Rank based cryptography : a credible post-quantum alternative to classical cryptography

P. Gaborit¹, O. Ruatta¹, J. Schrek², J.P. Tillich³ and G. Zémor⁴

1: University of Limoges, France

2: Telecom Bretagne, France

3: Inria, France

4: University of Bordeaux, France

NIST Workshop on Cybersecurity in a Post-Quantum World 2015

Summary

- Post-Quantum Cryptography
- 2 Decoding in rank metric
- 3 Complexity issues : decoding random rank codes
- 4 Encryption/Authentication in rank metric
- 5 Signature in rank metric

Post-quantum cryptography

General problems

Cryptography needs different difficult problems

- factorization
- discrete log
- SVP for lattices
- syndrome decoding problem

For code-based cryptography, the security of cryptosystems is usually related to the problem of syndrome decoding for a special metric.

PQ Crypto

Consider the simple linear system problem : H a random $(n-k) \times n$ matrix over $R(GF(q), Z/qZ, GF(q^m)$ Knowing $s \in GF(q)^{n-k}$ is it possible to recover a given $x \in GF(q)^n$ such that $H.x^t = s$? Easy problem :

- fix n-k columns of H , one gets a $(n-k)\times (n-k)$ submatrix A of H
- A invertible with good probability, $x = (0...0, A^{-1}s, 0...0)$.

How to make this problem difficult?

- (1) add a constraint to x : x of small weight for a particular metric
 - metric = Hamming distance ⇒ code-based cryptography
 - metric = Euclidean distance ⇒ lattice-based cryptography
 - metric = Rank distance ⇒ rank-based cryptography
- \Rightarrow only difference : the metric considered, and its associated properties ! !
- (2) consider rather a multivariable non linear system : quadratic, cubic etc...
- ⇒ Mutivariate cryptography

General interest of post-quantum cryptogrphy

- a priori resistant to a quantum computer
- usually faster than number-theory based cryptography
- easier to protect against side-channel attacks
- size of keys may be larger

Rank metric codes

The rank metric is defined in finite extensions.

- GF(q) a finite field with q a power of a prime.
- $GF(q^m)$ an extension of degree m of GF(q).
- $B = (b_1, ..., b_m)$ a basis of $GF(q^m)$ over GF(q).

 $GF(q^m)$ can be seen as a vector space on GF(q).

- C a linear code over $GF(q^m)$ of dimension k and length n.
- G a $k \times n$ generator matrix of the code C.
- H a $(n-k) \times n$ parity check matrix of C, $G.H^t = 0$.
- H a dual matrix, $x \in GF(q^m)^n \to \text{syndrome of } x = H.x^t \in GF(q^m)^{n-k}$

Rank metric

Words of the code C are *n*-uplets with coordinates in $GF(q^m)$.

$$v=(v_1,\ldots,v_n)$$

with $v_j \in GF(q^m)$.

Any coordinate $v_j = \sum_{i=1}^m v_{ij}b_i$ with $v_{ij} \in GF(q)$.

$$v(v_1,...,v_n)
ightarrow V = \left(egin{array}{cccc} v_{11} & v_{12} & ... & v_{1n} \ v_{21} & v_{22} & ... & v_{2n} \ ... & ... & ... & ... \ v_{m1} & v_{m2} & ... & v_{mn} \end{array}
ight)$$

Definition (Rank weight of word)

v has rank r = Rank(v) iff the rank of $V = (v_{ij})_{ij}$ is r. equivalently $Rank(v) = r <=> v_j \in V_r \subset GF(q^m)^n$ with $\dim(V_r)=r$.

the determinant of V does not depend on the basis

Definition (Rank distance)

Let $x, y \in GF(q^m)^n$, the rank distance between x and y is defined by $d_R(x, y) = Rank(x - y)$.

