Jonathan Katz. Chosen-
ciphertext security of multiple encryption. In Joe 
Kilian, editor, TCC, volume 3378 of Lecture Notes 
in Computer Science, pages 188–209. Springer, 2005. 

8.	 Ian Goldberg, Douglas Stebila, and Berkant Us­
taoglu. Anonymity and one-way authentication in 
key exchange protocols. Des. Codes Cryptography, 
67(2):245–269, 2013. 

9.	 Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silver-
man. NTRU: A ring-based public key cryptosystem. 
In Joe Buhler, editor, ANTS, volume 1423 of Lecture 
Notes in Computer Science, pages 267–288. Springer, 
1998. 

10.	 David Jao and Luca De Feo. Towards quantum-
resistant cryptosystems from supersingular elliptic 
curve isogenies. In Bo-Yin Yang, editor, Post-
Quantum Cryptography, number 7071 in Lecture 
Notes in Computer Science, pages 19–34. Springer 
Berlin Heidelberg, January 2011. 

11.	 Hugo Krawczyk. Cryptographic extraction and key 
derivation: The hkdf scheme. In Tal Rabin, editor, 
CRYPTO, volume 6223 of Lecture Notes in Computer 
Science, pages 631–648. Springer, 2010. 

12.	 Kaoru Kurosawa and Yvo Desmedt. A new paradigm 
of hybrid encryption scheme. In Matthew K. 
Franklin, editor, CRYPTO, volume 3152 of Lecture 
Notes in Computer Science, pages 426–442. Springer, 
2004. 

13.	 Brian A. LaMacchia, Kristin Lauter, and Anton 
Mityagin. Stronger security of authenticated key ex­
change. In Willy Susilo, Joseph K. Liu, and Yi Mu, 
editors, ProvSec, volume 4784 of Lecture Notes in 
Computer Science, pages 1–16. Springer, 2007. 

14.	 Kristin Lauter and Anton Mityagin. Security analy­
sis of kea authenticated key exchange protocol. In 
Moti Yung, Yevgeniy Dodis, Aggelos Kiayias, and 
Tal Malkin, editors, Public Key Cryptography, volume 
3958 of Lecture Notes in Computer Science, pages 
378–394. Springer, 2006. 

15.	 Michele Mosca, Douglas Stebila, and Berkant Us­
taoglu. Quantum key distribution in the classical 
authenticated key exchange framework. In Philippe 
Gaborit, editor, Post-Quantum Cryptography - 5th 
International Workshop, PQCrypto 2013, Limoges, 
France, June 4-7, 2013. Proceedings, volume 7932 of 
Lecture Notes in Computer Science, pages 136–154. 
Springer, 2013. 

16.	 Chris Peikert. Lattice cryptography for the internet, 
January 2014. 

17.	 The Tor Project. Tor’s source code, 2014. 
18.	 John Schanck, William Whyte, and Zhen­

fei Zhang. ntru-tor reference implementation. 
https://github.com/NTRUOpenSourceProject/ntru­
tor, 2014. 

19.	 Peter W. Shor. Algorithms for quantum computation: 
Discrete logarithms and factoring. In FOCS, pages 
124–134. IEEE Computer Society, 1994. 

https://github.com/NTRUOpenSourceProject/ntru
http:http://nacl.cr.yp.to


2 

20.	 Peter W. Shor. Polynomial-time algorithms for prime 
factorization and discrete logarithms on a quantum 
computer. SIAM J. Comput., 26(5):1484–1509, 1997. 

21.	 Victor Shoup. On formal models for secure key ex­
change, November 1999. 

22.	 Victor Shoup. A proposal for an iso standard for pub­
lic key encryption. IACR Cryptology ePrint Archive, 
2001:112, 2001. 

23.	 Martijn Stam. A Key Encapsulation Mechanism for 
NTRU. In Nigel P. Smart, editor, IMA Int. Conf., 
volume 3796 of Lecture Notes in Computer Science, 
pages 410–427. Springer, 2005. 

