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Abstract 

Multivariate polynomial (MP) problem is the basis of 
security for potentially post-quantum cryptosystems. 
The hardness of solving MP problem depends on a 
number of parameters, most importantly the number 
of variables and the degree of the polynomials, as 
well as the number of equations, the size of the base 
field etc. When the degree is two, we investigate the 
relation among these parameters and the hardness 
of solving MP problem, in order to construct hard 
instances of MP problem. These instances are 
used to create a challenge, which may be helpful in 
determining appropriate parameters for multivariate 
public key cryptosystems, and stimulate furthermore 
the research in solving MP problem. 

keywords: MQ problem, Post-quantum cryptogra­
phy, Multivariate public key cryptosystems 

Introduction 

Multivariate public-key cryptosystems [12, 31] 
(MPKC for short) are candidates for post-quantum 
cryptography. MPKC are schemes that use multi­
variate polynomial maps as public keys. The secu­
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rity of MPKC is thus based on the one-wayness of 
the multivariate polynomial maps. In the same vein, 
QUAD [3] is a stream cipher (symmetric key cryp­
tography) whose security is guaranteed by the one­
wayness of the multivariate polynomial maps. 

The one-wayness of multivariate polynomial maps 
resides in the difficulty to find solutions of a system of 
multivariate polynomial equations (MP problem). In 
particular, if the multivariate polynomials involved in 
a MP problem consist only of quadratic polynomials, 
the problem is called MQ problem: 

∑ ∑
(1) (1) (1)f1(x1, . . . , xn) = a xixj + b xi + c = d1,ij i 

1 i j n 1 i n ∑ ∑
(2) (2) (2)f2(x1, . . . , xn) = aij xixj + b xi + c = d2,i 

1 i j n 1 i n 

. 

. . ∑ ∑
(m) (m) (m)fm(x1, . . . , xn) = a xixj + b xi + c = dm,ij i 

1 i j n 1 i n 

where m is the number of equations, n the number 
(1) (1) (1)of variables, and a , b , c , . . . are all elements in ij i 

a finite field F . 
Since many schemes in MPKC make use only of 

quadratic polynomials, the analysis for solving MQ 
problems is important. In this paper, we present a 
sequence of MQ problems of different level of diffi­
culty, which we propose as a world wide challenge. 
The construction of these MQ problems is based both 
on theoretical and on practical considerations. 

MPKC can be used both in encryption schemes 
and in signature schemes. The original idea of MPKC 
was presented by Matsumoto and Imai [24], and their 
scheme is commonly referred to as the MI scheme. 



After MI scheme was proposed, several encryption 
systems were proposed such as HFE [26] and ℓ-IC 
[15]. Unfortunately, most of them including MI, HFE 
and ℓ-IC were broken after several security analyses 
[25, 22, 20]. Nonetheless, recently, two new encryp­
tion schemes have been proposed. First, the “simple 
matrix” scheme (ABC scheme) [30] which was pre­
sented at PQCrypto 2013 is an encryption scheme 
using matrix operations whose components consist of 
elements in a finite field of small size. An enhanced 
extension of this scheme was proposed at PQCrypto 
2014 [14]. Second, the ZHFE scheme [28], also pro­
posed at PQCrypto 2014, is an enhancement of the 
HFE scheme. 
On the other hand, UOV [21] is a signature scheme 

using polynomials with a distinction on the variables 
into two kinds: oil variables and vinegar variables. 
Rainbow [13] is the “multilayered version” scheme 
of UOV. The framework of Rainbow, using (com­
mutative) polynomial rings, has been extended to 
non-commutative rings. The security of this scheme 
was analyzed in [33]. The structure of the associ­
ated MQ problems for encryption schemes and sig­
nature schemes are substantially different. For en­
cryption schemes, the associated MQ problem ver­
ifies m ≥ n (overdetermined), while for signature 
schemes, the associated MQ problem has m ≤ n (un­
derdetermined). Therefore, we must prepare difficult 
problems of two kinds e.g. when m ≥ n and when 
m ≤ n. In addition, we distinguish finite fields F of 
characteristic 2 and of odd characteristic, regarding 
that the approach to solve the MQ problems is quite 
different. 
On the other hand, the specificity of MQ problem 

