Gröbner Bases Techniques in Post-Quantum Cryptography

Ludovic Perret and many co-authors

Sorbonne Universités UPMC Univ Paris 06/INRIA, LIP6, Po1SyS Project, Paris, France

NIST, Maryland
Gröbner Bases Techniques in Post-Quantum Cryptography

A major tool to evaluate the security of post-quantum schemes

- Multivariate cryptography: intrinsic tool (Jintai’s talk)
Gröbner Bases Techniques in Post-Quantum Cryptography

A major tool to evaluate the security of post-quantum schemes

- Multivariate cryptography: intrinsic tool (Jintai’s talk)
- Code-based cryptography: emerging tool for key-recovery

 A Distinguisher for High Rate McEliece Cryptosystems. IEEE-IT 13.

- F. Urvoy.
 Algebraic and Physical Cryptanalysis in Code-based Cryptography. Paris VI.
Gröbner Bases Techniques in Post-Quantum Cryptography

A major tool to evaluate the security of post-quantum schemes

- Multivariate cryptography: intrinsic tool (Jintai’s talk)
- Code-based cryptography: emerging tool for key-recovery

Algebraic Cryptanalysis of McEliece Variants with Compact Keys.
Eurocrypt 2010.

A Distinguisher for High Rate McEliece Cryptosystems.
IEEE-IT 13.

F. Urvoy.
Algebraic and Physical Cryptanalysis in Code-based Cryptography.
Paris VI.

LWE-based cryptography: new tool for asymptotical hardness
Algebraic Cryptanalysis

Idea
- Model a cryptosystem as a set of algebraic equations
- Try to solve this system, or estimate the difficulty of solving
 ⇒ Gaussian Elimination, Gröbner basis, ...
Polynomial System Solving

Matrix in degree d

Gaussian Elimination of matrices up to degree d_{max}

Linear Algebra in $\mathbb{K}[x]/I$

$\sim \ x_i = h_i(x_n)$

GB Complexity is driven by the maximal degree d_{max} reached

Rely Heavily on Linear Algebra

$f_1 = \cdots = f_m = 0$

$O((\frac{n+d_{max}}{n})^\omega)$

$\tilde{O}(\#Sols^3)$

Gröbner: total degree

Gröbner: lexicographical

- Buchberger (1965)
- F_4 (1999)
- F_5 (2002)
- ...
GBLA

GBLA

Presentation

GBLA is an open source (GPLv2) C library for linear algebra specialized for eliminating matrices generated during Gröbner basis computations in algorithms like F4 or F5.

Download source

Current stable source (version 0.0.3).

In order to use it, you can proceed as follows:

```bash
tar xf gbla-xy.tar.gz
cd gbla-xy
./configure
make
```

The configure step can be customised. Help is provided with `configure --help` and can be used like `configure CFLAGS="-march-native -O3"` to replace default "-g -O2".

If you need the tools:

```bash
cd tools ; make ;
```

Usage

- **Programme gbla**

 See `usage` for detailed help, and the following for a few examples.

 Example:

  ```bash
  scat mat1.gs | ./gbla -
  ```

 Computes the eliminations, uses 1 thread, outputs nothing, uses the old format, reads from the gunzipped stream `mat1.gs`.

  ```bash
  scat matrices/mat1.gbm.gs | ./gbla -v 1 -t 4 -
  ```

 Computes the eliminations, uses 4 threads, outputs minimal information, uses the new format, reads from the gunzipped stream `matrices/mat1.gbm.gs`.

  ```bash
  ./gbla -v 2 -t 32 -n matrices/mat1.gbm
  ```

 Computes the eliminations, uses 32 threads, outputs timings and information, uses the new format, reads from a matrix `mat1` on disk.

Binaries

Compiled binaries can be found there:

- `linux` (Intel static)
- `linux` (Intel AVX static)
GBLA

- Type VI, GF(31), $m = 16$, $n = 24$, GBLA: 2640 s. (FGB: 5280 s.)
Algebraic Algorithms for LWE Problems (joint work with M. Albrecht, C. Cid, J.-C Faugère)

- Learning With Errors LWE Problems
- Linear Equations with Noise \leftrightarrow Noise-Free Algebraic Equations
- A Gröbner Basis Algorithm for BinaryErrorLWE
Plan

1. Algebraic Algorithms for LWE Problems (joint work with M. Albrecht, C. Cid, J.-C Faugère)
 - Learning With Errors LWE Problems
 - Linear Equations with Noise \leftrightarrow Noise-Free Algebraic Equations
 - A Gröbner Basis Algorithm for BinaryErrorLWE
Learning With Errors (LWE)

q: size of field n: nb. of variables m: nb. of samples

LWE

Input. a random matrix $G \in \mathbb{F}_q^{n \times m}$ and $c \in \mathbb{F}_q^{m}$.

