Future Anonymity in Today's Budget (Post-Quantum Forward Secure Onion Routing)

Aniket Kate

MMCI, Saarland University Germany

Joint work with Satrajit Ghosh

Appearing at ACNS 2015

Outline

- Anonymity over the Internet and Tor
- One-Way Authenticated Key Exchange (1W-AKE)
- Towards a post-quantum forward secure 1W-AKE
- Our HybridOR Protocol
- Security and Performance Analyes

Anonymity

Ability to remain unnoticed or unidentified

Source: http://weskenney.net/?p=232

Future Anonymity in Today's Budget

Anonymous Communication

Anonymous Communication

Single Hop Circuits: Anonymizer.com

Drawbacks: Traffic Analysis, Trust on Anonymizer.com

Future Anonymity in Today's Budget

Future Anonymity in Today's Budget

Goal: Making the attacker goal of linking multiple communication flows from a single user difficult

Future Anonymity in Today's Budget

Onion Routing Circuit Construction

How Keys are Shared?

This asks for one-way anonymous one-way authenticated key exchange (1W-AKE), which require a public-key infrastructure (PKI)

Future Anonymity in Today's Budget

1W-AKE Security

[Goldberg, Stebila and Ustaoglu, DCC '12]

1W-AKE Security

[Goldberg, Stebila and Ustaoglu, DCC '12]

Protocol Correctness

1W-AKE Security

An attacker cannot learn anything about the session key of a challenge session, even if it

- compromises several other sessions and
- introduces fake identities
- compromise exactly one of two secrets from the node in the challenge session

1W-Anonymity

A node should not differentiate while communicating with two different clients

Future Anonymity in Today's Budget

Multi-Pass Construction (Telescoping Approach)

Future Anonymity in Today's Budget

Multi-Pass Construction (Telescoping Approach)

Future Anonymity in Today's Budget

Multi-Pass Construction (Telescoping Approach)

Future Anonymity in Today's Budget

Multi-Pass Construction (Telescoping Approach)

Future Anonymity in Today's Budget

Multi-Pass Construction (Telescoping Approach)

Future Anonymity in Today's Budget

The ntor 1W-AKE Protocol

[Goldberg, Stebila and Ustaoglu, DCC '12]

Let $\mathbb G$ be a multiplicative group with large prime order p Let $g\in\mathbb G$ be the generator of the group

Client (no public key) Server (long-term keys (b, g^b))

(established session key $H(g^{xy},g^{xb}))$

Future Anonymity in Today's Budget

The ntor 1W-AKE Protocol: Security

The 1W-AKE security of the ntor protocol is proven against the gap Diffie-Hellman (GDH) assumption

The ntor 1W-AKE Protocol: Security

The 1W-AKE security of the ntor protocol is proven against the gap Diffie-Hellman (GDH) assumption

The GDH Problem

- Let \mathbb{G} be a multiplicative group with large prime order p and $g \in \mathbb{G}$ be the generator of the group
- Given a triple (g, g^a, g^b) for $a, b \in_r \mathbb{Z}_p^*$, the GDH problem is to find the element g^{ab} with the help of a Decision Diffie-Hellman (DDH) oracle
- The DDH oracle takes input as (G,g,g^a,g^b,z) for some $z\in\mathbb{G}$ and tells whether $z=g^{ab}$

Future Anonymity in Today's Budget

• This 1W-AKE scheme will no longer be secure

- This 1W-AKE scheme will no longer be secure
- So what?

- This 1W-AKE scheme will no longer be secure
- So what?
- Security and anonymity of even today's onion routing communications can be violated!

- This 1W-AKE scheme will no longer be secure
- So what?
- Security and anonymity of even today's onion routing communications can be violated!
- The Tor community
 - will be hesitant to completely changing the public key infrastructure (PKI)
 - questions the performance penalty

- This 1W-AKE scheme will no longer be secure
- So what?
- Security and anonymity of even today's onion routing communications can be violated!
- The Tor community
 - will be hesitant to completely changing the public key infrastructure (PKI)
 - questions the performance penalty

• Challenge:

Design a 1W-AKE scheme that offers forward security in the post-quantum world without significantly affecting the current infrastructure and performance

Post-Quantum Crypto

Some Possibilities

- Multivariate cryptography
- Code-based cryptography
- Hash-based scheme e.g., Merkle signatures
- Lattice-based cryptography e.g., NTRU, learning with errors (LWE)

Post-Quantum Crypto

Some Possibilities

- Multivariate cryptography
- Code-based cryptography
- Hash-based scheme e.g., Merkle signatures
- Lattice-based cryptography e.g., NTRU, learning with errors (LWE)

Lattice-based Cryptography

In this work, we use the LWE assumptions to provide forward security/anonymity in the post-quantum world

Decision Ring-LWE

- We consider a ring: $\mathbb{R}_q = \mathbb{Z}_q[x]/(x^\eta + 1)$
- Let χ is the error distribution (Gaussian) of *small* elements (symmetric around 0)
- Given polynomial number of samples from \mathbb{R}^2_q :

$$(a_1, b_1)$$

 (a_2, b_2)
...
 (a_k, b_k)

- Does there exist an r and $e_1, \dots, e_k \in \chi, \exists b_i = a_i \cdot r + e_i$?
- (or) Are all b_i 's uniformly random in \mathbb{R}_q ?

