MQ Challenge: Hardness Evaluation of Solving MQ Problems

<u>Takanori Yasuda (ISIT)</u>, Xavier Dahan (ISIT), Yun-Ju Huang (Kyushu Univ.), Tsuyoshi Takagi (Kyushu Univ.), Kouichi Sakurai (Kyushu Univ., ISIT)

This work was supported by "Strategic Information and Communications R&D Promotion Programme (SCOPE), no. 0159-0091", Ministry of Internal Affairs and Communications, Japan. The first author is supported by Grant-in-Aid for Young Scientists (B), Grant number 24740078.

Fukuoka MQ challenge

MQ challenge started on April 1st.

https://www.mqchallenge.org/



Why we need MQ challenge?

- Several public key cryptosystems held contests which solve the associated basic mathematical problems.
 - RSA challenge(RSA Laboratories), ECC challenge(Certicom), Lattice challenge(TU Darmstadt)
- Lattice challenge (http://www.latticechallenge.org/)
 - Target: Short vector problem
 - 2008 now continued
- Multivariate public-key cryptsystem (MPKC) also need to evaluate the current state-of-the-art in practical MQ problem solvers.

We planed to hold MQ challenge.

Multivariate Public Key Cryptosystem (MPKC)

Advantage

- Candidate for post-quantum cryptography
- Used for both encryption and signature schemes
 - Encryption: Simple Matrix scheme (ABC scheme), ZHFE scheme
 - Signature: UOV, Rainbow
- Efficient encryption and decryption and signature generation and verification.

Problems

- Exact estimate of security of MPKC schemes
- Huge length of secret and public keys in comparison with RSA
- New application and function

MQ problem

MPKC are public key cryptosystems whose security depends on the difficulty in solving a system of multivariate quadratic polynomials with coefficients in a finite field *K*.

MQ problem: find a solution of the system of multivariate equations:

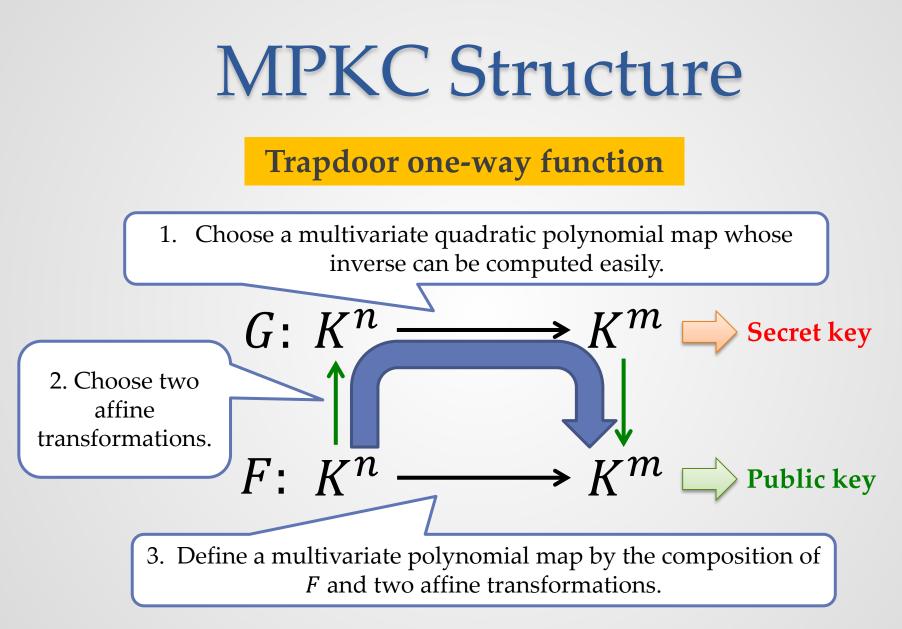
$$\int f_1(x_1, \dots, x_n) = \sum_{1 \le i, j \le n} a_{ij}^{(1)} x_i x_j + \sum_{1 \le i \le n} b_i^{(1)} x_i + c^{(1)} = d_1$$

$$f_2(x_1, \dots, x_n) = \sum_{1 \le i, j \le n} a_{ij}^{(2)} x_i x_j + \sum_{1 \le i \le n} b_i^{(2)} x_i + c^{(2)} = d_2$$

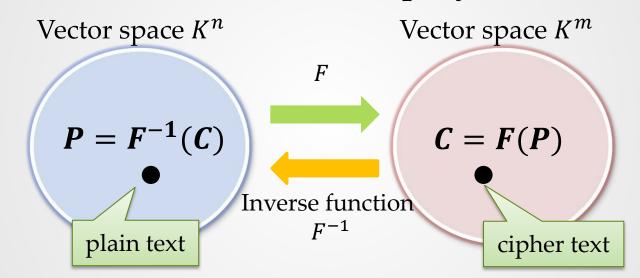
$$\vdots$$

$$f_m(x_1, \dots, x_n) = \sum_{1 \le i, j \le n} a_{ij}^{(m)} x_i x_j + \sum_{1 \le i \le n} b_i^{(m)} x_i + c^{(m)} = d_m$$

It is believed that it is difficult to solve (general) MQ problem.



