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Key Transport from Encryption versus Key Exchange? 

.	 Alice Uses Bob’s public key to encrypt a random string and sends 
the ciphertext to Bob. Bob decrypts it and get the random string. 

.	 In practice, public key encryption is only used to transmit random 
keys. (The key is only determined by one party) 

.	 Using PKE can not guarantee forward security. 
.	 If the attacker gets the secret key, then he will learn every 

communication made before. 
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...

. Get a shared secret key in an insecure channel.

What’s Key Exchange 

3 / 32
 



. Get a shared secret key in an insecure channel.

What’s Key Exchange 

. . . 

3 / 32
 



What’s Key Exchange 

. . . 

. Get a shared secret key in an insecure channel. 

3 / 32 



(gb)a (ga)b

. Using gab = (gb)a = (ga)b.

The Elegant Diffie-Hellman Protocol 

ag

bg
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Other similar attempts?

. Can we get a DH analogy from other mathematical structures?

Many failed attempts to build new DH like protocols.

. Braid group and other finite groups

. Other nonlinear maps?
MR1501252, Ritt, J. F. Permutable rational functions. Trans. Amer.
Math. Soc. 25 (1923), no. 3, 399-448. 30D05

Mathemtical structure behind 

Motivation: 

. Can we get a DH analogy from other mathematical tools? 

. The case of Diffie-Hellmann: 

(g a)b = (g b)a = g ab 

The commutativity of nonlinear operators. 
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Mathemtical structure behind 

Motivation: Linear case? 

. 
(A × B) × C = A × (B × C) 

. To make it secure, we need to add ”errors”.
 

. We need to be able to remove ”errors”.
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Our Results:

. An Efficient (2-round) key exchange protocol from LWE and RLWE.

. A new way to deal with approximate key exhange

. Extend to multi-party key exchange (without security proof).

Motivation and Results 

Motivation: 

. Can we get a DH analogy from other mathematical tools? 

. Can we get KE from lattices (say, LWE, which is apparently resistant 
to quantum attacks)? 

. If so, we will get better efficiency and better security guarantees. 
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Lattices 

Given m linear independent vectors B = [b1, ..., bm] ∈ Rn×m . A lattice 
L(B) consists of the integer combinations of bi’s. 

mr 
L(B) = { zi · bi : zi ∈ Z}. 

i=1 
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. γ = 1; just the SVP problem.

. γ is constant (independent of n); γ-SVP is NP-hard.

. γ ≥ 2n; γ-SVP can be solved in polynomial time (LLL algorithm).

. γ = poly(n); probably not NP-hard, but we do not have polynomial
time algorithms (This is what we use in cryptography).

Hard Problem 

γ-SVP(Shortest Vector Problem) 

Given a n-dimensional lattice L(B), find a non-zero lattice vector v, such 
that lvl ≤ γ · λ. 
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Learning with Errors (LWE) [Oded Regev 2005] 

Goal: distinguishing “noisy inner products” from uniform. 

a1 ← Zn 
q ; 

a2 ← Zn 
q ; 

am ← Zn 
q ; 

. . . 

b1 = (a1, s) + e1 mod q 
b2 = (a2, s) + e2 mod q 

bm = (am, s) + em mod q 

a1 ← Zn 
q ; 

a2 ← Zn 
q ; 

am ← Zn 
q ; 

. . . 

b1 ← Zq 

b2 ← Zq 

bm ← Zq 

In a matrix form 
(A, As + e) ≈c (A, b) 

Where s ← Zn , m = poly(n), q = poly(n) and ei ← χ is some q 
distribution in Z. ei has small size, much smaller than q. 
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Theorem (Informal)[Reg’05] 

Let χ be a discrete Gaussian distribution with parameter 0 < α < 1, s.t. 
αq ≥ 2 

√ 
n. If there exists a polynomial time algorithm solves LWE 

problem, then there exists a quantum algorithm solves (n/α)-SVP 
problems for all n-dimension lattices. 

. s ← χn is as hard as standard LWE (s ← Zn 
q ) [ACPS’09]. 
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Notations 

q−1 .	 We always consider Zq for prime q, and Zq = [− q−1 , ].2 2
 

.	 We always consider the LWE problem with s ← χ, i.e. s is much 
smaller than q. 
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sTApB pT
AsB≈

. sTApB = sTAM
T sB + 2sTAeB ≈ sTAM

T sB + 2eTAsB = pT
AsB .

. note that sA, sB , eA, eB are “small”.

. the difference between sTApB and pT
AsB is even

Our Protocol (basic idea) 

Public Parameter: M ← Zn
q 
×n 

pA = MsA + 2eA 

pB = MT sB + 2eB 
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Robust Extractors 

Intuitively, a robust extractor enables to two parties to extract identical 
information from two close elements with some additional hint. 

