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Why this name?

Gui

@ Chinese pottery from
Longshan period

@ more than 4000 years old

@ 3 legs: one in front,
2 in the back

o front leg : HFE
@ back legs: Minus + Vinegar



Outline

@ Multivariate Cryptography
© HFEv- based Signature Schemes
© The new multivariate signature scheme Gui

@ Implementation and Results
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Multivariate Cryptography

(1) . Z Z pij - Xixj + Z p(l) Xj + p

I].JI

(2) (x1,- - Xn)_ZZP “Xixp + ZP X:-I—P

i=1 j=i

P(m)(XL ey Xn) = ZZP,S-m) CXiXj ZP,(m) * X+ Pc()m)
i=1

i=1 j=i
The security of multivariate schemes is based on the

Problem MQ: Given m multivariate quadratic polynomials
pM(x),...,pm(x), find a vector X = (Xi,...,X,) such that



Multivariate Cryptography

Multivariate Cryptography (2)

Advantages
@ resistant against attacks with quantum computers

@ modest computational requirements
= can be implemented on low cost devices

@ Many practical signature schemes:
UOV 1999; Rainbow ( Multi-layer UOV) 2004
QUARTZ 2001

e Very Fast in computations ( Except Quartz).



Multivariate Cryptography

Multivariate Cryptography (3)

Drawbacks
@ Large size of the public and private keys

@ Provable security ?
= though Security is strongly supported by experiments and
related theory.

@ No explicit parameter choices known to meet given levels of
security for Quartz.
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Multivariate Cryptography (4)

Construction
o Easily invertible quadratic map F : F" — F™
e Two invertible affine (or linear) maps S : F” — F™ and
T:F"—F"
@ Public key: P =8 o F oT supposed to look like a random
system

@ Private key: S, F, T allows to invert the public key



Multivariate Cryptography
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(Big Field) Signature Schemes (m < n)

Signature Generation
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Signature Verification




HFEv™

- Key Generation

finite field IF, extension field E of degree n
isomorphism ¢ : F" — E, ¢(x1,...,xn) = S0 x; - X1
central map F : E — E,

q'+¢/<D . 4'<D .
FX)= > ayX? T4 > Bilva o) XT (v, w)
0<i<y i=0

where f3; is a linear map from F to E and ~ is quadratic
public key: P =So¢ Lo FopoT with two affine (or linear)
maps S : F" — F"=2 and T : F"™ — F"™" of maximal rank
private key: S, F, T, ¢



Signature Generation

Given: message h € F"~?
© Compute x=8"1(h) e F" and X = ¢(x) € E

@ Choose random values for the vinegar variables vy,..., v,
Solve Fy, ..., (Y) = X over E via Berlekamp's algorithm
© Computey = ¢ YY) €F"and z= T L(y||lv||...|Iw)

The signature of the message h is z € F™V,



Signature Verification

Given: signature z € F"
o Compute h' = P(z) e F"—2

e If b’ = h, the signature is accepted, otherwise rejected.



QUARTZ

@ standardized by Courtois, Patarin in 2002

e HFEv™ with F = GF(2), n=103, D =129, a=3 and v =4
= E = GF(2)!%® = GF(2)[x]/(x% + x° + 1]

2142/<129 - 2i<129 )
FX)= > apX*+ > Bi(ve,.ova)-XF (v, va)
0<i<y i=0

e public key: quadratic map P : F197 — F100

@ To avoid birthday attacks, the signature generation step is
performed four times (for h, #(h|00), #(h|01) and #(h|11))
= signature length: (n —a)+4-(a+ v) = 128 bit



Main attacks

@ MinRank Attack
Rank(Q)=r+a+v
= ComleinRank ~ 2n-(r+a+v) : (n - 3)3

@ Direct attack
Recent breakthrough (result by Ding and Yang)
MW—}—Z g even and r + a odd,
dreg <\ (a1 (rtaty) ’
Ty 2

otherwise.
with r = |log,(D —1)] + 1.



Efficiency

Signature generation time ~ 10 seconds

Bottleneck: Inversion of the univariate polynomial equation
Fvt)(Y) =X (1)

of degree D over the extension field E by Berlekamps
algorithm: Complexity O(D? + n - D?)
equation (1) solvable with probability ~ %

we have to solve (1) for 4 different values of X = we have to
perform Berlekamp's algorithm about 11 times



Research Questions

@ Is the upper bound on the degree of regularity given by Ding
and Yang reasonably tight?

@ Can we decrease the degree D of the central HFEv—
polynomial to speed up the scheme?