Question. Find – if any – a secret $(s_1, \ldots, s_n) \in \mathbb{F}_q^n$ such that:

$$\text{error} = c - (s_1, \ldots, s_n) \times G \text{ is "small".}$$

Decoding a random $[n, m] \mathbb{F}_q$-linear code with a special error distribution.

O. Regev.

“On Lattices, Learning with Errors, Random Linear Codes, and Cryptography”.

LWE with Binary Errors

$q : \text{size of field} \quad n : \text{nb. of variables} \quad m : \text{nb. of samples}$

D. Micciancio, C. Peikert.
“Hardness of SIS and LWE with Small Parameters”.
CRYPTO’13.

BinaryErrorLWE

Input. a random matrix $G \in \mathbb{F}_q^{n \times m}$ and $c \in \mathbb{F}_q^m$.

Question. Find – if any – a secret $(s_1, \ldots, s_n) \in \mathbb{F}_q^n$ such that:

$$\text{error} = c - (s_1, \ldots, s_n) \times G \in \{0, 1\}^n.$$

- a prime $q \in \text{poly}(n)$ (for instance, $q = \text{NextPrime}(n^2)$),
- $m = n(1 + o(1))$ is bounded
Hardness Results

- Gap-SVP is hard, even in the quantum setting.

BinaryErrorLWE [Micciancio-Peikert’13]

- Solving BinaryErrorLWE with $m = n^{1 + o(1)}$ allows to solve Gap-SVP in the worst-case.
- Algos. for BinaryErrorLWE are exponential when $m = n^{1 + o(1)}$.
 - Polynomial-time algorithm if $m = O(n^2)$ (Arora-Ge’11).
Gröbner Bases Techniques

Arora-Ge’11

✔ Algebraic Modelling for LWE-problems
✔ Linearisation
Gröbner Bases Techniques

Arora-Ge’11
- ✔ Algebraic Modelling for LWE-problems
- ✔ Linearisation

Natural Idea

Complexity analysis of Arora-Ge equations with Gröbner bases.
Gröbner Bases Techniques

Arora-Ge’11

✔ Algebraic Modelling for LWE-problems
✔ Linearisation

Natural Idea

Complexity analysis of Arora-Ge equations with Gröbner bases.

- BinaryErrorLWE is hard when $m = n + 1 + o(1) \ (\equiv \text{Gap-SVP})$ and easy when $m = O(n^2)$.

 A sub-exp. algorithm for BinaryErrorLWE when m is quasi-linear.
Plan

1. Algebraic Algorithms for LWE Problems (joint work with M. Albrecht, C. Cid, J.-C Faugère)
 - Learning With Errors LWE Problems
 - Linear Equations with Noise \mapsto Noise-Free Algebraic Equations
 - A Gröbner Basis Algorithm for BinaryErrorLWE
Algebraic Modelling

BinaryErrorLWE

Input. a random matrix $G \in \mathbb{F}_q^{n\times m}$, and $c \in \mathbb{F}_q^m$.

Question. Find – if any – $(s_1, \ldots, s_n) \in \mathbb{F}_q^n$ such that:

$$c - (s_1, \ldots, s_n) \times G = \text{error} \in \{0, 1\}^n.$$

m linear equations in n variables over \mathbb{F}_q with binary noise.
Algebraic Modelling

Binary Error LWE

Input. a random matrix $G \in \mathbb{F}_{q}^{n \times m}$, and $c \in \mathbb{F}_{q}^{m}$.

Question. Find – if any – $(s_1, \ldots, s_n) \in \mathbb{F}_{q}^{n}$ such that:

$$c - (s_1, \ldots, s_n) \times G = \text{error} \in \{0, 1\}^{n}.$$

m linear equations in n variables over \mathbb{F}_q with binary noise.

