Post-quantum key exchange for the TLS protocol from R-LWE

Craig Costello
Microsoft Research

joint work with
Joppe Bos (NXP), Michael Naehrig (MSR), Douglas Stebila (QUT)

This work: R-LWE in TLS

- All (public-key) ciphersuites currently offered in TLS will break if a large-scale quantum computer is built
- This work: build ciphersuites that (hopefully) won't

e.g.

RLWE-ECDSA-AES128-GCM-SHA256

This work: R-LWE key agreement in TLS

- In this work, we start by looking at post-quantum key agreement only
- Assumption: large-scale quantum computers don't exist now, but what if we want to protect today's communications against tomorrow's adversary?
- Signatures still done with traditional primitives RSA/ECDSA (we only need authentication to be secure now)

> e.g. RLWE-ECDSA-AES128-GCM-SHA256

The learning with errors (LWE) problem

LWE problem: given blue, find red

The learning with errors (LWE) problem

random $\boldsymbol{Z}_{13}^{7 \times 4}$ 4 $\mathbf{1}_{3}$				11	10
5					

LWE problem: given blue, find red

The learning with errors (LWE) problem
random

$Z_{13}^{7 \times 4}$			
4	1	11	10
5	5	9	5
3	9	0	10
1	3	3	2
12	7	3	4
6	5	11	4
3	3	5	0

secret
$Z_{13}^{4 \times 1}$
$\begin{array}{r}6 \\ \hline 9 \\ 11 \\ \hline 11 \\ \hline\end{array}$
small ind. from random
$Z_{13}^{7 \times 1}$

4
7
2
11
5
12
8

LWE problem: given blue, find red

Toy example versus real-world example
$Z_{13}^{7 \times 4}$
$Z_{4093}^{640 \times 256}$

4	1	11	10
5	5	9	5
3	9	0	10
1	3	3	2
12	7	3	4
6	5	11	4
3	3	5	0

The learning with errors (LWE) problem
random

$Z_{13}^{7 \times 4}$			
4	1	11	10
5	5	9	5
3	9	0	10
1	3	3	2
12	7	3	4
6	5	11	4
3	3	5	0

secret
$Z_{13}^{4 \times 1}$
$\begin{array}{r}6 \\ \hline 9 \\ 11 \\ \hline 11 \\ \hline\end{array}$
small ind. from random
$Z_{13}^{7 \times 1}$

4
7
2
11
5
12
8

LWE problem: given blue, find red

The ring learning with errors (R-LWE) problem

The ring learning with errors (R-LWE) problem

random$\boldsymbol{Z}_{13}^{7 \times 4}$				secret $Z_{1 \times 1}^{4 \times 1}$		small $\mathbf{Z}_{13}^{7 \times 1}$	ind. from rand $\boldsymbol{Z}_{12}^{7 \times 1}$
4	1	11	10	6		0	4
3	4	1	11	9		-1	3
2	3	4	1	11		1	4
12	2	3	4	\times	+	1	12
12	7	3	4			1	5
9	12	7	3			0	12
10	9	12	7			-1	11

The ring learning with errors (R-LWE) problem

random$\mathbf{Z}_{13}^{4 \times 4}$				$\begin{gathered} \text { secret } \\ Z_{13}^{4 \times 1} \end{gathered}$	$\begin{aligned} & \text { small } \\ & Z_{13}^{4 \times 1} \end{aligned}$		ind. from rand$\boldsymbol{Z}_{12}^{4 \times 1}$	
4	1	11	10			0		4
3	4	1	11	9		-1		3
2	3	4	1	11		1		4
12	2	3	4			1		12

LWE problem: given blue, find red

The ring learning with errors (R-LWE) problem

The ring learning with errors (R-LWE) problem

$$
\begin{aligned}
& \quad \begin{array}{r}
4+1 x+11 x^{2}+10 x^{3} \\
\times \\
\mathbf{6 + 9 x + 1 1 x ^ { 2 } + 1 1 x ^ { 3 }} \\
+\quad \\
\hline
\end{array} \quad \frac{\boldsymbol{Z}_{13}[x]}{\left(x^{4}+1 x+1 x^{2}+1 x^{3}\right.}
\end{aligned}
$$