How should we choose D?

e D € {2,3} would lead to central maps of rank 2
(Matsumoto-Imai case)

e For D € {5,7} one can get central maps of rank 2 by linear
transformation

= D € {9,17} (central maps of rank 4 and 6 respectively)



Experiments

Experiments with HFEv— schemes with low degree central
maps (D € {9,17})

Implementation of HFEv— in MAGMA code

Fixing of a 4+ v variables to create determined systems
Adding field equations

Systems were solved with Fy4 integrated in MAGMA



Experiments (2)

D=9
number of equations ‘ 20 ‘ 25 ‘ 30 ‘ 32
theoretical degree of regularity <7
A v—4 (n,D,a,v) | (24,9,4,4) | (29,9,4,4) | (34,9,4,4) | (36,9,4,4)
Creg 5 6 6 6
time (s) 2.7 244 31,537 102,321
theoretical degree of regularity < 8
R (n,D,a,v) | (25,9,5,5) | (30,9,5,5) | (35,9,5,5) | (37,9,5,5)
Creg 5 6 6 7
time (s) 2.8 255 32,481 ooM
for comparison: random system
Creg 5 6 6 7
time (s) 3.5 310 32,533 ooM




Experiments (3)

D =17
number of equations ‘ 20 ‘ 25 ‘ 30 ‘ 32
theoretical degree of regularity <7
Al v—3 (n,D,a,v) | (23,17,3,3) | (28,17,3,3) | (33,17,3,3) | (35,17,3,3)
Oreg 5 6 6 6
time (s) 2.4 245 28,768 87,726
theoretical degree of regularity < 8
(n,D,av) | (2417,44) | (29,17,4,4) | (34,17,4.4) | (36,17,4,4)
a=v=4
Creg 5 6 6 7
time (s) 2.4 248 31,911 ooM
for comparison: random system
Creg 5 6 6 7
time (s) 3.5 310 32,533 ooM




Results

@ The theoretical result about the degree of regularity is
relatively tight
(for a = v = 3 we can reach the upper bound both for D =9
and D =17)

e For the parameter sets (D, a,v) = (9,5,5) and
(D,a,v) = (17,4,4) and n > 32 we have dyeg > 7
= For n =90 + a we get

2
. n—a+?2 n—a+d
CompleXItYdirect attack > 3 : e
2 reg

2
92 97
= . . > 081



Parameters

We propose three versions of Gui

e Gui-95 with (n, D, a,v) = (95,9,5,5) providing a security
level of 80 bit

o Gui-94 with (n, D, a,v) = (94,17, 4,4) providing a security
level of 80 bit
and

e Gui-127 with (n, D, a,v) = (127,9,4,6) providing a security
level of 123 bit



Avoiding birthday attacks

e Input size of HFEv- maps is short (in our case 90 - 123 bit)
= Possibility of birthday attacks

@ Solution:
e Sign k different hash values of the message m.
o Combine the k outputs to a single signature of size
(n—a)+ k-(a+v) bit.
@ In the case of Gui we set
e k =3 for Gui-95,
o k =4 for Gui-94 and Gui-127.



160 bit

160 bit

SHA-1(m)

SHA-1(m||0)
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Parameters and Key Sizes

security input signature | public key private key
scheme level (bit) | size (bit) | size (bit) | size (Bytes) | size (Bytes)
Gui-95 80 90 120 60,600 3,053
Gui-94 80 90 122 58,212 2,943
Gui-127 123 123 163 142,576 5,350
QUARTZ 80 100 128 75,514 3,774
RSA-1024 80 1024 1024 128 128
RSA-2048 112 2048 2048 256 256
ECDSA P160 80 160 320 40 60
ECDSA P192 96 192 384 48 72
ECDSA P256 128 256 512 64 96




Implementation

Arithmetic over large fields

We use the fields
o GF(2%)=GF(2)[x]/(x% + x! + 1) for Gui-95
o GF(2°)=GF(2)[x]/(x°* + x?! + 1) for Gui-94 and
o GF(212")=GF(2)[x]/(x*?" + x + 1) for Gui-127.
Furthermore we use

@ pclmuldqd instruction set for carry-less multiplication
(problem: long latency)

@ karatsuba algorithm



Implementation

Inverting the equation F(Y) = X

@ We need only the first step of Berlekamp's algorithm, i.e. the
computation of Ged(F(Y), Y?" — Y).
o How to compute Y?" — Y mod F(Y) efficiently?

@ direct computation is infeasible
= Recursively square the lower degree polynomial Y2

(Y?" mod F(Y))? mod F(Y) =
( icombiYD? mod F(Y) = ( ;_om b2Y?) mod F(Y)

o Prepare a table for Y2/ mod F(Y)

@ Square all the coefficients b; of
o Multiply the squared coefficients to the Y2/ from the table



Comparison

Implementation

security signing time verifying time
scheme level (bit) (k-cycles) (k-cycles)
Gui-95 80 1,479 / 1,186 325 / 230
Gui-94 80 4,945 / 5,421 357 / 253
Gui-127 123 1,966 / 1,249 707 / 427

| QUARTZ | 80 167,485 / 168,266 | 375 /235 |

RSA-1024 80 2,080 / 2,115 74 / 64
RSA-2048 112 8,834 / 5,347 138 / 76

ECDSA P160 80 1,283 / 1,115 1,448 / 1,269

ECDSA P192 96 1,513 /1,273 1, 715 / 1,567

ECDSA P256 128 1,830 / 1,488 2,111 / 1,920

time on AMD Opteron 6212, 2.5 GHz / Intel Xeon E5-2620, 2.0

GHz



Implementation

Conclusion

@ Proposal of a new multivariate signature scheme Gui
@ Use of low degree HFEv- polynomials (D € {9,17})
= very short signatures (120 bit)

= 150 times faster than QUARTZ
= Efficiency comparable to standard schemes (RSA, ECDSA)



The end

THANK YOU

Questions?
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