Rank isometry

Notion of **isometry**: weight preservation

- Hamming distance : $n \times n$ permutation matrices
- Rank distance : $n \times n$ invertible matrices over GF(q)

proof: multiplying a codeword $x \in GF(q^m)^n$ by an $n \times n$ invertible matrix **over the base field GF(q)** does not change the rank (see x as a $m \times n$ matrix over GF(q)).

remark: for any $x \in GF(q^m)^n$: $Rank(x) \le w_H(x)$: potential linear combinations on the x_i may only decrease the rank weight.

Support analogy

An important insight between Rank and Hamming distances tool : support analogy

- support of a word of $GF(q)^n$ in Hamming metric $x(x_1, x_2, \dots, x_n)$: set of positions $x_i \neq 0$
- support of a word of $GF(q)^n$ in rank metric $x(x_1, x_2, \dots, x_n)$: the subspace over GF(q), $E \subset GF(q^m)$ generated by $\{x_1, \dots, x_n\}$
- in both cases if the order of size of the support is small, knowing the support of x and syndrome $s = H.x^t$ permits to recover the complete coordinates of x.

Analogy: counting subspaces

Counting the number of possible supports for length n and dimension t

- Hamming : number of sets with t elements in sets of n elements : Newton binomial $\binom{n}{t}$ ($\leq 2^n$)
- Rank : number of subspaces of dimension t over GF(q) in the space of dimension n $GF(q^m)$: Gaussian binomial $\begin{bmatrix} n \\ t \end{bmatrix}_q (\sim q^{tn})$

Decoding in rank metric

Families of decodable codes in rank metric

There exists 3 main families of decodable codes in rank metric

- Gabidulin codes (1985) (analog of Reed-Solomon codes with rank metric and q-polynomials)
- simple matrix construction (Silva et al. 2008)
- LRPC codes (Gaborit et al. 2013)

These codes have different properties, a lot of attention was given to rank metric and especially to subspace metric with the development of Network coding in the years 2000's.

LRPC codes

LDPC : dual with low weight (ie : small support)

ightarrow equivalent for rank metric : dual with small rank support

Definition (GMRZ13)

A Low Rank Parity Check (LRPC) code of rank d, length n and dimension k over $GF(q^m)$ is a code such that the code has for parity check matrix, a $(n-k)\times n$ matrix $H(h_{ij})$ such that the vector space F of $GF(q^m)$ generated by its coefficients h_{ij} has dimension at most d. We call this dimension the weight of H.

In other terms : all coefficients h_{ij} of H belong to the same 'low' dimensional vector space $F < F_1, F_2, \cdots, F_d >$ of $GF(q^m)$ of dimension d.

Decoding LRPC codes

Idea: as usual recover the support and then deduce the coordinates values.

Let $e(e_1,...,e_n)$ be an error vector of weight r, ie : $\forall e_i : e_i \in E$, and dim(E)=r. Suppose $H.e^t = s = (s_1,...,s_{n-k})^t$.

$$e_i \in E < E_1, ..., E_r >, h_{ij} \in F < F_1, F_2, \cdots, F_d >$$

 $\Rightarrow s_k \in < E_1 F_1, ..., E_r F_d >$

 \Rightarrow if n-k is large enough, it is possible to recover the product space $\langle E_1F_1,..,E_rF_d \rangle$

Decoding LRPC codes

Syndrome
$$s(s_1,..,s_{n-k})$$
 : $S = \langle s_1,..,s_{n-k} \rangle \subset \langle E_1F_1,..,E_rF_d \rangle$
Suppose $S = \langle E.F \rangle \Rightarrow$ possible to recover E.

Let
$$S_i = F_i^{-1}.S$$
, since

$$S = \langle E.F \rangle = \langle F_i E_1, F_i E_2, ..., F_i E_r, ... \rangle \Rightarrow E \subset S_i$$

$$\textbf{E} = \textbf{S}_1 \cap \textbf{S}_2 \cap \dots \cap \textbf{S}_d$$

General decoding of LRPC codes

Let
$$y = xG + e$$

- **Syndrome space computation** Compute the syndrome vector $H.y^t = s(s_1, \dots, s_{n-k})$ and the syndrome space $S = \langle s_1, \dots, s_{n-k} \rangle$.
- **2** Recovering the support E of the error $S_i = F_i^{-1}S$, $E = S_1 \cap S_2 \cap \cdots \cap S_d$,
- **§** Recovering the error vector e Write $e_i (1 \le i \le n)$ in the error support as $e_i = \bigcap_{i=1}^n e_{ij} E_j$, solve the system $H.e^t = s$.
- **Q** Recovering the message x Recover x from the system xG = y e.

