Renaissance of Precomputation in a Post-Quantum World

Aydin Aysu, Patrick Schaumont

Virginia Tech

aydinay@vt.edu

04/03/15

イロト イヨト イヨト

The changes in a PQ-world:

- Cryptanalysis tools
- Security primitives
- Embedded systems

Precomputation as an optimization methodology

- Previous ([Koyama92],[Brickell92],[Rooij95])
- Recent ([Bernstein12][Ateniese13][Bianchi14])
- Apply it on post-quantum digital signatures
- Quantify its effect on energy, latency and system yield

The changes in a PQ-world: Cryptanalysis tools Security primitives Embedded systems

Precomputation as an optimization methodology Previous ([Koyama92],[Brickell92],[Rooij95]) Recent ([Bernstein12][Ateniese13][Bianchi14]) Apply it on post-quantum digital signatures Quantify its effect on energy, latency and system yield

The changes in a PQ-world:

Cryptanalysis tools Security primitives Embedded systems

Precomputation as an optimization methodology Previous ([Koyama92],[Brickell92],[Rooij95]) Recent ([Bernstein12][Ateniese13][Bianchi14]) Apply it on post-quantum digital signatures Quantify its effect on energy, latency and system yie

The changes in a PQ-world:

Cryptanalysis tools Security primitives Embedded systems

Precomputation as an optimization methodology Previous ([Koyama92],[Brickell92],[Rooij95]) Recent ([Bernstein12][Ateniese13][Bianchi14]) Apply it on post-quantum digital signatures Quantify its effect on energy, latency and system yield

< ロ > < 同 > < 三 > < 三 >

Precomputation requires extra preparatory operations and extra storage

The case for precomputation Memory: 15 new generations of flash memory in 20 years = 25000× cost improvement [Harari11] Energy: Harvesting platforms towards a greener future

Energy profile (extrapolated from [Bianchi'13])

Improves latency, run-time energy, availability and yield

04/03/15 3 / 15

Virginia II Tech

Precomputation requires extra preparatory operations and extra storage

- The case for precomputation
 - Memory: 15 new generations of flash memory in 20 years
 - = 25000× cost improvement [Harari11]
 - Energy: Harvesting platforms towards a greener future

Energy profile (extrapolated from [Bianchi'13])

Improves latency, run-time energy, availability and yield

04/03/15 3 / 15

Virginia II Tech

Precomputation requires extra preparatory operations and extra storage

The case for precomputation

Memory: 15 new generations of flash memory in 20 years = $25000 \times \text{ cost improvement [Harari11]}$

Energy: Harvesting platforms towards a greener future

Precomputation requires extra preparatory operations and extra storage

The case for precomputation

Memory: 15 new generations of flash memory in 20 years = $25000 \times \text{ cost improvement [Harari11]}$

Energy: Harvesting platforms towards a greener future

Defining the Execution Modes

Separate operations into two phases: *offline* and *online*

Precompute during the offline phase

Minimize the length (latency) of the online phase

04/03/15 4 / 15

Virginia Tech

Defining the Execution Modes

Separate operations into two phases: *offline* and *online*

Precompute during the offline phase

Minimize the length (latency) of the online phase

04/03/15 4 / 15

Defining the Execution Modes

Separate operations into two phases: *offline* and *online*

Precompute during the offline phase

Minimize the length (latency) of the online phase

04/03/15 4 / 15

Winternitz Hash-based Signatures

Winternitz Hash-based Signatures

Precompute intermediate nodes Start from the closest node Aydin Aysu (VT) Renaissance of Precomputation 04/03/15

Virginia

5/15

GLP Lattice-based Signatures

Precompute nonce coupons Spend during the online phase

Virginia

6/15

04/03/15

GLP Lattice-based Signatures

Precompute nonce coupons Spend during the online phase

04/03/15 6 / 15

Virginia Tech

GLP Lattice-based Signatures

Precompute nonce coupons Spend during the online phase

04/03/15 6 / 15

Platform

Platform

Energy harvesting setup with precise energy and execution time measurements

Aydin Aysu (VT)

Renaissance of Precomputation

04/03/15 7 / 15

Energy Profiling

GLP requires less energy than Winternitz $\omega = 8$ requires less energy than $\omega = 4$

Aydin Aysu (VT)

Renaissance of Precomputation

04/03/15 8 / 15

Virginia III Tech

Energy Profiling

GLP requires less energy than Winternitz $\omega = 8$ requires less energy than $\omega = 4$

Aydin Aysu (VT)

Renaissance of Precomputation

04/03/15 8 / 15

Virginia III Tech Results Latency Measurements

Time profiling

GLP has lower latency than Winternitz $\omega = 4$ has lower latency than $\omega = 8$

Aydin Aysu (VT)

