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Algebraic Cryptanalysis
 

Idea 
Model a cryptosystem as a set of algebraic equations 
Try to solve this system, or estimate the difficulty of solving 
⇒ Gaussian Elimination, Gröbner basis, . . . 



Polynomial System Solving
 

Matrix in degree d 

f1 = · · · = fm = 0 

Gröbner: total degree 

Gröbner: lexicographical 

Gaussian Elimination of 
matrices up to degree 
dmax 

O(
 n+dmax 

n

 ω 
) 

Linear Algebra in K[x]/I 
- xi = hi (xn) 

Õ(#Sols3) 

•Buchberger (1965) 
•F4 (1999) 
•F5 (2002) 
• . . . 

•FGLM (1993) 

GB Complexity is driven by the 
maximal degree dmax reached 

Rely Heavily on Linear Algebra 
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GBLA team: B. Boyer, C. Eder, J.-C Faugère, F. Martani.
 

Type VI, GF(31), m = 16, n = 24, GBLA: 2640 s. (FGB: 5280 s.)
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Learning With Errors (LWE)
 

q : size of field n : nb. of variables m : nb. of samples
 

LWE
 

Input. a random matrix G ∈ Fn×m 
q and c ∈ Fm 

q . 
Question. Find – if any – a secret (s1, . . . , sn) ∈ Fn 

q such that: 

error = c− (s1, . . . , sn) × G is “small ”. 

� Decoding a random [n, m] Fq-linear code with a special error 
distribution. 

O. Regev. 
“On Lattices, Learning with Errors, Random Linear Codes, and 
Cryptography”. 
Journal of the ACM, 2009. 



LWE with Binary Errors
 

q : size of field n : nb. of variables m : nb. of samples
 

D. Micciancio, C. Peikert. 
“Hardness of SIS and LWE with Small Parameters”. 
CRYPTO’13. 

BinaryErrorLWE 

Input. a random matrix G ∈ Fn×m 
q and c ∈ Fm 

q . 
Question. Find – if any – a secret (s1, . . . , sn) ∈ Fn 

q such that: 

error = c− (s1, . . . , sn) × G ∈ {0, 1}n . 

  
a prime q ∈ poly(n) for instance, q = NextPrime(n2) ,  
m = n 1 + o(1) is bounded 
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Hardness Results
 

Gap-SVP is hard, even in the quantum setting. 

BinaryErrorLWE [Micciancio-Peikert’13] 

� Solving BinaryErrorLWE with m = n 1+ o(1) allows to solve 
Gap-SVP in the worst-case 

� Algos. for BinaryErrorLWE are exponential when m = n 1 + o(1) 
Polynomial-time algorithm if m = O(n2) (Arora-Ge’11) 
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Natural Idea
Complexity analysis of Arora-Ge equations with Gröbner bases.

Results [M. Albrecht, C. Cid, J.-C Faugère, L. P., “Algebraic
Algorithms for LWE”. IACR Eprint, 2014]

BinaryErrorLWE is hard when m = n 1+ o(1) (≡ Gap-SVP) and
easy when m = O(n2).

A sub-exp. algorithm for BinaryErrorLWE when m is quasi-linear.

Gröbner Bases Techniques
 

Arora-Ge’11 
� Algebraic Modelling for LWE-problems 
� Linearisation 
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Arora-Ge Modelling
Let P(X ) = X (X − 1):

f1 = P c1 −
n�

j=1

sjGj ,1 = 0, . . . , fm = P cm −
n�

j=1

sjGj ,m = 0.

m quadratic equations in n variables over Fq.

Algebraic Modelling 

BinaryErrorLWE 

Input. a random matrix G ∈ Fn×m 
q , and c ∈ Fm 

q . 
Question. Find – if any – (s1, . . . , sn) ∈ Fn 

q such that: 

c− (s1, . . . , sn) × G = error ∈ {0, 1}n . 

m linear equations in n variables over Fq with binary noise. 
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Until Now
 

P(X ) ∈ Fq[X ] be vanishing on the errors. 

Arora-Ge Modelling 
Solving BinaryErrorLWE ≡ 

f1 = P c1 − 
n� 

j=1 

xj Gj ,1 = 0, . . . , fm = P cm − 
n� 

j=1 

xj Gj ,m = 0. 

Arora-Ge Algorithm 
BinaryErrorLWE: m quadratic equations in n variables over Fq. 

� Linearisation �→ polynomial-time algo. when m = O(n2). 
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Solving BinaryErrorLWE with Gröbner Bases
 

Assumption 
We assume that the systems occurring in the Arora-Ge modelling are 
semi-regular. 

Rank condition on the Macaulay matrices. 

Theorem 
Under the semi-regularity assumption: 

If m = n
 
1 + 1 

log(n)

 
, one can solve BinaryErrorLWE in O 23.25·n . 

If m = 2 · n, BinaryErrorLWE can be solved in O 21.02·n . 

If m = O (n log log n), one can solve BinaryErrorLWE in O
 

2 
3n log log log n 

8 log log n

 
. 



�
    

�
  

�

  

�
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Theorem 
Under the semi-regularity assumption: 

If m = n 1 + 1 
log(n) , one can solve BinaryErrorLWE in O 23.25·n . 

If m = 2 · n, BinaryErrorLWE can be solved in O 21.02·n . 

If m = O (n log log n), one can solve BinaryErrorLWE in O 2 
3n log log log n 

8 log log n . 

Remark 

Exact CVP/SVP solver: time 20.377 n using memory 20.029 n . 
A. Becker, N. Gama, A. Joux. 
“Solving Shortest and Closest Vector Problems: the Decomposition Approach.” 
2013. 

GB better when m/n � 6.6. 
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About the Assumption
 

Assumption 
Systems occurring in the Arora-Ge modelling are semi-regular. 

Rank condition on the Macaulay matrices. 

Magma Dreg Dreal 
m = n · log2(n), n ∈ {5, . . . , 25} 3 3 
m = n · log2(n), n ∈ {26, . . . , 53} 4 4 

m = 2 · n · log2(n), n = 60 3 3 
m = 2 · n · log2(n), n = 100 3 3 
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About the Assumption
 

Assumption 
Systems occurring in the Arora-Ge modelling are semi-regular. 

Rank condition on the Macaulay matrices. 

Full proof of the assumption ≡ proving the well known Fröberg’s 
conjecture 

Semi-regularity of powers of generic linear forms [R. Fröberg, J. 
Hollman, JSC’94] 
Assumption proved in restricted cases 



Conclusion
 

Similar analysis for LWE 

New way to investigate the (asymptotical) hardness of lattice-based 
cryptography 
Main (challenging) open question is to prove the assumptions ! 

M. Albrecht, C. Cid, J.-C Faugère , L. Perret. 
“Algebraic Algorithms for LWE”. 
IACR Eprint, 2014. 
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