R-LWE problem: given blue, find red

The ring learning with errors (R-LWE) problem

$$
\begin{aligned}
& \\
& \times \quad \begin{array}{l}
4+1 x+11 x^{2}+10 x^{3} \\
\times \\
+ \\
+ \\
\hline
\end{array} \quad \frac{0-1 x-1 x^{2}-\mathbf{1} x^{3}}{3+8 x+5 x^{2}+6 x^{3}}
\end{aligned} \quad \frac{\boldsymbol{Z}_{13}[x]}{\left\langle x^{4}+1\right)}
$$

R-LWE problem (small secrets): given blue, find (small!) red

The ring learning with errors (R-LWE) problem (the 128-bit secure version)
$2792930407+\cdots+2938465015 x^{1023}$

$$
\begin{array}{lll}
\times & 5-3 x \ldots+9 x^{1022}-\mathbf{1} x^{1023} \\
+ & 2+4 x \ldots-0 x^{1022}+6 x^{1023}
\end{array} \quad \frac{\boldsymbol{Z}_{2^{32}-1}[x]}{\left\langle x^{1024}+1\right.}
$$

$3159804584+\cdots+1153769078 x^{1023}$

R-LWE problem: given blue, find (small!) red

R-LWE-DH: key agreement in $R_{q}=\boldsymbol{Z}_{q}[x] /\left\langle x^{n}+1\right\rangle$
public: "big" $\mathrm{a} \in R_{q}$
secret: "small" $e, s \in R_{q}$

$$
a \cdot s+e
$$

$$
a \cdot s^{\prime}+e^{\prime}
$$

$$
\left(s \cdot\left(a \cdot s^{\prime}+e^{\prime}\right)\right) \approx s \cdot a \cdot s^{\prime}
$$

$$
\left(s^{\prime} \cdot(a \cdot s+e)\right) \approx s \cdot a \cdot s^{\prime}
$$

Approximate agreement mod q

$4079331841+1894732145 \cdot x+\cdots+472608255 \cdot x^{1022}+516748383 \cdot x^{1023}$

12
$4079332556+1894733033 \cdot x+\cdots+472607765 \cdot x^{1022}+516748363 \cdot x^{1023}$

ROUND

This will work most of the time (fails $\approx 1 / 2^{10}$), but we need exact agreement
i.e. what happens if one of the coefficients is in the "danger zone(s)"

Making approximate agreement exact in \boldsymbol{Z}_{q}

else

(Peikert's reconciliation mechanisms: http://eprint.iacr.org/2014/070.pdf) two values $u, v \in \boldsymbol{Z}_{q}$ will agree so long as $|u-v|<q / 8$ (i.e. always!)

R-LWE-DH: exact key agreement

public: "big" a $\in R_{q}$
secret: "small" $e, s \in R_{q}$

$$
a \cdot s+e
$$

$\operatorname{RECONCILE}\left(s \cdot\left(a \cdot s^{\prime}+e^{\prime}\right),\{+,\}^{n}\right) \quad=\quad \operatorname{ROUND}\left(s^{\prime} \cdot(a \cdot s+e)\right)$
both parties now share $k \in\{0,1\}^{n}$

Security aspects

A secure key agreement protocol

- Prove that scheme is secure under "Exact DDH-like problem"
- Show that "Exact DDH-like problem" is hard if decision R-LWE problem is

Secure integration into the TLS

- Integrate R-LWE key agreement into the TLS protocol
- Use Jager et al. "Authenticated and confidential channel establishment" (ACCE) model (Crypto2012)
- Prove that "TLS-signed R-LWE is a secure ACCE"