24.	 William Whyte, Mark Etzel, and Pe­
ter Jenney. NTRUOpenSourcePro ject. 
https://github.com/NTRUOpenSourceProject/ntru­
crypto, 2014. 

25.	 William Whyte and Jeffrey Hoffstein. NTRU. In 
Henk C. A. van Tilborg and Sushil Jajodia, editors, 
Encyclopedia of Cryptography and Security (2nd Ed.), 
pages 858–861. Springer, 2011. 

26.	 J. Schanck Z. Zhang, W. Whyte. Ntrutor source code, 
July 2014. 

A Multiple Encryption 

To suit the definition of multiple encryption, we re­
write our protocol in terms of dual encryption as fol­
lows: 

•	 KeyGen: It takes as input a security parame­
ter λ and outputs two key pairs (sk1, pk1) and 
(sk2, pk2), where sk1 = {x, y} and pk1 = {g}; 
(sk2, pk2) is a NTRUEncrypt key pair. 

•	 Encrypt: It takes as input the public key and 
a message M = (m1, m2), where m1 = N U LL 
and m2 = s2 it outputs C = (c1, c2) where 

xc1 = (g , gy) and c2 = c. 
•	 Decrypt: It takes as input the secret key and a 
ciphertext, it outputs s1 = gxy and s2. 

•	 Combine: It takes as input the m1 and m2, it 
outputs a secret seed s ← H(m1|m2), where H is 
a cryptographic hash function. 

For the multiple encryption, there exists three lev­
els of CCA security: the weak multiple CCA secu­
rity (wMCCA), the standard multiple CCA security 
(MCCA) and the strong multiple CCA security (sM-
CCA). When the attacker is challenged with an ci­
phertext C, for the first notion, there exists a oracle 

'such that given any C  = C it replies with the secret 
' ' s ' ; for MCCA, the oracle replies s as well as m1 and 

' m2; for the strongest notion, their exist additional 
'	 ' oracles such that given c it replies with m . The dif­i	 i 

ference between the last two notions is that in the 

normal setting, the adversary cannot query individ­
ual decryption oracles, i.e., he needs to submit the 
query in the form of C. 

Definition 8 (Multiple CCA Security). A pro­
tocol is weak/standard/strong Multiple CCA (w/­
/sMCCA) secure if their is no adversary who can win 
the following game with a probability more than 1 +ε, 
where ε is negligible in λ. 

•	 For two messages M0 and M1, the challenge ran­
domly pick b ∈ {0, 1} and encrypts Mb and obtain 
a ciphertext C and send M1, M2 and C to the ad­
versary; 

•	 the adversary has access to the following oracles 
•	 for any input M an encryption oracle OE 

generates corresponding C; 
•	 for any input mi an encryption oracle Oei 

generates corresponding ci; 
'•	 (wMCCA) for any input C  C, a decryp­= 

tion oracle OH returns corresponding hashed 
' value s ; 

•	 (MCCA) the above oracles, plus for any in­
put C '  C, a decryption oracle OD =	 returns 

' corresponding M ; 
•	 (sMCCA) the above oracles, plus, for any in­
put ci a decryption oracle Odi returns mi; 

•	 the attacker outputs b. 

The adversary wins the game if he guess b correctly. 

Our protocol satisfies the requirement of wMCCA, 
since our construction follows the Dodis-Katz frame­
work for wMCCA secure multiple encryption: s1 and 
s2 are transmitted via two different ciphersuits, and 
a cryptographic hash function is applied to combine 
them together. 
Finally, we argue that a proper model for the dual 

key exchange lies in between wMCCA and MCCA: 
the attacker is allowed to compromise most of the ci­
phersuits, but there exist at least one ciphersuit that 
remains secure; in the MCCA setting, this means for 
n different encryption schemes, the attacker is given 
decryption oracles Oei for as many as n − 1 schemes. 

https://github.com/NTRUOpenSourceProject/ntru
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