QC-MDPC-McEliece:

A public-key code-based encryption scheme based on quasi-cyclic moderate density parity check codes

NIST Workshop on Cybersecurity in a Post-Quantum World

Nicolas Sendrier and Jean-Pierre Tillich (joint work with Rafael Misoczki and Paulo Barreto)

Error Correcting Codes for Public-Key Encryption

- If a random linear expansion is used, no one can decode efficiently
- If a "good" error correcting code is used for the expansion, anyone who knows the structure has access to a fast decoder

Assuming that the knowledge of the linear expansion does not reveal the code structure:

- The linear expansion is public and anyone can encrypt
- The decoder is known to the legitimate user who can decrypt
- For anyone else, the public linear expansion looks random

McEliece Public-key Encryption Scheme - Overview

\mathcal{F} a family of t-error correcting binary linear $[n, k]$ code

Key generation:

$\mathcal{C} \in \mathcal{F} \rightarrow\left\{\begin{array}{l}\text { Public Key: } G \in\{0,1\}^{k \times n}, \text { a generator matrix } \\ \text { Secret Key: } \Phi:\{0,1\}^{n} \rightarrow \mathcal{C} \text {, a decoder correcting } t \text { errors }\end{array}\right.$
Encryption: $\left[\begin{array}{ccc}E_{G}:\{0,1\}^{k} & \rightarrow\{0,1\}^{n} \\ x & \mapsto & x G+e\end{array}\right]$ with e random of weight t
Decryption: $\left[\begin{array}{ccc}D_{\Phi}:\{0,1\}^{n} & \rightarrow & \{0,1\}^{k} \\ y & \mapsto & \Phi(y) G^{*}\end{array}\right]$ where $G G^{*}=1$
[McEliece, 1978] \mathcal{F} is a family of binary Goppa codes
$n=1024, k=524, t=50$

Hardness of Decoding

[Berlekamp, McEliece, \& van Tilborg, 78]

Syndrome Decoding
 NP-complete

Instance: $H \in\{0,1\}^{(n-k) \times n}, s \in\{0,1\}^{n-k}$, w integer
Question: Is there $e \in\{0,1\}^{n}$ such that $\operatorname{wt}(e) \leq w$ and $e H^{T}=s$?
[Alekhnovich, 03]
Conjectured difficult on average for $w=n^{\varepsilon}$ and any $\varepsilon>0$
Best known decoder for w errors in an $[n, k]$ code has complexity

$$
W_{\mathrm{SD}}(n, k, w)=2^{(c+o(1)) w \log _{2} \frac{n}{n-k}}
$$

[Prange, 62] Information Set Decoding, $c \approx 1.1$ when $w=\theta(n)$ [Becker \& Joux \& May \& Meurer, 12] $c \approx 0.9$ when $w=\theta(n)$

When $w=o(n)$ then $c=1$ for all classical variants of ISD
[Bernstein, 09] quantum computing $\rightarrow c$ divided by 2 (at most)

Security Reduction

For given parameters n, k, and t
$\mathcal{K}=\{0,1\}^{k \times n}$ the "apparent" key space
$\mathcal{G} \subset \mathcal{K}$ the set of all public keys

Theorem

If there exists an efficient adversary against McEliece then

- either there exists an efficient distinguisher for \mathcal{G} versus \mathcal{K}
- or there exists an efficient generic decoder for t errors in [n, k] codes

In other words, if we assume that

1. \mathcal{G} is pseudorandom
2. decoding is hard on average
then McEliece's scheme (with public keys in \mathcal{G}) is secure "on average"

+ a semantically secure conversion \rightarrow any desirable security level

More on Semantic Security

Because the scheme is malleable (replay attack [Berson, 97], reaction attack [Kobara \& Imai, 00]) a semantically secure conversion is mandatory