Decoding of LRPC

- Conditions of success
 - $-S = \langle F.E \rangle \Rightarrow rd \leq n-k$.
 - possibility that $dim(S) = n k \Rightarrow$ probabilistic decoding with error failure in $q^{-(n-k-rd)}$
 - if d=2 can decode up to (n-k)/2 errors.
- Complexity of decoding: very fast symbolic matrix inversion $O(m(n-k)^2)$ write the system with unknowns: $e_E = (e_{11},...,e_{nr})$: rn unknowns in GF(q), the syndrome s is written in the symbolic basis $\{E_1F_1,...,E_rF_d\}$, H is written in $h_{ij} = h_{ijk}F_k$, $\rightarrow nr \times m(n-k)$ matrix in GF(q), can do precomputation.
- Decoding Complexity $O(m(n-k)^2)$ op. in GF(q)
- Comparison with Gabidulin codes: probabilistic, decoding failure, but as fast.

Complexity issues: decoding random rankcodes

Rank syndrome decoding

For cryptography we are interested in difficult problems, in the case of rank metric the problem is:

Definition (Rank Syndrome Decoding problem (RSD))

Instance: a $(n-k) \times n$ matrix H over $GF(q^m)$, a syndrome s in $GF(q^m)^{n-k}$ and an integer w

Question: does there exist $x \in GF(q^m)^n$ such that $H.x^t = s$ and $W_R(x) < w$?

Definition (Syndrome Decoding problem (SD))

Instance: an $r \times n$ matrix $H = [h_1, h_2, \dots, h_n]$ over a field GF(q), a column vector $s \in GF(q)^r$, an integer w

Question: does there exist $x = (x_1, \dots, x_n) \in GF(q)^n$ of Hamming weight at most w such that $H^t x = \prod_{i=1}^n x_i h_i = s$?

Computational complexity of the RSD problem

Problem SD proven NP-complete by Berlekamp et al. in 1978. Computational complexity of RSD : solved in 2014 (Gaborit and Zemor)

Definition (embedding strategy)

Let $m \ge n$ and $Q = q^m$. Let $\alpha = (\alpha_1, \dots \alpha_n)$ be an *n*-tuple of elements of GF(Q). Define the embedding of $GF(Q)^n$ into $GF(Q)^n$

$$\psi_{\alpha}: \qquad GF(q)^n \rightarrow GF(Q)^n$$

 $x = (x_1, \dots, x_n) \mapsto \mathbf{x} = (x_1\alpha_1, \dots x_n\alpha_n)$

and for any GF(q)-linear code C in $GF(q)^n$, define $C = C(C, \alpha)$ as the GF(Q)-linear code generated by $\psi_{\alpha}(C)$, i.e. the set of GF(Q)-linear combinations of elements of $\psi_{\alpha}(C)$.

A randomized reduction

General idea of the embedding:

$$(1,0,0,1,0,1) \rightarrow (\alpha_1,0,0,\alpha_4,0,\alpha_6)$$

$\mathsf{Theorem}$

Let C be a random code over GF(q) and α random, then for convenient m, with a very strong probability:

$$d_H(C) = d_R(C)$$
.

Theorem (Randomized reduction)

If there exists a polynomial time algorithms which solves RSD with a strong probability (RSD \in RP) then NP=RP.

Best known attacks

There are two types of attacks on the RSD problem :

- Combinatorial attacks
- Algebraic attacks

Depending on type of parameters, the efficiency varies a lot.