over GF (2) has attracted the attention of several re­
searchers in cryptography. Concerning signatures, in 
the extended version of [26], Patarin introduced two 
HFE challenges (coming with a prize of US $ 500 for 
attacking any of them). HFE challenges include MQ 
problems over GF (2) saw many researchers trying to 
solve the problems [11]. Moreover, the solving tech­
nique of MQ problem is also applied to other cryptog­
raphy. The technique is used to the security analysis 
of the block cipher [10]. Therefore, our instances of 
MQ problem include those over GF (2). 
When creating challenge, one of the most impor­

tant matter is to guarantee the fairness of challenging 
problem. We mean here that the problem is evenly 
difficult for anybody, including the creator himself. 
ECC challenge [16] and Lattice challenge [23] have 
been built in this way. Indeed, instances of elliptic 
curve discrete logarithm problems and short vector 
problems can be created without knowing the so­
lution. However, this is not the case for the RSA 
challenge [29]. Generating a composite number with­
out knowing its factors is indeed difficult. Therefore, 
RSA challenge may become an unfair contest. It is 
also difficult to create MQ problem without knowing 
a solution in advance. However, we want to create 
MQ problem whose fairness is guaranteed. In order 
to achieve this, we considered two strategies. One is 
the use of systems of equations with completely ran­
dom coefficients. Generally, these systems may not 
have solutions. However, the underdetermined sys­
tems have at least one solution with high probability. 
Another is a construction from a random solution. 
For the overdetermined systems, we use this method. 

Two fundamental tools for solving MP problem are 
Gröbner bases and XL. It is known that the “degree 
of regularity” which is an invariant of a MQ problem 
is deeply related to the cost for computing a Gröbner 
basis corresponding to the MQ problem [2]. To deter­
mine appropriate parameters for MPKC’s schemes, 
it is necessary to assess the practical difficulty of this 
problem as precisely as possible. We have experi­
mented solving several MQ problems with small pa­
rameters, and by combining the theoretical complex­
ity bounds involving the degree of regularity, we have 
extrapolated the results of these experiments to cre­
ate hard instances of MQ problems. 

2	 Fundamental Structure of 
MPKC 

In both cases of encryption and of signature un­
der MPKC, a multivariate quadratic polynomial map 
whose inverse map can be computed easily is re­
quired. Such a polynomial map is called a central 
map. Given a central map G : Kn → Km, a multi­
variate quadratic polynomial map F : Kn → Km of 



the form F = L ◦ G ◦ R can be constructed by where 
L and R are affine transformations on Km and Kn , 
respectively. For a person who does not know the cen­
tral map G, nor the two affine transformations L, R, 
the map F must look like a multivariate quadratic 
polynomial map chosen randomly. If so, F plays the 
role of a trapdoor one-way function, and thus would 
be the public key. The private key would consist of 
the central map G and of the affine transformations 
L and R. Hereafter in this section, we review in more 
details MPKC schemes, with the distinction encryp­
tion/signature. 

2.1 Encryption Case 

From the feature of an encryption scheme, G and F 
both must be (almost) injective. This fact imposes 
that m ≥ n. For example ABC scheme and ZHFE 
scheme both use parameters such that m = 2n. En­
cryption and decryption are described as follows: 
Encryption A plain text M is selected from Kn . An 
encryptor computes C = F (M) ∈ Km . This is the 
associated cipher text. 
Decryption The decryptor computes E1 = 
L−1(C), E2 = G−1(E1), E = R−1(E2) in this or­
der. Then E coincides with M . 