Arora-Ge Modelling

Let $P(X) = X(X - 1)$:

$$f_1 = P \ c_1 - \sum_{j=1}^{n} s_j G_{j,1} = 0, \ldots, f_m = P \ c_m - \sum_{j=1}^{n} s_j G_{j,m} = 0.$$

m quadratic equations in n variables over \mathbb{F}_q.
Until Now

- \(P(X) \in \mathbb{F}_q[X] \) be vanishing on the errors.

Arora-Ge Modelling

Solving \texttt{BinaryErrorLWE} \equiv

\[
f_1 = P \ c_1 - \sum_{j=1}^{n} x_j G_{j,1} = 0, \ldots, f_m = P \ c_m - \sum_{j=1}^{n} x_j G_{j,m} = 0.
\]

Arora-Ge Algorithm

- \texttt{BinaryErrorLWE}: \(m \) quadratic equations in \(n \) variables over \(\mathbb{F}_q \).

 - **Linearisation** \(\mapsto \) polynomial-time algo. when \(m = O(n^2) \).
Plan

1. Algebraic Algorithms for LWE Problems (joint work with M. Albrecht, C. Cid, J.-C Faugère)
 - Learning With Errors LWE Problems
 - Linear Equations with Noise \leftrightarrow Noise-Free Algebraic Equations
 - A Gröbner Basis Algorithm for BinaryErrorLWE
Solving BinaryErrorLWE with Gröbner Bases

Assumption
We assume that the systems occurring in the Arora-Ge modelling are semi-regular.

Rank condition on the Macaulay matrices.

Theorem
Under the semi-regularity assumption:

If $m = n \left(1 + \frac{1}{\log(n)}\right)$, one can solve BinaryErrorLWE in $\mathcal{O} \ 2^{3.25 \cdot n}$.

If $m = 2 \cdot n$, BinaryErrorLWE can be solved in $\mathcal{O} \ 2^{1.02 \cdot n}$.

If $m = \mathcal{O}(n \log \log n)$, one can solve BinaryErrorLWE in $\mathcal{O} \left(2^{\frac{3n \log \log \log n}{8 \log \log n}}\right)$.
Solving BinaryErrorLWE with Gröbner Bases

Theorem

Under the semi-regularity assumption:

If \(m = n \left(1 + \frac{1}{\log(n)}\right) \), one can solve BinaryErrorLWE in \(\mathcal{O} \ 2^{3.25 \cdot n} \).

If \(m = 2 \cdot n \), BinaryErrorLWE can be solved in \(\mathcal{O} \ 2^{1.02 \cdot n} \).

If \(m = \mathcal{O}(n \log \log n) \), one can solve BinaryErrorLWE in \(\mathcal{O} \ 2^{\frac{3n \log \log \log n}{8 \log \log n}} \).

Remark

- Exact CVP/SVP solver: time \(2^{0.377 \cdot n} \) using memory \(2^{0.029 \cdot n} \).

A. Becker, N. Gama, A. Joux.

GB better when \(m/n \geq 6.6 \).
About the Assumption

Assumption

Systems occurring in the Arora-Ge modelling are semi-regular.

Rank condition on the Macaulay matrices.

<table>
<thead>
<tr>
<th>Magma</th>
<th>D_{reg}</th>
<th>D_{real}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$m = n \cdot \log_2(n), n \in {5, \ldots, 25}$</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>$m = n \cdot \log_2(n), n \in {26, \ldots, 53}$</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>$m = 2 \cdot n \cdot \log_2(n), n = 60$</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>$m = 2 \cdot n \cdot \log_2(n), n = 100$</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>
About the Assumption

Assumption

Systems occurring in the Arora-Ge modelling are semi-regular.

Rank condition on the Macaulay matrices.

- Full proof of the assumption \equiv proving the well known Fröberg’s conjecture
- Semi-regularity of powers of generic linear forms [R. Fröberg, J. Hollman, JSC’94]
- Assumption proved in restricted cases
Conclusion

- Similar analysis for LWE
- New way to investigate the (asymptotical) hardness of lattice-based cryptography
- Main (challenging) open question is to prove the assumptions!

M. Albrecht, C. Cid, J.-C Faugère, L. Perret.
“Algebraic Algorithms for LWE”.
IACR Eprint, 2014.