Future Anonymity in Today's Budget

Decision Ring-LWE

- We consider a ring: $\mathbb{R}_q = \mathbb{Z}_q[x]/(x^\eta + 1)$
- Let χ is the error distribution (Gaussian) of *small* elements (symmetric around 0)
- Given polynomial number of samples from \mathbb{R}^2_q :

```
(a_1, b_1)
(a_2, b_2)
...
(a_k, b_k)
```

- Does there exist an r and $e_1, \dots, e_k \in \chi, \exists b_i = a_i \cdot r + e_i$?
- (or) Are all b_i 's uniformly random in \mathbb{R}_q ?
- Poly(η)-time quantum reduction from approximate-SVP to Ring-LWE

The HybridOR Protocol

Generate system parameters $(\mathbb{R}, \eta, q, \chi)$ and (\mathbb{G}, g, p) .

Client (no long-term key)

Node (long-term keys (s, g^s))

 $r_{c}, e_{c}, e_{c}' \leftarrow_{R} \chi, x \leftarrow_{R} \mathbb{Z}_{p}^{*}$ $p_{c} = ar_{c} + e_{c} \qquad \xrightarrow{p_{c}, g^{x}} \qquad r_{n}, e_{n}, e_{n}' \leftarrow_{R} \chi$ $p_{n} = ar_{n} + e_{n}$ $k_{1n} = p_{c}r_{n} + e_{n'}'$ $\alpha = h^{\mathbb{R}}(k_{1n})$ $k_{1C} = p_{n}r_{c} + e_{c}'$ $k_{1} = f^{\mathbb{R}}(k_{1n}, \alpha), k_{2} = g^{sx}$ $k_{1} = f^{\mathbb{R}}(k_{1n}, \alpha), k_{2} = g^{sx}$

(established session key $sk = H_1(k_1) \oplus H_2(k_2)$)

Future Anonymity in Today's Budget

The HybridOR Protocol: Security

Type-I adversary (Channel Secrecy)

- The adversary cannot know a secret associated any public values in the test session

- HybridOR is secure under any of the GDH as well as ring-LWE assumptions

The HybridOR Protocol: Security

Type-I adversary (Channel Secrecy)

- The adversary cannot know a secret associated any public values in the test session

- HybridOR is secure under any of the GDH as well as ring-LWE assumptions

Type-II adversary (Authentication)

- The adversary can only know the secret associated with the pseudonym from the node in the test session

- HybridOR is secure under the GDH assumption

The HybridOR Protocol: Security

Type-I adversary (Channel Secrecy)

- The adversary cannot know a secret associated any public values in the test session

- HybridOR is secure under any of the GDH as well as ring-LWE assumptions

Type-II adversary (Authentication)

- The adversary can only know the secret associated with the pseudonym from the node in the test session

- HybridOR is secure under the GDH assumption

Type-III adversary(Forward Security)

- The adversary can only know the secret associated with the long term public key
- HybridOR is secure under the ring-LWE assumption

The HybridOR Protocol: Performance

Parameters

 $\begin{array}{ll} \mbox{degree of the irreducible polynomial} & \eta = 512 \\ \mbox{prime modulus} & q = 1051649 \\ \mbox{error distribution } \chi \mbox{ parameter} & \beta = 8.00 \end{array}$

Computation Cost

Our HybridOR implementation is nearly $1.5\ {\rm times}\ {\rm faster}\ {\rm than}\ {\rm the}\ {\rm ntor}\ {\rm protocol}\ {\rm used}\ {\rm in}\ {\rm Tor}$

Communication Cost

For HybridOR, the client and the node each will have to communicate three cells (Each cell is of size 512-byte)

Future Anonymity in Today's Budget

Take Away

- We present a novel hybrid 1W-AKE protocol HybridOR, which extracts its security from both the classically secure GDH assumption and the post-quantum secure ring-LWE assumption
- We base its forward secrecy on the quantum-secure ring-LWE assumption
- We leverage the current Tor PKI in its current form
- Our performance analysis demonstrates that post-quantum 1W-AKE can already be considered practical for use today

Online Version: http://eprint.iacr.org/2015/008

Take Away

- We present a novel hybrid 1W-AKE protocol HybridOR, which extracts its security from both the classically secure GDH assumption and the post-quantum secure ring-LWE assumption
- We base its forward secrecy on the quantum-secure ring-LWE assumption
- We leverage the current Tor PKI in its current form
- Our performance analysis demonstrates that post-quantum 1W-AKE can already be considered practical for use today

Online Version: http://eprint.iacr.org/2015/008

Future Anonymity in Today's Budget