3	 General Attack against MQ 
Problem 

Let Fq denote the finite field of order q and 
Fq[x1, . . . , xn] the polynomial ring over Fq with 
n variables. For any f = (f1, . . . , fm) ∈ 
Fq[x1, . . . , xn]

m , MP problem indicates the following 
computational hard problem: 

Question:	 find a common zero x0 ∈ Fn 
q of the 

polynomials f1, . . . , fm. 

If the degree of all f1, . . . , fm are equal to 2, the cor­
responding MP problem is called MQ problem. A fun­
damental tool to solve MQ problem are the Gröbner 
bases. The historical method for computing Gröbner 
bases was introduced by Buchberger [4, 5]. Faugère 
made ma jor improvements upon Buchberger’s algo­
rithm with the introduction of F4 and F5 [17, 18], 
which are often as to today considered the best algo­
rithms for Gröbner bases computation. 

3.1 Complexity of F5 Algorithm 

Definition 3.1 Let (h1, . . . , hm) ∈ Fq[x1, . . . , xn]
m 

be homogeneous polynomials. The degree of regularity 
of a homogeneous ideal I = ⟨h1, . . . , hm⟩ is defined by 

dreg = min

{
d ? 0

     dim Fq 
2.2 Signature Case
 ({f E I , deg(f) = d}) 

From the feature of a signature scheme, G and F both 
must be surjective. This fact imposes that m ≤ n. =

(
n + d − 1 

d 

) }
. 

UOV and Rainbow satisfy this property. UOV often 
uses parameters such that n = 2m, justified by secu­
rity reasons. For Rainbow, the recommended param­
eters are estimated in [27] and n ≈ 1.5m is considered 
to be suitable for Rainbow. In a signature scheme, 

For non-homogeneous polynomials (f1, . . . , fm) ∈ 
Fq[x1, . . . , xn]

m, the degree of regularity is defined by 
that of the ideal ⟨f1 

h, . . . , f h ⟩, where fh is the homo-m	 i 
geneous part of fi of highest degree. Note that in this 

signature generation and verification are performed 
as follows: last case, it is not an invariant of the ideal, but is 

Signature generation A message M is selected 
from Km . The signer computes S1 = L−1(M), 
S2 = G−1(S1), S = R−1(S2) in this order. Then 
S is the associated signature. 
Verification A verifier computes F (S) ∈ Km, and 
checks if M = F (S), in which case The signature is 
accepted. 

attached to the polynomial system. 

For a MQ problem with zero dimensional solution 
variety, the complexity of F5 algorithm is given by 
the following. 

Proposition 3.2 [2] The complexity of computing 
a Gröbner basis of a zero-dimensional system of m 



equations in n variables with F5 is: (( ( ))w )
n + dreg O m · 
dreg 

where dreg is the degree of regularity of the system 
and 2 ≤ ω ≤ 3 is the linear algebra constant. 

Recall that random underdetermined systems are reg­
ular. The concept of semi-regularity was introduced 
to formalize “random systems”, in the case of overde­
termined systems. (though this fact is not proven in 
general, the Fröberg’s conjecture has been widely ob­
served in practice). 

Definition 3.3 Let (h1, . . . , hm) ∈ Fq[x1, . . . , xn]
m 

be homogeneous polynomials of respective degree 
d1, . . . , dm. This sequence is semi-regular if 

• ⟨h1, . . . , hm⟩ ≠ Fq[x1, . . . , xn], 

• for al l 1 ≤ i ≤ m and g ∈ Fq[x1, . . . , xn], 

deg(g · hi) < dreg and g · hi ∈ ⟨h1, . . . , hi−1⟩ 
⇒ g ∈ ⟨h1, . . . , hi−1⟩. 

For a general system (f1, . . . , fm) ∈ Fq[x1, . . . , xn]
m , 

this sequence is semi-regular if the sequence 
(f1 

h, . . . , f h ) is, where fh is the homogeneous part of m i 
fi of highest degree. 

