Gröbner Bases Techniques in Post-Quantum Cryptography

Ludovic Perret and many co-authors

Sorbonne Universités UPMC Univ Paris 06/INRIA, LIP6, PolSyS Project, Paris, France

NIST, Maryland

Gröbner Bases Techniques in Post-Quantum Cryptography

A major tool to evaluate the security of post-quantum schemes

• Multivariate cryptography: intrinsic tool (Jintai's talk)

Gröbner Bases Techniques in Post-Quantum Cryptography

A major tool to evaluate the security of post-quantum schemes

- Multivariate cryptography: intrinsic tool (Jintai's talk)
- Code-based cryptography: emerging tool for key-recovery
 - J.-C. Faugère, A. Otmani, L. P., J.-P. Tillich. Algebraic Cryptanalysis of McEliece Variants with Compact Keys. Eurocrypt 2010.
 - J.-C. Faugère, V. Gauthier-Umana, A. Otmani, L. P., J.-P. Tillich. A Distinguisher for High Rate McEliece Cryptosystems. IEEE-IT 13.
 - 📔 F. Urvoy.

Algebraic and Physical Cryptanalysis in Code-based Cryptography. Paris VI.

Gröbner Bases Techniques in Post-Quantum Cryptography

A major tool to evaluate the security of post-quantum schemes

- Multivariate cryptography: intrinsic tool (Jintai's talk)
- Code-based cryptography: emerging tool for key-recovery
 - J.-C. Faugère, A. Otmani, L. P., J.-P. Tillich. Algebraic Cryptanalysis of McEliece Variants with Compact Keys. Eurocrypt 2010.
 - J.-C. Faugère, V. Gauthier-Umana, A. Otmani, L. P., J.-P. Tillich. A Distinguisher for High Rate McEliece Cryptosystems. IEEE-IT 13.
 - F. Urvoy.

Algebraic and Physical Cryptanalysis in Code-based Cryptography. Paris VI.

• LWE-based cryptography: new tool for asymptotical hardness

Algebraic Cryptanalysis

Idea

- Model a cryptosystem as a set of algebraic equations
- Try to solve this system, or estimate the difficulty of solving
 - ⇒ Gaussian Elimination, Gröbner basis, ...

Polynomial System Solving

• GBLA team: B. Boyer, C. Eder, J.-C Faugère, F. Martani.

	GBLA					
Presentation						: #
GBLA is an open source (GPLv2) C library for linear algebra specialized for elimina	ting matrices genera	ated during Gröbner ba	sis computations in alg	porithms like F	4 or F5.	
Download source						
Current stable source (version 0.0.3).						
In order to use it, you can proceed as follows :						
tar mf gbla-x.y.s.tar.gm od gbla-x.y.s / Antogen / antofere make						
The configure step can be customised. Help is provided with configurehelp and	t can be used like ea	onfigure CFLAGS="-mar	ch-native -03" to repl	ace default	g -02".	
If you need the tools :						
ed tools ; make ;						
Usage						
Programme gbla						
See usage for detailed help, and the following for a few examples.						
Example:						
scat matl.gz ./gbla -		or one. 'I de des dess			a	
Computes the eliminations, uses 1 thread, outputs nothing, uses the old formation	at, reads from the gu	unzipped stream mat1.	2.			-
zcat matrices/matl.gbm.gz ./gbla -v 1 -t 4 -						
Computes the eliminations, uses 4 threads, outputs minimal information, uses	the new format, rea	ads from the gunzipped	stream matrices/mat1	.gbm.gz.		-
./gbla -v 2 -t 32 -n matrices/matl.gbm						
Computes the eliminations, uses 32 threads, outputs timings and information,	uses the new forma	at, reads from a matrix	at1 on disk.			_
Binaries						
Compiled binaries can be found there: • intx (Intel static) • intx (Intel AVX static)						1000

• GBLA team: B. Boyer, C. Eder, J.-C Faugère, F. Martani.

• GBLA team: B. Boyer, C. Eder, J.-C Faugère, F. Martani.

• Type VI, GF(31), *m* = 16, *n* = 24, GBLA: 2640 s. (FGB: 5280 s.)