 $F: K^n \to K^m$: multivariate polynomial map

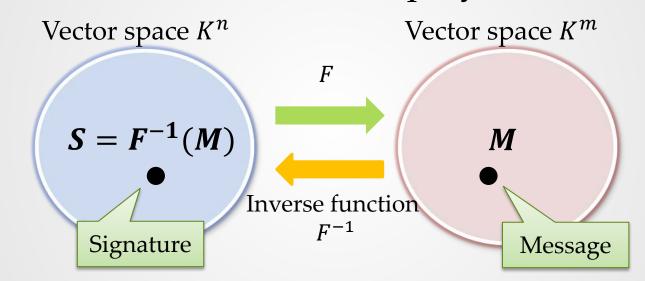


For any cipher text *C*, there must exist the corresponding plain text uniquely.



MPKC Signature

 $F: K^n \to K^m$: multivariate polynomial map



For any message *M*, there must exist the corresponding signature.

F is surjective. $n \ge m$. Ex. UOV, Rainbow

Encryption and Signature

Encryption

- o Simple matrix scheme(ABC scheme), ZHFE,
- These encryption schemes use systems of m = 2n.
- QUAD stream cipher also uses systems of m = 2n.

• Signature

- o UOV, Rainbow,...
- Rainbow is the multilayered UOV.
- In Rainbow, parameters n = 1.5m are often used.
- In MPKC schemes, finite fields with small size are used.
 - Finite field with small size has an efficient arithmetic.
 - Binary field GF(2), binary extension field $GF(2^8)$, prime field GF(31).

Systems of 6 types

• We create sequences of MQ problems of 6 types.

Туре	Relation of <i>m</i> and <i>n</i>	Base field	Target
Ι	m = 2n	<i>GF</i> (2)	Encryption
II	m = 2n	$GF(2^8)$	Encryption
III	m = 2n	<i>GF</i> (31)	Encryption
IV	npprox 1,5 m	<i>GF</i> (2)	Signature
V	npprox 1,5 m	$GF(2^8)$	Signature
VI	npprox 1,5 m	<i>GF</i> (31)	Signature

How to construct MQ problem (Type IV,V,VI)

Signature Case $(n \approx 1.5m)$

Expected number of solutions of random system : $q^{1.5m-m} = q^{0.5m}$

$$\begin{cases} f_1(x_1, \dots, x_n) = \sum_{1 \le i \le j \le n} a_{ij}^{(1)} x_i x_j + \sum_{1 \le i \le n} b_{ij}^{(1)} x_i + c^{(1)} = d^{(1)}, \\ f_2(x_1, \dots, x_n) = \sum_{1 \le i \le j \le n} a_{ij}^{(2)} x_i x_j + \sum_{1 \le i \le n} b_{ij}^{(2)} x_i + c^{(2)} = d^{(2)}, \\ \vdots \\ f_m(x_1, \dots, x_n) = \sum_{1 \le i \le j \le n} a_{ij}^{(m)} x_i x_j + \sum_{1 \le i \le n} b_{ij}^{(m)} x_i + c^{(m)} = d^{(m)} \end{cases}$$

Step 1: choose randomly all coefficients .

How to construct MQ problem (Type I,II,III)

Encryption Case (m = 2n)

Existence probability of solution of random system : $1/q^n$

$$\begin{cases} f_1(x_1, \dots, x_n) = \sum_{1 \le i \le j \le n} a_{ij}^{(1)} x_i x_j + \sum_{1 \le i \le n} b_{ij}^{(1)} x_i + c^{(1)} = d^{(1)}, \\ f_2(x_1, \dots, x_n) = \sum_{1 \le i \le j \le n} a_{ij}^{(2)} x_i x_j + \sum_{1 \le i \le n} b_{ij}^{(2)} x_i + c^{(2)} = d^{(2)}, \\ \vdots \\ f_m(x_1, \dots, x_n) = \sum_{1 \le i \le j \le n} a_{ij}^{(m)} x_i x_j + \sum_{1 \le i \le n} b_{ij}^{(m)} x_i + c^{(m)} = d^{(m)} \end{cases}$$

Step 1: choose randomly blue coefficients . **Step 2:** choose randomly a solution $v = (v_1, ..., v_n)$. **Step 3:** compute the red vector by evaluating polynomials at v.

This system has at least one solution v.

Gröbner basis attack

A fundamental tool for solving MQ problem is Gröbner basis. Faugère proposed efficient algorithms as F_4 and F_5 to improve original algorithm[1][2].