The degree of regularity of semi-regular sequences can 
be computed explicitly. 

Proposition 3.4 The degree of regularity of a semi-
regular sequence h1, . . . , hm of respective degree 
d1, . . . , dm is given by the first non-positive coefficient 
of 

m∑ ∏
(1 − zdi )k i=1 ckz = . 

(1 − z)n 
k 0 

3.2 Complexity of Hybrid Approach 

Bettale et al. [2] proposed an attack against general 
MP problems defined over finite field of medium size 
from 22 to 224 elements, which was called hybrid ap­
proach. This technique mixes exhaustive search and 

Gröbner bases computation. The raw idea was pre­
viously introduced in the context of XL solvers in [9]. 
Concerning systems of dimension zero defined over 

a finite field of medium size, the hybrid approach con­
sists in choosing k variables, evaluate them at ran­
domly chosen values, and solve this system in n − k 
variables. The choice of k is delicate, but when mak­
ing some reasonable assumptions (see Hypothesis 1 
below), the authors of [2] succeed to provide a the­
oretical optimal choice of k depending of the data 
of the system. This outcome allows them to apply 
this hybrid approach to forge signatures based on a 
MPKC scheme (namely TMRS and UOV signatures, 
see [9, Section 4.1 & 4.2]) by solving underdetermined 
systems, where traditional solving approaches failed. 

Despite we have not put into practice this ap­
proach in the experiments, we have followed the 
same strategy to solve underdetermined systems 
(Type IV,V,VI): evaluation of m − n variables to 
reduce to a zero-dimensional system. To solve the 
zero-dimensional system, we have used a standard 
approach rather than the hybrid, which we plan to 
apply in the future. 

Proposition 3.5 For f = (f1, . . . , fm) E 
Fq [x1, . . . , xn]

m , let dreg (k) be the maximum de­
gree of regularity of al l the systems: {

{f1(x1, . . . , xn−k, v1, . . . , vk),   
. . . , fm(x1, . . . , xn−k, v1, . . . , vk)}  }

(v1, . . . , vk) ∈ Fk 
q 

If the system is zero-dimensional, the complexity of 
the hybrid approach is bounded from above by ( { ( ( )w

k w n − k + dreg (k) − 1 O min0<k<n q · m · 
dreg (k) )})

+ (n − k)d(n−k)w 

where 2 ≤ ω ≤ 3. 

The optimal choice of k is usually small from 1 to 4 
or 5 for common MQ problems. If the base field is 



GF (2), it is better to add the field equations to the 
system than to resort to the hybrid approach. 

In order to grasp the asymptotic behavior of the 
hybrid approach, we assume a regularity condition 
set in [2]. 

Hypothesis 1 Let {f1, . . . , fm} ⊂ Fq[x1, . . . , xn] be 
polynomials of respective degrees d1 ≥ · · · ≥ dm. 
Assume that there is value βmin, 0 < βmin < 
1 which can be set by the user, such that for 
any k, 0 ≤ k ≤ ⌈βminn⌉, and for each vector 
(v1, . . . , vm) ∈ Fq 

k, the system {
{f1(x1, . . . , xn−k, v1, . . . , vk), 

. . . , fm(x1, . . . , xn−k, v1, . . . , vk)} | }
(v1, . . . , vk) ∈ Fk 

q 

is semi-regular for n large enough. 

