Let Live and Let Die: Handling the State of Hash-based Signatures

Stefan-Lukas Gazdag, Denis Butin & Johannes Buchmann

04/02/2014 - PQ Workshop - NIST 2015
Introduction
Statefulness
Handling the state
Protocol Integration and other considerations
Introduction: Merkle / XMSS tree

Key (-pair): $i = 0, 1, 2$

$N_{i,j}$

$N_{2i,j-1}$

$N_{2i+1,j-1}$

Root

Authentication Path

Active Key

XMSS:
What’s so bad about the state?
Security leaks possible
Software does not consider keys being stateful
Missing infrastructure
Statefulness

Why bother coping with the state?
- Hash-based signatures well understood and post-quantum
- Current stateful methods faster than stateless ones
- Currently smaller signatures
- Forward secure constructions
Considerations

What we want:

Secure usage of secret key

What we need:

Practicability
The secret key

Considerations for the key:

Any copies may reveal secrets
Interrupts may threaten consistency
Key is critical resource
Handling the state

How to cope with the state

Index handling

Error / consistency checking

Storing
Index handling

Single state
Several two state solutions
Delegation of subtrees
Errors and Consistency

Does the index fit the actual state?
Is the state consistent itself?
Storing the secret key

Who’s able to access the storage?
Has the key actually been written to storage?

⇒ Doesn’t fit current libraries that well
Runtimes

Lots of use cases without tight restrictions:

 Update signing
 Email signing

But even with stricter timing:

 200 ms maximum for SSH signature procedure
Key Management

Key provider concept
⇒ external management of key

Offers API to receive and write SK, PK, authentication path information
Delegation of subsets of SK

<table>
<thead>
<tr>
<th>INDEX i = 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index i₀</td>
</tr>
<tr>
<td>Auth 0</td>
</tr>
<tr>
<td>Subtree 0</td>
</tr>
</tbody>
</table>
Protocol integration

Keys still fit most communication protocols
Need a PQ key exchange
Need PQ signatures (hash-based) for that
As seen in Andreas Hülsing’s talk before

Internet-Draft available
draft-huelsing-cfrg-hash-sig-xmss-00
Statelessness

SPHINCS
See Daniel J. Bernstein’s talk and SPHINCS paper http://sphincs.cr.yp.to/
State can be managed a feasible way

But:

Trade-off: security $<>$ performance

TBD: Exact comparison of those trade-offs
Questions?

www.pqsignatures.org