Combinatorial attacks

- first attack Chabaud-Stern '96: basis enumeration
- improvements A.Ourivski and T.Johannson '02
 - Basis enumeration : $\leq (k+r)^3 q^{(r-1)(m-r)+2}$ (amelioration on polynomial part of Chabaud-Stern '96)
 - Coordinates enumeration : $\leq (k+r)^3 r^3 q^{(r-1)(k+1)}$
- last improvement : Gaborit et al. '12 : adaptation of the ISD algorithm in the rank metric
 - Support attack : $\mathcal{O}(q^{(r-1)\frac{\lfloor (k+1)m\rfloor}{n}})$

Algebraic attacks for rank metric

General idea: translate the problem in equations then try to resolve with grobner basis

Main difficulty: translate in equations the fact that coordinates belong to a same subspace of dimension r in $GF(q^m)$?

- ullet Levy-Perret '06 : Taking error support as unknown ightarrow quadratic setting
- Kipnis-Shamir '99 (FLP '08) and others..) : Kernel attack, $(r+1) \times (r+1)$ minors \to degree r+1
- Gaborit et al. '12 : annulator polynomial \rightarrow degree q^r

 \rightarrow best attacks : exponential with quadratic complexity in the exponent. Comparison of this problem with other problems for a 2^n complexity with best known attacks :

complexity with best known accounts.									
general problem	size of key	proof of NP-hardness							
factorization	$\Omega(n^3)$	no							
discrete log (large car.)	$\Omega(n^3)$	no							
ECDL	$\Omega(n)$	no							
SVP ideal lattices	$\Omega(n)$	no							
SD cyclic-codes	$\Omega(n)$	no							
SD	$\Omega(n^2)$	yes							
SVP	$\Omega(n^2)$	yes							
RSD	$\Omega(n^{1.5})$	yes							

The GPT cryptosystem and its variations .RPC codes for cryptography Chen ZK authentication protocol : attack and repair

ENCRYPTION IN RANK METRIC

- Gabidulin et al. '91: first encryption scheme based on rank metric - adaptation of McELiece scheme, with Gabidulin codes and rank metric
- small size of keys (\sim 5000b)
- inherent structural weakness from Gabidulin codes
- ullet ightarrow many attacks (Overbeck '05) , many reparations
- last reparations: Loidreau PQC '10, Gabidulin et al'09.
 → all parameters broken in 2012 by Gaborit et al.
- → similar situation to RS codes in Hamming metric : seems
 hard to hide a very structured family of codes (Gabidulin
 codes) new systems proposed?

The NTRU-like family

- NTRU
 - double circulant matrix $(A|B) \rightarrow (I|H)$
 - A and B : cyclic with 0 and 1, over Z/qZ (small weight) (q=256), $N \sim 300$
- MDPC
 - double circulant matrix $(A|B) \rightarrow (I|H)$
 - ullet A and B : cyclic with 0 and 1, 45 1, (small weight) $\mathcal{N}\sim$ 4500
- LRPC
 - double circulant matrix $(A|B) \rightarrow (I|H)$
 - A and B : cyclic with small weight (small rank)
 - → weak structure, more difficult to attack (some specific structural attacks exist but are easy to counter Gentry '02, Hauteville-Tillich 2015)

Parameters

LRPC codes for cryptography (Gaborit et al. 2013)

n	k	m	q	d	r	failure	public key	security
82	41	41	2	5	4	-22	1681	80
106	53	53	2	6	5	-24	2809	128
74	37	23	2 ⁴	4	4	-88	3404	110

The GPT cryptosystem and its variations LRPC codes for cryptography
Chen ZK authentication protocol: attack and repair

Authentication

Chen's protocol

In '95 K. Chen proposed a rank metric authentication scheme, in the spirit of the Stern SD protocol for Hamming distance and Shamir's PKP protocol.