4	 Construction of the Chal­
lenge 

We explain how to create MQ problems. The param­
eters that need to be set for a MQ problem are the 
size of base field q, the number of variables n and 
the number of equations m. As for base fields, we 
treat GF (2) as a special case. Otherwise we consider 
GF (31) and GF (28) because the situation changes 
according to whether the characteristic of the base 
field is two or not. These two fields are often used as 
base fields in many papers [7, 27]. 
For most encryption schemes, overdetermined sys­

tem (i.e. m ≥ n) are used because the multivariate 
polynomial function appearing in the MQ problem 
underlying the schemes must be injective. For exam­
ple, the ABC scheme, ZHFE scheme and the QUAD 
cipher have all been set to m = 2n. As for signa­
ture schemes, underdetermined systems, i.e. which 
verify m ≤ n, are used because the associated mul­
tivariate polynomial functions have to be surjective. 
Since Rainbow is a signature scheme which enhances 
UOV, we treat Rainbow as a representative of signa­
ture scheme in MPKC. In the case of Rainbow with 
2 layers, number of polynomials m and of variables 

Table 1: Types of MQ problem 
Type (m, n) base field target 
I m = 2n GF (2) encryption 
II m = 2n GF (28) encryption 
III m = 2n GF (31) encryption 
IV n ≈ 1.5m GF (2) signature 
V n ≈ 1.5m GF (28) signature 
VI n ≈ 1.5m GF (31) signature 

n are often set to n ≈ 1.5m. Therefore, in our chal­
lenge, we set problems of six types, described in Ta­
ble 1 

We consider two construction methods of MQ 
problem. One is for encryption and another is for 
signature. For encryption, m ≥ n, however, for 

1every system m > n, the probability is about qm−n 

to have a solution, and if we set m = n, it is the 
case which had the same time complexity with the 
signature case. Therefore, we construct the system 
corresponding to encryption scheme with a random 
solution by adjusting the constant coefficients. For 
the signature case, we construct the system with all 
random coefficients. 

Algorithm 1: Construction of MQ problem for 
type I, II, III 

Step 1 Fix parameters n and m = 2n with base field 
over F = GF (2), GF (28) or GF (31). 

Step 2 Select randomly a vector x0 in F n . 

(k) (k)
Step 3 Select randomly a , b for all i, j, k.ij i 

Step 4 Compute c(k) such that the associated sys­
tem of equations has a solution x0. 

Algorithm 2: Construction of MQ problem for 
type IV, V, VI 

Step 1 Fix parameters m and n = 1.5m with base 
field over F = GF (2), GF (28) or GF (31). 

(k) (k)
Step 2 Select randomly aij , bi , c(k) for all i, j, k. 



Table 2: Experimental results of Type I, Type II and Type III 

n m 
Type I Type II Type III 

Degreg time memory Degreg time memory Degreg time memory 

7 14 3 0.001 32.09 3 0.442 32.09 3 0.414 32.09 
8 16 3 0.001 32.09 3 0.25 32.09 3 0.167 32.09 
9 18 4 0.003 32.09 4 0.207 32.09 4 0.23 32.09 
10 20 4 0.008 32.09 4 0.295 32.09 4 0.37 32.09 
11 22 4 0.013 32.09 4 0.432 32.09 4 0.314 32.09 
12 24 4 0.021 32.09 4 0.24 32.09 4 0.261 32.09 
13 26 4 0.041 32.09 4 0.47 32.09 4 0.582 32.09 
14 28 4 0.08625 32.09 4 0.559 32.09 4 0.573 32.09 
15 30 4 0.163 32.09 4 0.864 32.09 4 1.319 32.09 
16 32 5 0.393 64.12 5 0.864 32.09 5 1.319 32.09 
17 34 5 0.821 64.12 5 7.427 128.19 5 21.486 96.16 
18 36 5 1.565 96.16 5 16.627 192.25 5 53.836 128.19 
19 38 5 3.426 128.19 5 36.796 274.66 5 122.647 192.25 
20 40 5 6.715 192.25 5 74.733 440.25 5 254.797 320.38 
21 42 5 14.101 259.513 5 161.195 649.78 5 543.629 512.56 
22 44 5 34.463 394.049 5 507.531 979.34 5 1717.623 809.78 
23 46 5 58.006 704.75 5 967.727 1656.528 5 3542.895 1240.798 
24 48 6 268.445 4397.994 6 9268.363 10681.12 
25 50 6 658.157 7724.88 
26 52 6 1437.111 13043.162 
27 54 6 2882.882 27617.278 
28 56 6 6084.231 34366.371 
29 58 6 12521.942 48814.859 