Complexity for solving MQ problem [3]

$$\mathcal{O}(\left(m \cdot \binom{n+d_{reg}}{d_{reg}}\right))^{\omega})$$

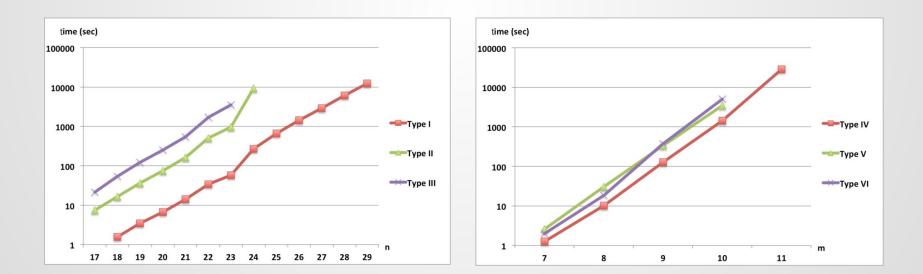
where $2 < \omega < 3$, and d_{reg} is an invariant determined by the multivariate polynomial system.

Reference:

- [1] Faugère, J.C., A New Efficient Algorithm for Computing Gröbner Bases (F4)", Journal of Pure and Applied Algebra, vol. 139, 1999.
- [2] Faugère, J.C., A New Efficient Algorithm for Computing Gröbner Bases (F5)", ISSAC, ACM press, 2002.
- [3] Bettale, L., Faugère, J.C. and Perret L., Hybrid approach for solving multivariate systems over finite fields", J. Math. Crypt. vol. 2, 2008.

Experiments

- CPU: Intel(R) Xeon(R) CPU E5-4617, 2.90GHz, 6 cores
- OS: Linux Mint 15 Olivia
- RAM: 1TB
- Platform: Magma V2.19-9



Fukuoka MQ challenge

MQ challenge started on April 1st.

https://www.mqchallenge.org/



First Answerer

Participants Info Name JC Faugere Institute INRIA

- Submission Details

Date Type Number of variables (n)	2015/4/1 VI 24	
Number of variables (n)	24	
Number of equationes (m)	16	
Seed (0,1,2,3,4)	0	
Algorithm	F5 - FGb	
Hardware	Intel(R) Xeon(R) CPU E5-2670 v2 @ 2.50GHz	
Running Time	5280 seconds	
Answer v=[v ₁ ,,v _n] in F ⁿ [3,4,16,4,1,0,11,2,6,23,16,26,6,23,2,1,17,30,21,5,17,0,24		

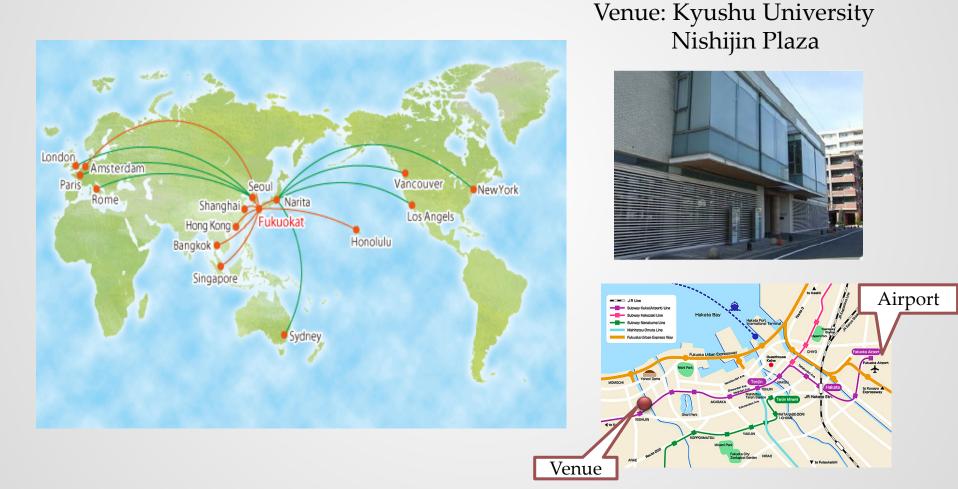
Conclusion

- We started MQ challenge which is a contest for solving MQ problem.
 - o MQ Challenge Homepage.

https://www.mqchallenge.org/

- 2006 Leuven, 2008 Cincinnati, 2010 Darmstadt, 2011 Taipei, 2013 Limoges, 2014 Waterloo
- Seventh International Conference on Post-Quantum Cryptography February 24-26, 2016, Fukuoka, Japan https://pqcrypto2016.jp/
- Winter School February 22-23, 2016, Fukuoka, Japan

Fukuoka, Japan



Thank you for your attention.