Unfortunately the ZK proof is false.... a good toy example to understand some subtilities of rank metric. [G. et al. (2011)]

1 [Commitment step] The prover \mathcal{P} chooses $x \in V_n$, $P \in GL_n(GF(q))$ and $Q \in GL_m(q)$. He sends c_1, c_2, c_3 such that :

$$c_1 = hash(Q|P|Hx^t), c_2 = hash(Q*xP), c_3 = hash(Q*(x+s)P)$$

- [Challenge step] The verifier \mathcal{V} sends $b \in \{0, 1, 2\}$ to P.
- [Answer step] there are three possibilities :
 - if b = 0, \mathcal{P} reveals x and (Q|P)
 - if b=1, \mathcal{P} reveals x+s and (Q|P)
 - if b = 2. \mathcal{P} reveals Q * xP and Q * sP
- [Verification step] there are three possibilities :
 - if b = 0, \mathcal{V} checks c_1 and c_2 .
 - if b = 1. V checks c_1 and c_3 .
 - if b=2, V checks c_2 and c_3 and that rank(Q*sP)=r.

- Public matrix $\mathbf{H}: (n-k) \times k \times m = 2691$ bits
- Public key i : (n-k)m = 299 bits
- **Secret key s** : r(m+n) = 360 bits
- Average number of bits exchanged in one round : 2 hash + one word of $GF(q^m) \sim 820$ bits.
- \rightarrow security based on a general instance of the RSD problem

Complexity issues: Signature in rank metric

Signature with rank metric

RankSign: general idea

General idea: Inverting a random syndrome with mixed errors/erasure decoding

- Possible to adapt the LRPC decoding algo, with a few constraints
- \bullet Possible to find parameters for which unique decoding for erasure is obtained beyond RGV with proba ~ 1
- Matrices cannot be used directly for crypto and need a masking.
- best results : d = 2 anyway
- security proof for leaking information

Parameters

examples of parameters

n	n-k	m	q	d	t	r'	r	GV	Sg	pk	sign	LP	Dual	DS	DA
16	8	18	2 ⁴⁰	2	2	4	6	5	8	57600	8640	130	1096	400	776
16	8	18	2 ⁸	2	2	4	6	5	8	11520	1728	110	233	80	168
16	8	18	2 ¹⁶	2	2	4	6	5	8	23040	3456	120	448	160	320
20	10	24	2 ⁸	2	3	5	8	6	10	24960	3008	190	370	104	226
27	9	20	2 ⁶	3	2	3	5	4	7	23328	1470	170	187	120	129
48	12	40	2 ⁴	4	5	3	8	6	10	78720	2976	> 600	340	164	114
50	10	42	2 ⁴	5	2	2	7	5	9	70560	2800	> 600	240	180	104

• implementation results

- 1	n	n-k	m	q	d	signature time (ms)	verification time (ms)	security (bits)	
	16	8	18	2 ⁸	2	2.75	4.4	80	
Ì	20	10	24	2 ⁸	2	6.13	12	104	

TABLE: Non optimized implementation time on a Intel Core i5-4200U CPU 1.60GHz processor with MPFQ library

Post-Quantum Cryptography
Decoding in rank metric
Complexity issues: decoding random rank codes
Encryption/Authentication in rank metric
Signature in rank metric

GENERAL CONCLUSION

- rank metric is fun with a rich algebraic structure and many fascinating objects like q-polynomials (polynomials/matrices)
- cryptosystems with small parameters (encryption / signature / authentication) exist
- Rank metric has a very strong potential for PQ crypto since small parameters → strong resistance to best known attacks (analogy DL/ECDL with Hamming/rank).
- LRPC codes -weak structure-, similar to NTRU or MDPC offer many advantages
- needs more scrutiny from the communauty

Open problems

- Deterministic reduction to SD rather than only probabilistic?
- Is it possible to have worst case average case reduction?
- Finding new primitives, in the standard model?
- Better security reduction (although cryptosystems exist directly based on RSD)?
- Attacks improvements : on rank ISD / algebraic settings?
- Implementations?
- homomorphic FHE (be crazy!)

Post-Quantum Cryptography
Decoding in rank metric
Complexity issues: decoding random rank codes
Encryption/Authentication in rank metric
Signature in rank metric

THANK YOU