Implementation aspect 1: polynomial arithmetic

- Polynomial multiplication in $R_{q}=\boldsymbol{Z}_{q}[x] /\left\langle x^{1024}+1\right\rangle$ done with Nussbaumer's FFT ($2^{l}=r \cdot k$)

$$
\frac{R[X]}{\left\langle X^{2^{l}}+1\right\rangle} \cong \frac{\left(\frac{R[Z]}{\left\langle Z^{r}+1\right\rangle}\right)[X]}{\left\langle X^{k}-Z\right\rangle}
$$

- Rather than working modulo degree-1024 polynomial with coefficients in \boldsymbol{Z}_{q}, work modulo:-
- degree-256 polynomial whose coefficients are themselves polynomials modulo a degree-4 polynomial, or
- degree-32 polynomials whose coefficients are polynomials modulo degree-8 polynomials whose coefficients are polynomials ...

Implementation aspect 2: sampling discrete Gaussians

$$
\begin{gathered}
D_{Z, \sigma}(x)=\frac{1}{S} e^{-\frac{x^{2}}{2 \sigma^{2}}} \quad \text { for } x \in \boldsymbol{Z} \\
\text { (for us: } \sigma \approx 3.2, S=8 \text {) }
\end{gathered}
$$

- Security (proofs) require "small" elements to be within statistical distance 2^{-128} of true discrete Gaussian $D_{Z, \sigma}(x)$
- Inversion sampling: precompute table of cumulative probabilities (for us: 52 elements of 192-bits in size: $\approx 10,000$ bits)
- Each coefficient requires six 192-bit integer comparisons (51 if "constanttime"), and there are 1024 coefficients!!!

The price of post-quantum paranoia, part I

Table 1: Average cycle count of standalone cryptographic operations (on client computer)		
Operation	Cycles	
	constant-time	non-constant-time
sample $\stackrel{\&}{\leftarrow} \chi$	1042700	668000
FFT multiplication	342800	-
FFT addition	1660	-
dbl (\cdot) and crossrounding $\langle\cdot\rangle_{2 q, 2}$	23500	21300
rounding $\lfloor\cdot\rangle_{2 q, 2}$	5500	3,700
reconciliation rec (\cdot, \cdot)	14400	6800

(Intel Core i5 (4570R) @ 2.7GHz)

The price of post-quantum paranoia, part II

Table 2: Average runtime in milliseconds of cryptographic operations using openssl speed

Operation	Client constant-time	Server Client non-constant-time		
R-LWE key generation	0.9	1.7	0.6	1.3
R-LWE Bob shared secret	0.5	(1.1)	0.4	(0.9)
R-LWE Alice shared secret	(0.1)	0.4	(0.1)	0.4
Total R-LWE runtime	1.4	2.1	1.0	1.7
EC point multiplication, nistp256	0.4	0.7	-	-
Total ECDH runtime	0.8	1.4	-	-
RSA sign, 3072-bit key	(3.7)	8.8	-	-
RSA verify, 3072-bit key	0.1	(0.2)	-	-

Numbers in parentheses are reported for completeness, but do not contribute to the runtime in the client and server's role in the TLS protocol.

The price of post-quantum paranoia, part III

Summary and future work

- If you want to protect today's secrets against tomorrow's quantum adversary, use

RLWE-ECDSA-AES128-GCM-SHA256

in TLS for a small overhead

- Future work, part II: protecting tomorrow's secrets too!

$$
\begin{array}{r}
\text { RLWE-RLWE-AES128-GCM-SHA256 } \\
\text { LWE-LWE-AES128-GCM-SHA256 } \\
\text { ????- ????-AES128-GCM-SHA256 }
\end{array}
$$

- Future work, part I: a tonne of unexplored optimizations (this is our first go)
- e.g: we didn't do assembly/precomputation/parallelizing
- e.g: alternative FFT's
- e.g: much faster/compact sampling algorithms likely

The paper (to appear at Oakland S\&P) http://eprint.iacr.org/2014/599.pdf

Magma code:

http://research.microsoft.com/en-US/downloads/6bd592d7-cf8a-4445-b736-1fc39885dc6e/default.aspx

C code integrated into OpenSSL: https://github.com/dstebila/rlwekex

