Hash-based Signatures:
An outline for a new standard

A. Hülsing, D. Butin, S.-L. Gazdag
Hash-based Signatures:
An outline for a new standard

A. Hülsing, D. Butin, S.-L. Gazdag
XMSS: Extended Hash-Based Signatures
(draft-hueelsing-cfrg-hash-sig-xmss)
A. Hülsing, D. Butin, S.-L. Gazdag, A. Mohaisen
Hash-based Signature Schemes

[Mer89]

Only secure hash function
Security well understood
Post quantum
Fast
Security

- Intractability assumption
- Collision resistant hash function
- Digital signature scheme
Post-Quantum Security

n-bit hash function

Grover‘96:
Preimage finding $O(2^n) \rightarrow O(2^{n/2})$

Brassard et al. 1998:
Collision finding $O(2^{n/2}) \rightarrow O(2^{n/3})$

Aaronson & Shi’04:
Quantum collision finding $2^{n/3}$ is lower bound
Advanced Applications

• Forward Secure Signatures
 • Security of old signatures after key compromise

• Delegatable / Proxy Signatures
 • Securely delegate signing rights

→ Require specific pseudorandom key gen
Merkle’s Hash-based Signatures
Merkle’s Hash-based Signatures
Merkle’s Hash-based Signatures
Merkle’s Hash-based Signatures

PK

H

H

H

H

H

H

H

H

H

H

H

H

H

H

OTS

OTS

OTS

OTS

OTS

OTS

OTS

OTS

SK

30-3-2015
Merkle’s Hash-based Signatures

\[\text{SIG} = (i=2, \ldots, \ldots) \]
Merkle’s Hash-based Signatures

\[\text{SIG} = (i=2, \overset{\circ}{i}, \overset{\circ}{i}, \overset{\circ}{i}, \overset{\circ}{i}, \overset{\circ}{i}, \overset{\circ}{i}) \]
Merkle’s Hash-based Signatures

$$\text{SIG} = (i=2, \text{OTS}, \text{OTS}, \text{OTS}, \text{OTS})$$
Hash-Based Signatures
draft-mcgrew-hash-sigs-02

Abstract

This note describes a digital signature system based on cryptographic hash functions, following the seminal work in this area. It specifies a one-time signature scheme based on the work of Lamport, Diffie, Winternitz, and Merkle (LDWM), and a general signature scheme, Merkle Tree Signatures (MTS). These systems provide asymmetric authentication without using large integer mathematics and can achieve a high security level. They are suitable for compact implementations, are relatively simple to implement, and naturally resist side-channel attacks. Unlike most other signature systems, hash-based signatures would still be secure even if it proves feasible for an attacker to build a quantum computer.
Why another I-D?

• “Weaker“ assumptions on used hash function
 • -> “Stronger“ security guarantees

• Virtually unlimited number of signatures / key pair
 (Multi-Tree version)

• Smaller signatures (approx. factor 2)

• Faster key generation & signing
 (Multi-Tree version)
Schemes in the Draft

• Winternitz One Time Signature (WOTS+)

• Extended Merkle (tree) signature scheme (XMSS)

• Multi-tree XMSS (XMSS^MT)
General Design Choices

Define as mandatory:
• Public key and signature format & semantics
• Verification

Leave implementer freedom to choose trade-offs:
• Secret key format
 • In consequence key generation
 • Many trade-offs possible
 • Does not affect interoperability
• Signature generation
 • Many trade-offs possible
 • Does not affect interoperability

Prepare for stateless hash-based signatures (future):
• SPHINCS uses XMSS^MT as subroutine
Efficient sig / pk encodings a la McGrew & Curcio
WOTS$^+$

Uses bitmasks

\rightarrow Collision-resilience

\rightarrow signature size halved

\rightarrow Tighter security reduction
XMSS

Tree: Uses bitmasks

Leafs: Use binary tree with bitmasks

OTS: WOTS$^+$

Message digest: Randomized hashing

\Rightarrow Collision-resilience

\Rightarrow Signature size halved
Multi-Tree XMSS

Uses multiple layers of trees

-> Key generation
 (= Building Trees on one path)
 $\Theta(2^h) \rightarrow \Theta(d \times 2^{h/d})$

-> Allows to reduce
 worst-case signing times
 $\Theta(h/2) \rightarrow \Theta(h/2d)$
Design Choices: Multi-tree XMSS

Same tree height and w for all internal trees

\rightarrow easier implementation
Design Choices: Parameters

Parameter sets for different settings

1. Security (message digest size m, inner node size n)

<table>
<thead>
<tr>
<th>Parameter Type</th>
<th>m = 256, n = 128</th>
<th>m = n = 256</th>
<th>m = n = 512</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classical Security</td>
<td>128 bits</td>
<td>256 bits</td>
<td>512 bits</td>
</tr>
<tr>
<td>Post-Quantum Security</td>
<td>64 bits</td>
<td>128 bits</td>
<td>256 bits</td>
</tr>
<tr>
<td>Internal Hash</td>
<td>AES-128</td>
<td>SHA3-256</td>
<td>SHA3-512</td>
</tr>
<tr>
<td>Message Digest</td>
<td>SHA3-256</td>
<td>SHA3-256</td>
<td>SHA3-512</td>
</tr>
</tbody>
</table>
Parameters, cont’d

2. WOTS⁺:
 • $w = 4, 8, 16$ (optimal trade-off, easy implementation)

3. XMSS:
 • $h = 10, 16, 20$ (otherwise key gen too slow)

4. Multi-tree:
 • Single tree height $= 5, 10, 20$ (otherwise key gen too slow)
 • Total tree height $h = 20, 40, 60$ (> 60 unnecessary)
Parameters, cont’d

• Many, many, many parameter sets! Too many?
• #ParameterSets
 • XMSS: 27 (+8)
 • XMSS^MT: 72 (+48)
 • will remove 18 because of statistical collision probability

Every scenario covered?

• “Zero-Bitmasks” parameters
 -> small PK but no collision-resilience!
 -> similar to McGrew & Curcio

Needed?
IPR

• Based on scientific work (already published)

• No IPR claims from our side

• Not aware of others planning IPR claims
Conclusion

XMSS: New important features
- Smaller signatures
- Faster signing & key generation
- Up to 2^{60} signatures per key pair with proposed params
- Stronger security guarantees (collision-resilience)
- Prepares for stateless schemes
Thank you!
Questions?
McGrew & Curcio‘2014

• Winternitz OTS (= LDWM-OTS)

• Merkle tree scheme (MTS)

• Parameter Sets = Cipher Suites

• Efficient sig / pk encoding

• Security <= collision resistance