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Error Correcting Codes for Public-Key Encryption
 

linear expansion 
plaintext _ codeword 

 

k n > k 
intentionally add errors 

plaintext _ ciphertext _

decoding 

•	 If a random linear expansion is used, no one can decode efficiently
 

•	 If a “good” error correcting code is used for the expansion, anyone 

who knows the structure has access to a fast decoder 

Assuming that the knowledge of the linear expansion does not reveal 

the code structure: 

•	 The linear expansion is public and anyone can encrypt
 

•	 The decoder is known to the legitimate user who can decrypt
 

•	 For anyone else, the public linear expansion looks random
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McEliece Public-key Encryption Scheme – Overview
 

F a family of t-error correcting binary linear [n, k] code
 

Key generation: ⎧
 ⎨
 Public Key: G ∈ {0, 1}k×n, a generator matrix C ∈ F → ⎩ Secret Key: Φ : {0, 1}n → C , a decoder correcting t errors 

⎡ ⎤ 
EG : {0, 1}k → {0, 1}n 

Encryption: ⎣ ⎦ with e random of weight t 
x  → xG + e 

⎡ ⎤ 
DΦ : {0, 1}n → {0, 1}k 

Decryption: ⎣ ⎦ where GG ∗ = 1 
y  → Φ(y)G ∗ 

[McEliece, 1978] F is a family of binary Goppa codes 

n = 1024, k = 524, t = 50 

N. Sendrier and J.-P. Tillich – Cryptosystems based on MDPC codes 2/15
 



Hardness of Decoding 

[Berlekamp, McEliece, & van Tilborg, 78] 

Syndrome Decoding NP-complete 

Instance: H ∈ {0, 1}(n−k)×n , s ∈ {0, 1}n−k , w integer 

Question: Is there e ∈ {0, 1}n such that wt(e) ≤ w and eHT = s? 

[Alekhnovich, 03] 

Conjectured difficult on average for w = nε and any ε > 0 

Best known decoder for w errors in an [n, k] code has complexity 
n 

n−kWSD(n, k, w) = 2(c+o(1))w log2 

[Prange, 62] Information Set Decoding, c ≈ 1.1 when w = θ(n) 

[Becker & Joux & May & Meurer, 12] c ≈ 0.9 when w = θ(n) 

When w = o(n) then c = 1 for all classical variants of ISD 

[Bernstein, 09] quantum computing → c divided by 2 (at most) 
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Security Reduction
 

For given parameters n, k, and t 

K = {0, 1}k×n the “apparent” key space 

G ⊂ K the set of all public keys 

Theorem 

If there exists an efficient adversary against McEliece then 

•	 either there exists an efficient distinguisher for G versus K
 

•	 or there exists an efficient generic decoder for t errors in 

[n, k] codes 

In other words, if we assume that 

1. G is pseudorandom 

2. decoding is hard on average 

then McEliece’s scheme (with public keys in G) is secure “on average” 

+ a semantically secure conversion → any desirable security level 
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More on Semantic Security
 

Because the scheme is malleable (replay attack [Berson, 97], reac­

tion attack [Kobara & Imai, 00]) a semantically secure conversion is
 

mandatory 

First semantically secure conversion: [Kobara & Imai, 01] 

With a semantic security layer the public key can be in systematic 

form [Biswas & S.,08] 

1 

G = � 

1
 

→ smaller key size, easier encryption 
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Quasi-Cyclic instances of McEliece’s Scheme (1/2)
 

(similar to NTRU, Ring LWE, ideal lattices)
 

The public key is formed of circulant blocks, for instance:
 

G = 

1 

1 

g 

0 

G =
 

1 

1 

g0,0 

0 
g0,1 

0 
g0,2 

0 
1 

1 

g1,0 

0 
g1,1 

0 
g1,2 

0 

Advantage: much smaller key size
 

Difficulty: hide the code structure (i.e. the secret decoder)
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Quasi-Cyclic instances of McEliece’s Scheme (2/2)
 

• Goppa (or alternant) codes, initiated by [Gaborit, 05] 

Too much algebraic structure, some attempts have failed, to be 

used with care 

• “Disguised” LDPC (Low Density Parity Check) codes 

[Baldi & Chiaraluce, 07] 

Less structure but still no convincing security reduction 

• MDPC (Moderate Density Parity Check) codes 

[Misoczki & Tillich & S. & Barreto, 13] 

Even less structure, a security reduction 

[Misoczki & Barreto, 09] 

Also possible with dyadic blocks instead of circulant blocks 
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MDPC McEliece
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QC-MDPC-McEliece Scheme (1/2)
 

Parameters: n, k, w, t
 
(for instance n = 9601, k = 4801, w = 90, t = 84)
 

Key generation: (rate 1/2, n = 2p, k = p)
 

Pick a (sparse) vector (h0, h1) ∈ {0, 1}p × {0, 1}p of weight w
 

Hsecret = 

h0 h1 

0 0 
with h0(x) invertible in F2[x]/(x

p − 1)
 
