Experimental Quantum Computing Progress in a Pre-Quantum World

Paul Lopata, PhD Laboratory for Physical Sciences

Status Update Trapped-Ion Qubits

- Single Qubit Gates
 - Speed: 12 μS (Oxford 2014a)
 - Fidelity: 99.9999% (Oxford 2014a)

Number of Single Qubit Gates

- 2000 (Oxford 2014a)
- Two Qubit Gates
 - Speed: 100µS (Oxford 2014b)
 - Fidelity: 99.9% (Oxford 2014b)

Qubit Numbers

- Seven fully controlled (Innsbruck 2014)
- Singles and pairs common (NIST, Univ. Maryland, Sandia, Duke,...)

References:

Oxford 2014a: Oxford 2014b: Innsbruck 2014: Physical Review Letters **113** 220501 arXiv:1406.5473 Science **345** p302

Courtesy: University of Innsbruc Bulk Ion Trap

-2cm

Courtesy: Oxford University Surface Trap

Courtesy: Oxford University Atomic Energy Spacing PRL 113, 220501 (2014)

Selected for a Viewpoint in Physics PHYSICAL REVIEW LETTERS

week ending 28 NOVEMBER 2014

(m

High-Fidelity Preparation, Gates, Memory, and Readout of a Trapped-Ion Quantum Bit

T. P. Harty,¹ D. T. C. Allcock,¹ C. J. Ballance,³ L. Guidoni,^{1,2} H. A. Janacek,¹ N. M. Linke,¹ D. N. Stacey,¹ and D. M. Łucas^{1,2}

¹Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom ²Laboratoire Matériaux et Phénomènes Quantiques, University of Paris Diderot, UMR 7162 CNRS, F-75205 Paris, France (Received 19 May 2014; revised manuscript received 2 September 2014; published 24 November 2014)

preparation/readout operation	error
stretch state $S_{1/2}^{4,+4}$ preparation	$< 1 \times 10^{-4}$
transfer to qubit (3 or 4 m.w. π -pulses)	1.8×10^{-4}
transfer from qubit (4 m.w. π -pulses)	1.8×10^{-4}
shelving transfer $S_{1/2}^{4,+4} \rightarrow D_{5/2}$	1.7×10^{-4}
time-resolved fluorescence detection	1.5×10^{-4}
single-qubit gate error source	mean EPG
microwave detuning (4.5 Hz)	0.7×10^{-6}
microwave pulse area (5×10^{-4})	0.3×10^{-6}
off-resonant effects	0.1×10^{-6}

Status Update Silicon Qubits

References: UNSWa: UNSWb:

J. Phys: Cond. Matt. 27 154205 arXiv:1411.5760

- Single Qubit Gates (UNSWa)
 - Speed: 30µs
 - Fidelity: 99.9%
- Number of Single Qubit Gates (UNSWa)
 - 400
- Two Qubit Gates(UNSWb)
 - Speed: 130ns
 - Fidelity: 99%
- Qubit Numbers(UNSWb)
 - Two max
 - Only a few labs have demonstrated silicon qubits

Courtesy: Univ. of New South Wales Silicon MOS Quantum Double Dot

Courtesy: Univ. of New South Wales Silicon Dopant -

Courtesy: University of Wisconsin Si/SiGe Quantum Double Dot

Silicon Qubits – U. New South Wales

Device Geometry for Confining Single Electrons

Silicon Qubits – U. New South Wales Two-Qubit Characterization

6

02

ÕI

Silicon Qubits – U. New South Wales Significant Impact of Enriched Silicon Implanted ³¹P Electron Spin Qubit in ²⁸Si

P-atom Implanted P-atom Implanted **Electron Spin Qubit Electron Spin Qubit** ²⁸Si Epilayer Natural Silicon, 5% 29Si Enriched to 99.9% Pla et al, Nature (2012) **Rabi oscillations** 0.2 - Via Kohei Itoh. $T_{2}^{*} = 55 \text{ ns}$ 0.0 05 10 Keio University, Japan L (US) Spin-up Proportion 0.5 0.4 0.3 0.2 0.1 00 10 20 30 40 50 60 70 80 90 100 Microwave Pulse Length (µs)

J. Muhonen et al., arXiv:1402.7140; to appear in Nature Nanotechnology

Status Update Superconducting Qubits

- Single Qubit Gates (UCSBa 2014)
 - Speed: 20ns
 - Fidelity: 99.9%
- Number of Single Qubit Gates:
 - 350 (UCSBa 2014)
- Two Qubit Gates (UCSBb 2014)
 - Speed: 40ns
 - Fidelity: 99.4%
- Qubit Numbers (UCSBb 2014)
 - Nine fully controlled
 - Singles and pairs common

References:

UCSBa 2014: Nature 508 p500 UCSBb 2014: Nature 519 p66

Courtesy IBM - Superconducting Qubits

Courtesy University of Chicago Superconducting Qubits

University of Chicago Superconducting Qubit Chip – Close Up

Courtesy of University of Chicago David Schuster Group

University of Chicago Superconducting Qubit Chip – Zoom In

Josephson junction

Courtesy of University of Chicago **David Schuster Group**

University of Chicago Superconducting Qubit Chip

Photo Courtesy of University of Chicago David Schuster Group

University of Chicago Experimental Setup

Photo Courtesy of University of Chicago David Schuster Group

Experimental Quantum Computing Progress in a Pre-Quantum World

Paul Lopata, PhD Laboratory for Physical Sciences