Renaissance of Precomputation

04/03/15 9 / 15

Time profiling

GLP has lower latency than Winternitz

 $\omega =$ 4 has lower latency than $\omega =$ 8

Aydin Aysu (VT)

04/03/15 9 / 15

Virginia []] Tech

System Yield

Winternitz signature yield

Significant improvement for critical energy levels $3 \times$ more signatures for full battery

Aydin Aysu (VT)

Renaissance of Precomputation

04/03/15 10 / 15

System Yield

Winternitz signature yield

Significant improvement for critical energy levels $3 \times$ more signatures for full battery

Aydin Aysu (VT)

Renaissance of Precomputation

04/03/15 10 / 15

< ∃

System Yield

GLP signature yield

Significant improvements for critical energy levels $1.5 \times$ more signatures for full battery

Aydin Aysu (VT)

Renaissance of Precomputation

04/03/15 11 / 1

System Yield

GLP signature yield

Significant improvements for critical energy levels $1.5 \times$ more signatures for full battery

Aydin Aysu (VT)

Renaissance of Precomputation

04/03/15 11 / 1

< ∃

Optimizations bring complex algorithms into life on constrained platforms

Precomputation is useful

Improvements of up to 82x latency, 11x run-time energy and 3x system yield

Precomputation is NOT infeasible At least on moderate research platforms

Precomputation is an orthogonal methodology Combine with arithmetic and programming optimizations

Real-time embedded systems favor precomputable signatures

Aydin Aysu (VT)

Renaissance of Precomputation

Optimizations bring complex algorithms into life on constrained platforms

Precomputation is useful

Improvements of up to 82x latency, 11x run-time energy and 3x system yield

Precomputation is NOT infeasible At least on moderate research platforms

Precomputation is an orthogonal methodology Combine with arithmetic and programming optimizations

Real-time embedded systems favor precomputable signatures

Aydin Aysu (VT)

Renaissance of Precomputation

Optimizations bring complex algorithms into life on constrained platforms

Precomputation is useful

Improvements of up to 82x latency, 11x run-time energy and 3x system yield

Precomputation is NOT infeasible At least on moderate research platforms

Precomputation is an orthogonal methodology Combine with arithmetic and programming optimizations

Real-time embedded systems favor precomputable signatures

Aydin Aysu (VT)

Renaissance of Precomputation

Optimizations bring complex algorithms into life on constrained platforms

Precomputation is useful

Improvements of up to 82x latency, 11x run-time energy and 3x system yield

Precomputation is NOT infeasible At least on moderate research platforms

Precomputation is an orthogonal methodology Combine with arithmetic and programming optimizations

Real-time embedded systems favor precomputable signatures

Optimizations bring complex algorithms into life on constrained platforms

Precomputation is useful

Improvements of up to 82x latency, 11x run-time energy and 3x system yield

Precomputation is NOT infeasible At least on moderate research platforms

Precomputation is an orthogonal methodology Combine with arithmetic and programming optimizations

Real-time embedded systems favor precomputable signatures

Aydin Aysu (VT)

Renaissance of Precomputation

Acknowledgements / Reference

Acknowledgements NSF award no 1314598 Bilgiday Yuce

For more information: http://eprint.iacr.org/2015/288

A D A D A D A

Virginia Tech

Back-up Slides: Application Context

Computing Device	Edge of the Cloud	Center of the Cloud]
	Portable Embedded Nodes	Servers	
Operation	Signature generation	Signature verification]
Platform	Simple microcontrollers	High-end CPUs	1
Rate	1 signing per hour	1000 ver. per minute	Timainia
Optimization	Latency	Throughput	Virginia UTech

Aydin Aysu (VT)

Renaissance of Precomputation

Back-up Slides: GLP Signatures

1: procedure KEY GENERATION (a, s_1, s_2, t) 2: $s_1, s_2 \leftarrow rand(R_1^{p^n})$ 3: $a \leftarrow rand(R^{p^n})$ 4: $t \leftarrow as_1 + s_2$ 5: end procedure 6: procedure SIGNING $(s_1, s_2, \mu, z_1, z_2, c)$ 7: $y_1, y_2 \leftarrow rand(R_k^{p^n})$ 8: $c \leftarrow H(ay_1 + y_2, \mu)$ 9: $z_1 \leftarrow s_1 c + y_1, z_2 \leftarrow s_2 c + y_2$ if z_1 or $z_2 \notin R_{h-22}^{p^n}$ go to step 7 10: 11: end procedure 12: **procedure** VERIFICATION $(z_1, z_2, c, \mu, t,)$ Validate iff 13: $z_1, z_2 \in R_{k-32}^{p^n}$ 14: $c = H(az_1 + z_2 + tc, \mu)$ 15: 16: end procedure

04/03/15 15 /