QC-MDPC-McEliece:
A public-key code-based encryption scheme based on quasi-cyclic moderate density parity check codes

NIST Workshop on Cybersecurity in a Post-Quantum World

Nicolas Sendrier and Jean-Pierre Tillich
(joint work with Rafael Misoczki and Paulo Barreto)
Error Correcting Codes for Public-Key Encryption

If a random linear expansion is used, no one can decode efficiently.

If a “good” error correcting code is used for the expansion, anyone who knows the structure has access to a fast decoder.

Assuming that the knowledge of the linear expansion does not reveal the code structure:

- The linear expansion is public and anyone can encrypt
- The decoder is known to the legitimate user who can decrypt
- For anyone else, the public linear expansion looks random
McEliece Public-key Encryption Scheme – Overview

\(\mathcal{F} \) a family of \(t \)-error correcting binary linear \([n,k]\) code

Key generation:

\[\mathcal{C} \in \mathcal{F} \rightarrow \begin{cases}
\text{Public Key: } G \in \{0,1\}^{k \times n}, \text{ a generator matrix} \\
\text{Secret Key: } \Phi : \{0,1\}^n \rightarrow \mathcal{C}, \text{ a decoder correcting } t \text{ errors}
\end{cases} \]

Encryption:

\[E_G : \{0,1\}^k \rightarrow \{0,1\}^n \]

\[x \mapsto xG + e \]

with \(e \) random of weight \(t \)

Decryption:

\[D_\Phi : \{0,1\}^n \rightarrow \{0,1\}^k \]

\[y \mapsto \Phi(y)G^* \]

where \(GG^* = 1 \)

[McEliece, 1978] \(\mathcal{F} \) is a family of binary Goppa codes

\(n = 1024, k = 524, t = 50 \)
Hardness of Decoding

[Berlekamp, McEliece, & van Tilborg, 78]

Syndrome Decoding

Instance: $H \in \{0, 1\}^{(n-k) \times n}$, $s \in \{0, 1\}^{n-k}$, w integer

Question: Is there $e \in \{0, 1\}^n$ such that $\text{wt}(e) \leq w$ and $eH^T = s$?

[Alekhnovich, 03]
Conjectured difficult on average for $w = n^\varepsilon$ and any $\varepsilon > 0$

Best known decoder for w errors in an $[n, k]$ code has complexity

$$W_{SD}(n, k, w) = 2^{(c+o(1))w \log_2 \frac{n}{n-k}}$$

[Prange, 62] Information Set Decoding, $c \approx 1.1$ when $w = \theta(n)$
[Becker & Joux & May & Meurer, 12] $c \approx 0.9$ when $w = \theta(n)$

When $w = o(n)$ then $c = 1$ for all classical variants of ISD

[Bernstein, 09] quantum computing → c divided by 2 (at most)
Security Reduction

For given parameters n, k, and t

$\mathcal{K} = \{0, 1\}^{k \times n}$ the “apparent” key space

$\mathcal{G} \subset \mathcal{K}$ the set of all public keys

Theorem

If there exists an efficient adversary against McEliece then

- either there exists an efficient distinguisher for \mathcal{G} versus \mathcal{K}
- or there exists an efficient generic decoder for t errors in $[n, k]$ codes

In other words, if we assume that

1. \mathcal{G} is pseudorandom
2. decoding is hard on average

then McEliece’s scheme (with public keys in \mathcal{G}) is secure “on average”

+ a semantically secure conversion \rightarrow any desirable security level
More on Semantic Security

Because the scheme is malleable (replay attack [Berson, 97], reaction attack [Kobara & Imai, 00]) a semantically secure conversion is mandatory.