Algebraic Algorithms for LWE Problems (joint work with M. Albrecht, C. Cid, J.-C Faugère)

- Learning With Errors LWE Problems
- \bullet Linear Equations with Noise \mapsto Noise-Free Algebraic Equations
- A Gröbner Basis Algorithm for BinaryErrorLWE

Plan

Algebraic Algorithms for LWE Problems (joint work with M. Albrecht, C. Cid, J.-C Faugère)

• Learning With Errors LWE Problems

- Linear Equations with Noise \mapsto Noise-Free Algebraic Equations
- A Gröbner Basis Algorithm for BinaryErrorLWE

Learning With Errors (LWE)

q : size of field n : nb. of variables m : nb. of samples

LWE

Input. a random matrix $G \in \mathbb{F}_q^{n \times m}$ and $\mathbf{c} \in \mathbb{F}_q^m$. **Question.** Find – if any – a secret $(\mathbf{s}_1, \dots, \mathbf{s}_n) \in \mathbb{F}_q^n$ such that:

error =
$$\mathbf{c} - (\mathbf{s}_1, \dots, \mathbf{s}_n) \times G$$
 is "small".

Solution $[n, m] \mathbb{F}_q$ -linear code with a special error distribution.

O. Regev.

"On Lattices, Learning with Errors, Random Linear Codes, and Cryptography". Journal of the ACM, 2009.

LWE with Binary Errors

q: size of field n: nb. of variables m: nb. of samples

D. Micciancio, C. Peikert.

"Hardness of SIS and LWE with Small Parameters". CRYPTO'13.

BinaryErrorLWE

Input. a random matrix $G \in \mathbb{F}_q^{n \times m}$ and $\mathbf{c} \in \mathbb{F}_q^m$. **Question.** Find – if any – a secret $(\mathbf{s_1}, \dots, \mathbf{s_n}) \in \mathbb{F}_q^n$ such that:

error = $c - (s_1, ..., s_n) \times G \in \{0, 1\}^n$.

• a prime $q \in \text{poly}(n)$ (for instance, $q = \text{NextPrime}(n^2)$),

• m = n(1 + o(1)) is bounded

Hardness Results

Gap-SVP is hard, even in the quantum setting.

BinaryErrorLWE [Micciancio-Peikert'13]

- ✓ Solving BinaryErrorLWE with $m = n \ 1 + o(1)$ allows to solve Gap-SVP in the worst-case
- ✓ Algos. for BinaryErrorLWE are exponential when $m = n \ 1 + o(1)$ Polynomial-time algorithm if $m = O(n^2)$ (Arora-Ge'11)

Gröbner Bases Techniques

Arora-Ge'11

- ✓ Algebraic Modelling for LWE-problems
- Linearisation

Gröbner Bases Techniques

Arora-Ge'11

- ✓ Algebraic Modelling for LWE-problems
- Linearisation

Natural Idea

Complexity analysis of Arora-Ge equations with Gröbner bases.

Gröbner Bases Techniques

Arora-Ge'11

Algebraic Modelling for LWE-problems

Linearisation

Natural Idea

Complexity analysis of Arora-Ge equations with Gröbner bases.

Results [M. Albrecht, C. Cid, J.-C Faugère, L. P., "Algebraic Algorithms for LWE". IACR Eprint, 2014]

• BinaryErrorLWE is hard when $m = n \ 1 + o(1)$ (\equiv Gap-SVP) and easy when $m = O(n^2)$.

A sub-exp. algorithm for BinaryErrorLWE when *m* is quasi-linear.

Plan

Algebraic Algorithms for LWE Problems (joint work with M. Albrecht, C. Cid, J.-C Faugère)

- Learning With Errors LWE Problems
- \bullet Linear Equations with Noise \mapsto Noise-Free Algebraic Equations
- A Gröbner Basis Algorithm for BinaryErrorLWE

Algebraic Modelling

BinaryErrorLWE

Input. a random matrix $G \in \mathbb{F}_q^{n \times m}$, and $\mathbf{c} \in \mathbb{F}_q^m$. Question. Find – if any – $(\mathbf{s}_1, \dots, \mathbf{s}_n) \in \mathbb{F}_q^n$ such that:

$$\mathbf{c} - (\mathbf{s}_1, \dots, \mathbf{s}_n) \times G = \mathbf{error} \in \{0, 1\}^n.$$

m linear equations in *n* variables over \mathbb{F}_q with binary noise.

Algebraic Modelling

BinaryErrorLWE

Input. a random matrix $G \in \mathbb{F}_q^{n \times m}$, and $\mathbf{c} \in \mathbb{F}_q^m$. Question. Find – if any – $(\mathbf{s}_1, \dots, \mathbf{s}_n) \in \mathbb{F}_q^n$ such that:

$$\mathbf{c} - (\mathbf{s}_1, \dots, \mathbf{s}_n) \times G = \mathbf{error} \in \{0, 1\}^n.$$

m linear equations in *n* variables over \mathbb{F}_q with binary noise.