First semantically secure conversion: [Kobara \& Imai, 01]
With a semantic security layer the public key can be in systematic form [Biswas \& S.,08]

$$
G=\begin{array}{|lll|l|}
\hline 1 & & & \\
& \searrow & & \\
& & 1 & \\
\hline
\end{array}
$$

\rightarrow smaller key size, easier encryption

Quasi-Cyclic instances of McEliece's Scheme (1/2)

(similar to NTRU, Ring LWE, ideal lattices)
The public key is formed of circulant blocks, for instance:

Advantage: much smaller key size
Difficulty: hide the code structure (i.e. the secret decoder)

Quasi-Cyclic instances of McEliece's Scheme (2/2)

- Goppa (or alternant) codes, initiated by [Gaborit, 05]

Too much algebraic structure, some attempts have failed, to be used with care

- "Disguised" LDPC (Low Density Parity Check) codes [Baldi \& Chiaraluce, 07]

Less structure but still no convincing security reduction

- MDPC (Moderate Density Parity Check) codes [Misoczki \& Tillich \& S. \& Barreto, 13]

Even less structure, a security reduction
[Misoczki \& Barreto, 09]
Also possible with dyadic blocks instead of circulant blocks

MDPC McEliece

QC-MDPC-McEliece Scheme (1/2)

Parameters: n, k, w, t
(for instance $n=9601, k=4801, w=90, t=84$)
Key generation: (rate $1 / 2, n=2 p, k=p$)
Pick a (sparse) vector $\left(h_{0}, h_{1}\right) \in\{0,1\}^{p} \times\{0,1\}^{p}$ of weight w

$$
H_{\text {secret }}=\begin{array}{|c|c|}
\hline h_{0} & h_{1} \\
\hline \circlearrowright & \circlearrowright \\
\hline
\end{array}
$$

with $h_{0}(x)$ invertible in $\mathbf{F}_{2}[x] /\left(x^{p}-1\right)$ (circulant binary $p \times p$ matrices are isomorphic to $\mathbf{F}_{2}[x] /\left(x^{p}-1\right)$)
Publish $h(x)=h_{1}(x) h_{0}^{-1}(x) \bmod x^{p}-1$ or $g(x)=\overline{h(x) / x}$

H a parity check matrix, G a generator matrix

QC-MDPC-McEliece Scheme (2/2)

Encryption: (rate $1 / 2, n=2 p, k=p$)

$$
\begin{aligned}
\mathbf{F}_{2}[x] /\left(x^{p}-1\right) & \rightarrow \mathbf{F}_{2}[x] /\left(x^{p}-1\right) \times \mathbf{F}_{2}[x] /\left(x^{p}-1\right) \\
m(x) & \mapsto\left(m(x) g(x)+e_{0}(x), m(x)+e_{1}(x)\right)
\end{aligned}
$$

The error $e(x)=\left(e_{0}(x), e_{1}(x)\right)$ has weight t

Decryption:

Iterative decoding (as for LDPC codes) which only requires the sparse parity check matrix. For instance the "bit flipping" algorithm

Parameters are chosen such that the decoder fails to correct t errors with negligible probability

Each iteration has a cost proportional to $w \cdot(n-k)$, the number of iterations is small (3 to 5 in practice)

QC-MDPC-McEliece Security Reduction

$$
H=\begin{array}{|c|c|}
\hline 1 & h \\
& 1 \\
& \circlearrowright \\
& \text { with } h(x)=\frac{h_{1}(x)}{h_{0}(x)} \quad \bmod x^{p}-1 .
\end{array}
$$

Secure under two assumptions

1. Pseudorandomness of the public key

Hard to decide whether there exists a sparse vector in the code spanned by H (the dual of the MDPC code)
2. Hardness of generic decoding of QC codes Hard to decode in the code of parity check matrix H (for an arbitrary value of h)