(circulant binary p × p matrices are isomorphic to F2[x]/(x

p − 1))
 

Publish h(x) = h1(x)h
−1(x) mod xp − 1 or g(x) = h(x)/x0 

H = 

1 h 

1 0 or G = 

g 1 

0 1 

H a parity check matrix, G a generator matrix
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QC-MDPC-McEliece Scheme (2/2)
 

Encryption: (rate 1/2, n = 2p, k = p) 

F2[x]/(x
p − 1) → F2[x]/(x

p − 1) × F2[x]/(x
p − 1) 

m(x)  → (m(x)g(x) + e0(x), m(x) + e1(x)) 

The error e(x) = (e0(x), e1(x)) has weight t 

Decryption: 

Iterative decoding (as for LDPC codes) which only requires the sparse 

parity check matrix. For instance the “bit flipping” algorithm 

Parameters are chosen such that the decoder fails to correct t errors 

with negligible probability 

Each iteration has a cost proportional to w · (n − k), the number of 

iterations is small (3 to 5 in practice) 
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QC-MDPC-McEliece Security Reduction
 

1 

1 

h 

0 
h1(x)H = with h(x) = mod xp − 1 
h0(x) 

Secure under two assumptions 

1. Pseudorandomness of the public key 

Hard to decide whether there exists a sparse vector in the code 

spanned by H (the dual of the MDPC code) 

2. Hardness of generic decoding of QC codes 

Hard to decode in the code of parity check matrix H (for an 

arbitrary value of h) 
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Sparse Polynomial Problems
 

The security reduction and the attacks can be stated in terms of 

polynomials 

1.	 Key Security
 

Given h(x), find non-zero (h0(x), h1(x)) such that
 ⎧⎨ ⎩
 
h0(x) + h(x)h1(x) = 0 mod xp − 1 

wt(h0) + wt(h1) ≤ w 

or simply decide the existence of a solution → distinguisher 

2.	 Message Security 

Given h(x) and S(x), find e0(x) and e1(x) such that ⎧⎨ ⎩
 
e0(x) + h(x)e1(x) = S(x) mod xp − 1 

wt(e0) + wt(e1) ≤ t 

In both cases, best known solutions use generic decoding algorithms
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Practical Security – Best Known Attacks
 

Let WSD(n, k, t) denote the cost for the generic decoding of t errors 
in a binary [n, k] code 

We consider a QC-MDPC-McEliece instance with parameters n, k, w, t 
and circulant blocks of size p. 

WK(n, k, w) ≥ 

1. Key Attack: find a word of weight w in a quasi-cyclic binary 
[n, n − k] code 

WSD(n, n − k, w) 

n − k 
(there are n − k words of weight w) 

2. Message Attack: decode t errors in a quasi-cyclic binary [n, k]
 
code 

WSD(n, k, t)
WM (n, k, t, p) ≥ √ 

p
 
√


(Decoding One Out of Many [S., 11] → factor p)
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Parameter Selection
 

Choose a code rate k/n and a security exponent S (for instance 80 

or 128). Then increase the block size until the following succeeds: 

•	 find w the smallest integer such that WK(n, k, w) ≥ 2S 

•	 find t the error correcting capability of the corresponding MDPC 

code 

•	 check that WM (n, k, t, p) ≥ 2S 

80 bits of security 128 bits of security
 

n = 9602 n = 19714
 

k = 4801 k = 9857
 

p = 4801 p = 9857
 

w = 90 w = 142
 

t = 84 t = 134
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Scalability
 

A binary [n, k] code with n−k parity equations of weight w will correct 

t errors with an LDPC-like decoding algorithm as long as t · w ; n 

For LDPC codes, we have essentially w = O(1). For MDPC codes
 
√ √ 

we have w = O( n) and thus t = O( n).
 

The optimal trade-off between the key size (K) and the security (S)
 

is obtained for codes of rate 1/2 and
 

K ≈ cS2 with c < 1 

For Goppa code, the optimal code rate is ≈ 0.8 and 

K ≈ c (S log2 S)
2 with c ≈ 2 
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Conclusion
 

QC-MDPC-McEliece is a promising variant which enjoys 

• a reasonable key size 

• good security arguments (very little structure) 

• secure against quantum computers 

• easy implementation (including lightweight implementation)
 

[Heyse & von Maurich & Güneysu, 13] 
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Thank you for your attention
 



Bit-Flipping Decoding 

Parameter: a threshold T 

input: y ∈ {0, 1}n , H ∈ {0, 1}(n−k)×n 

Repeat
 

Compute the syndrome H yT
 

for j = 1, . . . , n
 

if more than T parity equations involving j are violated then 

flip yj ⎞⎛ 
s1
 

H yT
 =
 
⎜⎜⎝
 

.
.
.
 

sn−k 

⎟⎟⎠
, if si  = 0 the i-th parity equation is violated 

If H is sparse enough and y close to the code of parity check matrix
 

H then the algorithm finds the closest codeword after a few iterations
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