First semantically secure conversion: [Kobara & Imai, 01]

With a semantic security layer the public key can be in systematic form [Biswas & S., 08]

\[
G = \begin{pmatrix}
1 \\
\downarrow \\
1
\end{pmatrix}
\]

→ smaller key size, easier encryption
Quasi-Cyclic instances of McEliece’s Scheme (1/2)

(similar to NTRU, Ring LWE, ideal lattices)

The public key is formed of circulant blocks, for instance:

\[G = \begin{bmatrix}
 1 & \quad & g \\
 1 & \quad & \\
\end{bmatrix} \]

\[G = \begin{bmatrix}
 1 & 1 & g_{0,0} & g_{0,1} & g_{0,2} \\
 1 & 1 & g_{1,0} & g_{1,1} & g_{1,2} \\
\end{bmatrix} \]

Advantage: much smaller key size

Difficulty: hide the code structure (i.e. the secret decoder)
Quasi-Cyclic instances of McEliece’s Scheme (2/2)

- Goppa (or alternant) codes, initiated by [Gaborit, 05]
 Too much algebraic structure, some attempts have failed, to be used with care

- “Disguised” LDPC (Low Density Parity Check) codes
 [Baldi & Chiaraluce, 07]
 Less structure but still no convincing security reduction

- MDPC (Moderate Density Parity Check) codes
 [Misoczki & Tillich & S. & Barreto, 13]
 Even less structure, a security reduction

 [Misoczki & Barreto, 09]
 Also possible with dyadic blocks instead of circulant blocks
MDPC McEliece
QC-MDPC-McEliece Scheme (1/2)

Parameters: \(n, k, w, t \)
(for instance \(n = 9601, k = 4801, w = 90, t = 84 \))

Key generation: (rate 1/2, \(n = 2p, k = p \))

Pick a (sparse) vector \((h_0, h_1) \in \{0, 1\}^p \times \{0, 1\}^p \) of weight \(w \)

\[
H_{\text{secret}} = \begin{bmatrix}
 \circlearrowleft & h_0 \\
 \circlearrowleft & h_1
\end{bmatrix}
\]

with \(h_0(x) \) invertible in \(\mathbb{F}_2[x]/(x^p - 1) \)
(circulant binary \(p \times p \) matrices are isomorphic to \(\mathbb{F}_2[x]/(x^p - 1) \))

Publish \(h(x) = h_1(x)h_0^{-1}(x) \mod x^p - 1 \) or \(g(x) = \overline{h(x)}/x \)

\[
H = \begin{bmatrix}
 1 & \circlearrowleft \\
 1 & h
\end{bmatrix}
\quad \text{or} \quad
G = \begin{bmatrix}
 g & \circlearrowleft & 1
\end{bmatrix}
\]

\(H \) a parity check matrix, \(G \) a generator matrix
QC-MDPC-McEliece Scheme (2/2)

Encryption: (rate 1/2, $n = 2p$, $k = p$)

\[
\begin{align*}
F_2[x]/(x^p - 1) & \rightarrow F_2[x]/(x^p - 1) \times F_2[x]/(x^p - 1) \\
m(x) & \mapsto (m(x)g(x) + e_0(x), m(x) + e_1(x))
\end{align*}
\]

The error $e(x) = (e_0(x), e_1(x))$ has weight t

Decryption:

Iterative decoding (as for LDPC codes) which only requires the sparse parity check matrix. For instance the “bit flipping” algorithm

Parameters are chosen such that the decoder fails to correct t errors with negligible probability

Each iteration has a cost proportional to $w \cdot (n - k)$, the number of iterations is small (3 to 5 in practice)
QC-MDPC-McEliece Security Reduction

\[
H = \begin{bmatrix} 1 & h \end{bmatrix} \quad \text{with} \quad h(x) = \frac{h_1(x)}{h_0(x)} \mod x^p - 1
\]

Secure under two assumptions

1. Pseudorandomness of the public key
 Hard to decide whether there exists a sparse vector in the code spanned by \(H \) (the dual of the MDPC code)

2. Hardness of generic decoding of QC codes
 Hard to decode in the code of parity check matrix \(H \) (for an arbitrary value of \(h \))
Sparse Polynomial Problems