Sparse Polynomial Problems

The security reduction and the attacks can be stated in terms of polynomials

1. Key Security

Given $h(x)$, find non-zero $\left(h_{0}(x), h_{1}(x)\right)$ such that

$$
\left\{\begin{array}{l}
h_{0}(x)+h(x) h_{1}(x)=0 \quad \bmod x^{p}-1 \\
\operatorname{wt}\left(h_{0}\right)+\operatorname{wt}\left(h_{1}\right) \leq w
\end{array}\right.
$$

or simply decide the existence of a solution \rightarrow distinguisher
2. Message Security

Given $h(x)$ and $S(x)$, find $e_{0}(x)$ and $e_{1}(x)$ such that

$$
\left\{\begin{array}{l}
e_{0}(x)+h(x) e_{1}(x)=S(x) \quad \bmod x^{p}-1 \\
w t\left(e_{0}\right)+w t\left(e_{1}\right) \leq t
\end{array}\right.
$$

In both cases, best known solutions use generic decoding algorithms

Practical Security - Best Known Attacks

Let $W_{\mathrm{SD}}(n, k, t)$ denote the cost for the generic decoding of t errors in a binary $[n, k$] code

We consider a QC-MDPC-McEliece instance with parameters n, k, w, t and circulant blocks of size p.

1. Key Attack: find a word of weight w in a quasi-cyclic binary $[n, n-k]$ code

$$
W_{K}(n, k, w) \geq \frac{W_{\mathrm{SD}}(n, n-k, w)}{n-k}
$$

(there are $n-k$ words of weight w)
2. Message Attack: decode t errors in a quasi-cyclic binary $[n, k]$ code

$$
W_{M}(n, k, t, p) \geq \frac{W_{\mathrm{SD}}(n, k, t)}{\sqrt{p}}
$$

(Decoding One Out of Many [S., 11] \rightarrow factor \sqrt{p})

Parameter Selection

Choose a code rate k / n and a security exponent S (for instance 80 or 128). Then increase the block size until the following succeeds:

- find w the smallest integer such that $W_{K}(n, k, w) \geq 2^{S}$
- find t the error correcting capability of the corresponding MDPC code
- check that $W_{M}(n, k, t, p) \geq 2^{S}$

$$
\begin{array}{cc}
80 \text { bits of security } & 128 \text { bits of security } \\
n=9602 & n=19714 \\
k=4801 & k=9857 \\
p=4801 & p=9857 \\
w=90 & w=142 \\
t=84 & t=134
\end{array}
$$

Scalability

A binary $[n, k]$ code with $n-k$ parity equations of weight w will correct t errors with an LDPC-like decoding algorithm as long as $t \cdot w \lesssim n$

For LDPC codes, we have essentially $w=O(1)$. For MDPC codes we have $w=O(\sqrt{n})$ and thus $t=O(\sqrt{n})$.

The optimal trade-off between the key size (K) and the security (S) is obtained for codes of rate $1 / 2$ and

$$
K \approx c S^{2} \text { with } c<1
$$

For Goppa code, the optimal code rate is ≈ 0.8 and

$$
K \approx c\left(S \log _{2} S\right)^{2} \text { with } c \approx 2
$$

Conclusion

QC-MDPC-McEliece is a promising variant which enjoys

- a reasonable key size
- good security arguments (very little structure)
- secure against quantum computers
- easy implementation (including lightweight implementation) [Heyse \& von Maurich \& Güneysu, 13]

Thank you for your attention

Bit-Flipping Decoding

Parameter: a threshold T
input: $y \in\{0,1\}^{n}, H \in\{0,1\}^{(n-k) \times n}$
Repeat
Compute the syndrome $H y^{T}$
for $j=1, \ldots, n$
if more than T parity equations involving j are violated then flip y_{j}
$H y^{T}=\left(\begin{array}{c}s_{1} \\ \vdots \\ s_{n-k}\end{array}\right)$, if $s_{i} \neq 0$ the i-th parity equation is violated
If H is sparse enough and y close to the code of parity check matrix H then the algorithm finds the closest codeword after a few iterations