Definition (Robust Extractors) 

An algorithm E is a robust extractor on Zq with error tolerance δ with 
respect to a hint algorithm S, if the following holds: 

. The deterministic algorithm E: for x ∈ Zq and σ ∈ {0, 1}, output 
k = E(x, σ) ∈ {0, 1}. 

. The hint algorithm S: for y ∈ Zq, output σ ← S(y) ∈ {0, 1}. 

. For any x, y ∈ Zq such that x − y is even and |x − y| ≤ δ, then 
E(x, σ) = E(y, σ), where σ ← S(y). 

. If y 
$← Zq and σ ← S(y), then E(y, σ) is uniform conditioned on σ. 

Note that the errors of x, y in the definition can be set to be multiple of 
t, where t is a small integer. 
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Our Robust Extractor 

We first define two functions: for q > 2 is prime   
σ0(x) =

0, 
1, 

x ∈ [−l q J, l q 

otherwise. 
44 J]; 

; σ1(x) =
0, 
1, 

44x ∈ [−l q J+ 1, l q 

otherwise. 
J+ 1]; 

The hint algorithm S(y): b← {0, 1}, S (y) = σb(y). 

The robust extractor E(x, σ):   q − 1 
E(x, σ) = x + σ · mod q mod 2 

2 

$
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For any x, y ∈ Zq, and x− y � 2ε, with |2ε| ≤ q
4 − 2.

Let σ ← S(y), we have

|y + σ · q − 1

2
mod q| ≤ q

4
+ 1.

Therefore,

x+σ· q − 1

2
mod q = y+σ· q − 1

2
+2ε mod q = (y+σ· q − 1

2
) mod q+2ε,

this implies

E(x, σ) = x+ σ · q − 1

2
mod q mod 2

= y + σ · q − 1

2
mod q mod 2 = E(y, σ)

Lemma 

Let q > 8 be an odd integer, E is a robust extractor with respect to S 
with error tolerance q 

4 − 2. 
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. A outputs E(sTApB , σ)

. B outputs E(pT
AsB , σ)

Removing the Approximation 

Public Parameter: M ← Zn
q 
×n 

pA 

TpB , σ ← S(pAsB ) 

A B 
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KA −KB = 2(sTAeB − eTAsB)

If |2(sTAeB − eTAsB)| ≤
q
4 − 2, then we have

E(KA, σ) = E(KB , σ)

It is easy to check that the shared key is

sTAM
T sB + σ · q − 1

2
mod q mod 2.

Correctness 

T . A has: sA and σ ← S(pAsB ); B has: sB . 
T T . Let KA = sApB and KB = pAsB . 
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Security 

.	 We slightly change the protocol to prove the passive security based 
on LWE. 

T	 T .	 We set KA = sApB + 2eA mod q and KB = pA · sB + 2eB mod q. 

. The proof is given from a series of hybrid experiments. 

. Note that (A, As + 2e mod q) ≈c (A, b) for odd q. 
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Replace pA with uniform random one from Zn
q (LWE assumption).

Since pA is uniform, we replace pB and KB with uniform ones (LWE
assumption).
Note that σ can always be computed.
Now use the uniform property of robust extractors: E(KB , σ) is uniform,
conditioned on σ.

Proof Intuition 

pB 

pA = MsA + 2eA 

= MT sB + 2eB , σ = S(KB ) 

TKB = pAsB + 2eB 
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Extend to RLWE 

Ring Learning with Errors (RLWE) [LPR’10]:
 
Let R = Z[x]/(xn + 1) and Rq = Zq[x]/(x

n + 1), n = 2k for k ∈ Z+ .
 

Goal: distinguishing “noisy ring products” from uniform. 

a1 ← Rq; 
a2 ← Rq; 

am ← Rq; 

. . . 

b1 = a · s + e1 ∈ Rq 

b2 = a2 · s + e2 ∈ Rq 

bm = am · s + em ∈ Rq 

a1 ← Rq; 
a2 ← Rq; 

am ← Rq; 

. . . 

b1 ← Rq 

b2 ← Rq 

bm ← Rq 

s ← Rq and ei ← χ is some distribution on R and leil is “small”. 
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Key Exchange from RLWE 
Public Parameter: m ← Rq 

pB = msB + 2eB , Oσ ← S(pAsB ) 

pA = msA + 2eA 

A B 

  n−1 n−1 . Oσb(a = aiX
i ∈ Rq) = σb(ai)X

i ∈ R2.i=0 i=0
 

$

. S(a) : b ← {0, 1}, S (a) = Oσb(a).
 

. A outputs E(sApB , Oσ).
 

. B outputs E(sB pA, Oσ).
 

. The shared secret key is (sAmsB + q−1 Oσ mod q) mod 2 ∈ R2.
2 
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pA = msA + 2eA

pB = msB + 2eB

p�B = pAsB + 2e�B

pC = msC + 2eC

p�C = pBsC + 2e�C

p�A = pCsA + 2e�A, Oσ ← S(sAp
�
C)

Multi-party Key Exchange 
Public Parameter m ← Rq
 

C
 

A B 
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� 

� 

� 

. A outputs E(sAp , Oσ)C 

. B outputs E(sB p , Oσ)A 

. C outputs E(sC p , Oσ)B 

q−1 . The shared key is (sAsB sC m + Oσ mod q) mod 2 ∈ R2.2 
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.	 The correctness is similar to the previous protocols. 