Arora-Ge Modelling

Let
$$P(X) = X(X - 1)$$
:

$$f_1 = P \ c_1 - \sum_{j=1}^n \mathbf{s}_j G_{j,1} = 0, \dots, f_m = P \ c_m - \sum_{j=1}^n \mathbf{s}_j G_{j,m} = 0.$$

m quadratic equations in *n* variables over \mathbb{F}_q .

Until Now

• $P(X) \in \mathbb{F}_q[X]$ be vanishing on the errors.

Arora-Ge Modelling

Solving BinaryErrorLWE \equiv

$$f_1 = P \ c_1 - \sum_{j=1}^n x_j G_{j,1} = 0, \dots, f_m = P \ c_m - \sum_{j=1}^n x_j G_{j,m} = 0.$$

Arora-Ge Algorithm

• BinaryErrorLWE: *m* quadratic equations in *n* variables over \mathbb{F}_q .

✓ **Linearisation** $| \mapsto$ polynomial-time algo. when $m = O(n^2)$.

Plan

Algebraic Algorithms for LWE Problems (joint work with M. Albrecht, C. Cid, J.-C Faugère)

- Learning With Errors LWE Problems
- Linear Equations with Noise \mapsto Noise-Free Algebraic Equations
- A Gröbner Basis Algorithm for BinaryErrorLWE

Solving BinaryErrorLWE with Gröbner Bases

Assumption

We assume that the systems occurring in the Arora-Ge modelling are semi-regular.

Rank condition on the Macaulay matrices.

Theorem

Under the semi-regularity assumption:

If
$$m = n \left(1 + \frac{1}{\log(n)} \right)$$
, one can solve BinaryErrorLWE in \mathcal{O} 2^{3.25 · n}

If $m = 2 \cdot n$, BinaryErrorLWE can be solved in $\mathcal{O} = 2^{1.02 \cdot n}$

If $m = \mathcal{O}(n \log \log n)$, one can solve BinaryErrorLWE in $\mathcal{O}\left(2^{\frac{3n \log \log \log n}{8 \log \log n}}\right)$

Solving BinaryErrorLWE with Gröbner Bases

Theorem

Under the semi-regularity assumption:

If
$$m = n \quad 1 + \frac{1}{\log(n)}$$
, one can solve BinaryErrorLWE in $\mathcal{O} \quad 2^{3.25 \cdot n}$.
If $m = 2 \cdot n$, BinaryErrorLWE can be solved in $\mathcal{O} \quad 2^{1.02 \cdot n}$.

If $m = \mathcal{O}(n \log \log n)$, one can solve BinaryErrorLWE in \mathcal{O} 2^m

Remark

- Exact CVP/SVP solver: time 2^{0.377 n} using memory 2^{0.029 n}.
 - A. Becker, N. Gama, A. Joux. "Solving Shortest and Closest Vector Problems: the Decomposition Approach." 2013.
 - GB better when $m/n \ge 6.6$.

About the Assumption

Assumption

Systems occurring in the Arora-Ge modelling are semi-regular.

Rank condition on the Macaulay matrices.

Magma	$D_{\rm reg}$	$D_{\rm real}$
$m = n \cdot \log_2(n), n \in \{5, \ldots, 25\}$	3	3
$m = n \cdot \log_2(n), n \in \{26, \dots, 53\}$	4	4
$m = 2 \cdot n \cdot \log_2(n), \ n = 60$	3	3
$m = 2 \cdot n \cdot \log_2(n), \ n = 100$	3	3

About the Assumption

Assumption

Systems occurring in the Arora-Ge modelling are semi-regular.

Rank condition on the Macaulay matrices.

- Full proof of the assumption ≡ proving the well known Fröberg's conjecture
- Semi-regularity of powers of generic linear forms [R. Fröberg, J. Hollman, JSC'94]
- Assumption proved in restricted cases

Conclusion

- Similar analysis for LWE
- New way to investigate the (asymptotical) hardness of lattice-based cryptography
- Main (challenging) open question is to prove the assumptions !

```
M. Albrecht, C. Cid, J.-C Faugère, L. Perret.
"Algebraic Algorithms for LWE".
IACR Eprint, 2014.
```