The security reduction and the attacks can be stated in terms of polynomials

1. **Key Security**

 Given $h(x)$, find non-zero $(h_0(x), h_1(x))$ such that
 \[
 \begin{cases}
 h_0(x) + h(x)h_1(x) = 0 \mod x^p - 1 \\
 \text{wt}(h_0) + \text{wt}(h_1) \leq w
 \end{cases}
 \]

 or simply decide the existence of a solution \rightarrow distinguisher

2. **Message Security**

 Given $h(x)$ and $S(x)$, find $e_0(x)$ and $e_1(x)$ such that
 \[
 \begin{cases}
 e_0(x) + h(x)e_1(x) = S(x) \mod x^p - 1 \\
 \text{wt}(e_0) + \text{wt}(e_1) \leq t
 \end{cases}
 \]

 In both cases, best known solutions use generic decoding algorithms
Practical Security – Best Known Attacks

Let $W_{SD}(n, k, t)$ denote the cost for the generic decoding of t errors in a binary $[n, k]$ code.

We consider a QC-MDPC-McEliece instance with parameters n, k, w, t and circulant blocks of size p.

1. **Key Attack:** find a word of weight w in a quasi-cyclic binary $[n, n - k]$ code

 $W_K(n, k, w) \geq \frac{W_{SD}(n, n - k, w)}{n - k}$

 (there are $n - k$ words of weight w)

2. **Message Attack:** decode t errors in a quasi-cyclic binary $[n, k]$ code

 $W_M(n, k, t, p) \geq \frac{W_{SD}(n, k, t)}{\sqrt{p}}$

 (Decoding One Out of Many [S., 11] → factor \sqrt{p})
Parameter Selection

Choose a code rate k/n and a security exponent S (for instance 80 or 128). Then increase the block size until the following succeeds:

- find w the smallest integer such that $W_K(n, k, w) \geq 2^S$
- find t the error correcting capability of the corresponding MDPC code
- check that $W_M(n, k, t, p) \geq 2^S$

<table>
<thead>
<tr>
<th>80 bits of security</th>
<th>128 bits of security</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n = 9602$</td>
<td>$n = 19714$</td>
</tr>
<tr>
<td>$k = 4801$</td>
<td>$k = 9857$</td>
</tr>
<tr>
<td>$p = 4801$</td>
<td>$p = 9857$</td>
</tr>
<tr>
<td>$w = 90$</td>
<td>$w = 142$</td>
</tr>
<tr>
<td>$t = 84$</td>
<td>$t = 134$</td>
</tr>
</tbody>
</table>

N. Sendrier and J.-P. Tillich – Cryptosystems based on MDPC codes 13/15
A binary $[n, k]$ code with $n - k$ parity equations of weight w will correct t errors with an LDPC-like decoding algorithm as long as $t \cdot w \lesssim n$.

For LDPC codes, we have essentially $w = O(1)$. For MDPC codes we have $w = O(\sqrt{n})$ and thus $t = O(\sqrt{n})$.

The optimal trade-off between the key size (K) and the security (S) is obtained for codes of rate 1/2 and

$$K \approx cS^2 \quad \text{with} \quad c < 1$$

For Goppa code, the optimal code rate is ≈ 0.8 and

$$K \approx c(S \log_2 S)^2 \quad \text{with} \quad c \approx 2$$
Conclusion

QC-MDPC-McEliece is a promising variant which enjoys

- a reasonable key size
- good security arguments (very little structure)
- secure against quantum computers
- easy implementation (including lightweight implementation)

[Heyse & von Maurich & Güneysu, 13]
Thank you for your attention
Bit-Flipping Decoding

Parameter: a threshold T

input: $y \in \{0, 1\}^n$, $H \in \{0, 1\}^{(n-k) \times n}$

Repeat

Compute the syndrome $H y^T$

for $j = 1, \ldots, n$

if more than T parity equations involving j are violated then

flip y_j

$H y^T = \begin{pmatrix} s_1 \\ \vdots \\ s_{n-k} \end{pmatrix}$, if $s_i \neq 0$ the i-th parity equation is violated

If H is sparse enough and y close to the code of parity check matrix H then the algorithm finds the closest codeword after a few iterations.