.	 The security proof involves some “circular” problem, we leave it as 
an open problem. 
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. This scheme is secure under passive attacks, but how about 
man-in-the-middle attacks? 

. In this case, we need an autenticated KE. 
Traditionally, we use digital signature. 
Can we do without digital signature? 

. We can build an authenticated key exchange (AKE) protocol, which 
can be seen as an HMQV-like AKE from lattices. 

. The protocol is simple since it does not involve any other 
cryptographic primitives to achieve authentication (e.g., signatures) 
and the system is also very efficient. 

Eurocrypt 2015 

26 / 32 



xi = ari + 2fi ∈ Rq

where ri, fi ←r χβ

xi

yj = arj + 2fj ∈ Rq

kj = (pic+ xi)(sjd+ rj) + 2gj
where rj , fj , gj ←r χβ

wj = Cha(kj) ∈ {0, 1}n
σj = Mod2(kj , wj) ∈ {0, 1}n
skj = H2(i, j, xi, yj , wj , σj)

yj , wj

c = H1(i, j, xi) ∈ R, d = H1(j, i, yj , xi) ∈ R
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2 We can prove the forward security of the system

3 We did preliminary implementation and it is very efficient.

4 Parameters for implementation:

Parameters n Security (expt.) α γ log β
α

log q (bits)

I∗ 1024 80 bits 3.397 101.919 8.5 40

II 2048 80 bits 3.397 161.371 27 78

III 2048 128 bits 3.397 161.371 19 63

IV 4096 128 bits 3.397 256.495 50 125

V 4096 192 bits 3.397 256.495 36 97

VI 4096 256 bits 3.397 256.495 28 81

AKE from ring-LWE 

Intuition for Security: 
1
 We can prove the security of the system 
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Parameters for implementation: 

Intuition for Security: 
1 

2 

3 

4 

Parameters 
I ∗ 

II 
III 
IV 
V 
VI 

n 
1024 
2048 
2048 
4096 
4096 
4096 

Security (expt.) 
80 bits 
80 bits 
128 bits 
128 bits 
192 bits 
256 bits 

α 
3.397 
3.397 
3.397 
3.397 
3.397 
3.397 

γ 
101.919 
161.371 
161.371 
256.495 
256.495 
256.495 

log β 
α 

8.5 
27 
19 
50 
36 
28 

log q (bits) 
40 
78 
63 
125 
97 
81 
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AKE from ring-LWE 

Communication Overheads: 

Choice of Size (KB) 
Parameters pk sk (expt.) init. msg resp. msg 

I ∗ 5 KB 0.75 KB 5 KB 5.125 KB 
II 19.5 KB 1.5 KB 19.5 KB 19.75 KB 
III 15.75 KB 1.5 KB 15.75 KB 16 KB 
IV 62.5 KB 3 KB 62.5 KB 63 KB 
V 48.5 KB 3 KB 48.5 KB 49 KB 
VI 40.5 KB 3 KB 40.5 KB 41 KB 

The bound 6α with erfc(6) ≈ 2−55 is used to estimate the size of secret keys. 
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AKE from ring-LWE 

Timings: 

Parameters Initiation Response Finish 
I 3.22 ms (0.02 ms) 8.50 ms (4.69 ms) 5.23 ms (4.73 ms) 
II 12.00 ms (0.04 ms) 29.33 ms (14.64 ms) 17.28 ms (14.61 ms) 
III 10.33 ms (0.04 ms) 25.83 ms (13.46 ms) 15.58 ms (13.40 ms) 
IV 83.61 ms (0.08 ms) 156.58 ms (39.86 ms) 73.11 ms (39.73 ms) 
V 61.74 ms (0.08 ms) 117.81 ms (32.58 ms) 55.64 ms (32.20 ms) 
VI 25.42 ms (0.08 ms) 62.31 ms (31.32 ms) 36.80 ms (31.29 ms) 

Table: Timings of Proof-of-Concept Implementations in ms (The figures in the 
parentheses indicate the timings with pre-computing. For comparison, by simply using 
the “speed” command in openssl on the same machine, the timing for dsa1024 signing 
algorithm is about 0.7 ms, and for dsa2048 is about 2.3 ms). 

We believe our systems are very suitable for practical applications and 
they have very strong security. 
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Summary 

. We build KE and AKE based on LWE and RLWE. 

. They are provably secure against both classical and quantum 
attacks. 

. We can prove the Forward Security of the AKE. 

. Our preliminary implementations are very efficient. 

. Our KE and AKE are strong candidates for quantum-safe crypto. 
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Thank You!
 