Table 3: Experimental results of Type IV, Type V and Type VI 

n m 
Type IV Type V Type VI 

Degreg time memory Degreg time memory Degreg time memory 

11 7 8 1.261 32.09 9 2.597 32.09 9 1.981 32.09 
12 8 9.3 10.122 32.09 10 30.318 32.09 9.9 18.502 32.09 
14 9 10.1 127.182 32.09 11 337.327 64.12 11 377.944 64.12 
15 10 11.3 1449.08 94.84 12 3446.797 136.69 12 5075.393 136.69 
17 11 12.5 28786.837 292.751 



Figure 1: Time comparison for Type I, II, and III
 

Figure 2: Time comparison for Type IV, V and VI
 



5 Experiments 

In this section we will present our experimental re­
sults of Type I, Type II, Type III, Type IV, Type 
V and Type VI systems. In order to get a general 
analysis to the system, we didn’t apply any specific 
technique in solving system and used plain attack 
only. The experiments were all conducted on a CPU 
with four 6-cores Intel® Xeon® CPU E5-4617, run­
ning at 2.9GHz with an Intel® smart cache of 15MB. 
The Operating System was Linux Mint 15 Olivia with 
kernel version GNU/Linux 3.8.0-19-generic x86 64 
and 1TB memory. The programming platform was 
Magma V2.19-9 in its 64-bit version. We provide av­
erage results on 10 experiments. The time unit is 
the second, and the memory unit is a MB. All algo­
rithms were implemented in Magma, and we used the 
Variety function of Magma to compute the solutions 
with Gröbner bases, which has no significant time 
difference from GroebnerBasis function. All the pa­
rameters for the experiments applied here were only 
toy example, and the total time of the experiments 
would not exceed one week. 
For every experiment, we generated a random mul­

tivariate quadratic system with coefficients in random 
uniform distribution with specific format. The input 
format is described in the Appendix. Then we read 
the input file and solve the system using Variety() 
function of Magma. 
Table 2 shows the experimental results of Type I, 

Type II and Type III. Degreg represents the degree 
of regularity, which indicates the largest degree ap­
peared during the process of computing a Gröbner 
basis. In this case, we simulate an encryption scheme 
without knowing any structure of it. Since in this 
case the system is overdetermined, we adjust the con­
stant coefficients to make sure that the system has 
a solution. Actually for an overdetermined system, 
even if m = n + 1, the probability to have a solu­
tion is quite small. Let the number of variables to 
be n, the number of equations to be m, the size of 
the coefficient field to be q, then the probability of an 
overdetermined system to have a solution is roughly 

1 
qm−n . For systems of Type I, defined over the binary 
field, we add the field equations to the system. 
Table 3 shows the experimental results of Type IV, 

Type V and Type VI. In this case, we simulate an sig­
nature scheme without knowing any structure of it. 
Note that in this case, since n = 1.5m, there are more 
free variables in the MQ system than the equations 
and thus the system is underdetermined. Generally 
when we solve such system, we assign random values 
to the free variables and solve the remained deter­
mined system. We use this technique here. Hence, 
the system may have the same time complexity and 
degree of regularity with that of the system n = m. 
For systems of Type IV, defined over the binary field, 
we add the field equations to the system. 

Fig. 1 and Fig. 2 show the time comparison for the 
encryption case and the signature case respectively. 
Note that the x-axis indicates the number of variables 
n for systems of type I, II and III, whereas it indicates 
the number of equations m for systems of type IV, V 
and VI. 

6 The Challenge 

In Section 4, we explained the method for construct­
ing the MQ challenge. In Section 5, we presented 
the experimental results on toy examples for solv­
ing MQ problems constructed as explained in Sec­
tion 4. According to the result of our experiments, 
we would like to construct MQ challenge with param­
eters n ≥ 40 for Type I, n ≥ 30 for Type II and III 
as well as m ≥ 15 for Type IV, V and VI, which are 
expected to take more than one month to be solved 
using a plain attack without any technique. 
This challenge does not include MQ problems 

which consist of sparse systems. However, the sparse 
systems form an important class of MQ problems 
due to its efficiency for encryption and verification 
of MPKC. We plan to include this kind of challenge 
in the future. 
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A	 Input format of the MQ 
challenge 

A.1 GF (2) 

Galois Field : GF(2) 
Number of variables (n) : 4 
Number of polynomials (m) : 2 
Order : graded reverse lex order 

********************* 
0 0 1 1 0 1 1 1 1 1 1 1 0 0 1 ; 
0 1 1 0 0 0 1 1 0 0 0 0 1 0 1 ; 

The text box above is an example of a MQ chal­
lenge system over GF (2). As we can see in the ex­
ample, are specified the coefficient field, the num­
ber of variables, the number of equations in the sys­
tem, and the monomial order chosen for the MQ sys­
tem. Every line ends up with the ; symbol. Data 
coming after the ************ line in he input file 
rerepesent polynomials. These data are made up 

http://www.emc.com/emc-plus/rsa
http:http://www.latticechallenge.org


of the coefficients of the polynomials in the mono­
mial basis, with respect to the monomial order in­
dicated. For the graded reverse lexicographic order, 
let x1, x2, x3 and x4 to be the four variables so that 
x1 > x2 > x3 > x4. The monomials are then ordered 

2
as follows: x1 > x1x2 > x1x3 > x1x4 > x2 
2 > x2x3 > 

x2x4 > x2 
3 > x3x4 > x2 > x1 > x2 > x3 > x4 > 1.4
 

Thus, the first polynomial is x1x3 + x1x4 + x2x3 + 
2 2
x2x4 + x3 + x3x4 + x4 + x1 + x2 + 1 and the second 

2
polynomial is x1x2 + x1x3 + x2x4 + x3 + x3 + 1. 

A.2 GF (28) 

Galois Field : GF(2)[x] / x"8 + x"4 + x"3 + x"2 + 1
 
Number of variables (n) : 4
 
Number of polynomials (m) : 2
 
Order : graded reverse lex order
 

*********************
 
7f bb c1 c5 1a d3 c8 a2 ae 23 b7 a4 a3 10 c7 ;
 
b5 88 20 43 cb 49 4a ad f7 e1 40 f5 63 72 10 ;
 

A.3 GF (31)
 

Galois Field : GF(31)
 
Number of variables (n) : 4
 
Number of polynomials (m) : 2
 
Order : graded reverse lex order
 

*********************
 
6 16 23 12 12 7 13 4 6 16 28 26 11 16 2 ;
 
25 21 30 25 25 21 25 25 15 29 15 3 13 11 17 ;
 

The text box above is an example of a MQ chal­
lenge system over GF (31). All the format is similar 
to the example of GF (2) and GF (28). Every number 
is a coefficient in GF (31). 

The text box above is an example of a MQ chal­
lenge system over GF (28). Most of the format
 
is similar to the example of GF (2). In the case
 
of GF (28), the input file also displays the struc­
ture of the field by specifying the irreducible poly­
nomial it uses to define the field extension. The
 
hex representation of the coefficient is the polyno­
mial representation of the GF (28) element. For ex­
ample, the first coefficient 7f indicates 0111 1111,
 

6 5 4 3 2
which refers to x + x + x + x + x + x + 1 ∈ 
4 3
GF (2)[x]/x8 + x + x + x2 + 1. Similarly, the second
 

coefficient bb indicates 1011 1011, which refers to
 
7 5 4 3 4 3
x +x +x +x +x+1 ∈ GF (2)[x]/x8+x +x +x2+1. 


