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Abstract. Many applications require trustworthy generation of public random numbers. After
 
presenting a number of these applications, and reviewing various techniques aiming at providing
 
incorruptible public randomness, we discuss the design of a secure, trustworthy random beacon.
 
We derive what constraints are unavoidable to reach certain security guarantees.
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1 Introduction 

Sources of randomness are critical components in cryptography. They are often supposed to 
operate in a concealed, private environment, generating bits that are meant to be kept secret. 
There are however applications that require a form of publicly available randomness that 
cannot be predicted or manipulated. Obvious examples are national lotteries and sporting 
events draws. It also plays a role in governance, for sampling of assemblies or citizen juries, 
or tie-breaking in elections. Trustworthy public sources of randomness also appear in more 
technical settings. Rabin introduced in [26] the concept of a random beacon – an online 
service that publishes allegedly unpredictable numbers at regular intervals – to provide trust 
between communicating parties in various cryptographic applications. Besides its applications 
in cryptographic protocols, public randomness may also be used in the design of cryptographic 
standards. The seeding of the generation of standardized parameter choices for elliptic curves 
has been a matter of particular concern [4]. 

There exist today a few services that continuously make available fresh random numbers, 
such as [24] and [27]. In these systems, no mechanism allows a user to verify the freshness 
or correct generation of the published numbers, so these services can only be considered as 
trusted third-parties. These last years have seen various attempts at developing and analysing 
methods to build trustworthy public sources of randomness. Clark and Hengartner proposed 
in [12] a beacon based on stock market prices. The security thus relies on the presumed un
malleability of published financial data – hardly sufficient to convince even modestly skeptical 
users. Relying on a number of external, presumably independent, sources of randomness is 
also the approach taken by Baignères et al. in [2]. They describe how to combine the outcome 
of several national lotteries to generate random public parameters for elliptic curve cryptog
raphy. Their work relies on the idea that these lotteries are difficult to manipulate. In an 
attempt to get rid of all assumptions on the incorruptibility of external sources, in [19] we 
constructed and proved the security of a verifiable beacon that anyone can influence, but no 
one can bias or predict, by feeding public input data to a slow hash function. It has also 
been suggested to exploit the inherent unpredictability of blockchains, in particular that of 
the Bitcoin protocol [22], to build a decentralised random beacon. This idea is analysed by 
Bonneau, Clark and Goldfeder in [6], and later by Pierrot and Wesolowski in [25]. A source of 
randomness internal to Bitcoin allows that randomness to be used by the currency’s scripting 
language, considerably extending the range of implementable smart contracts. 



Some applications of public randomness are described in Section 2. Various methods to 
provide such randomness in a trustworthy manner are discussed in Section 3. In Section 4, we 
discuss possible design choices for the construction of a secure, unpredictable source of public 
randomness, and derive what constraints are unavoidable to reach certain security guarantees. 
Parts of the descriptions below are taken from our earlier [19]. 

2 Applications of public randomness 

2.1 Protection by random beacons 

Considering transaction protocols that were proven to be impossible without help from an 
intermediary, Rabin proposed in [26] to implement them in a simple and efficient way using a 
very rudimentary form of third-party: a beacon emitting random integers at regular intervals. 
He showed how to instantiate fair contract signing, disclosures of confidential information, and 
certified mail in an electronic mail system. It is worth noticing that since then, other protocols 
for these problems have been developed without need for a third party, satisfying weaker forms 
of security than what was proven impossible without a third party. These applications are 
further explained below. 

Assume two parties A and B negotiate a contract c. Once they agree on c, they both 
want the other party’s signature on c. If A signs c and sends it to B, then B finds himself 
in a position of strength as A is already committed to the deal while B is not. This unfair 
situation would be avoided in a fair contract signing protocol. A disclosure protocol deals 
with the situation where A and B have to agree that A will disclose some confidential piece of 
information s to B, and B promises not to divulge it. When A then reveals s to B, a receipt 
from B will be required to enforce the agreement, and the protocol should prevent unfair 
situations where B obtains s but leaves A without a receipt. Mail certification allows A to 
send a message m to B and obtain a receipt. Here, m need not be confidential, and B might 
be allowed to inspect its content before accepting the transaction or not. If B accepts, both 
parties should be able to prove that the transaction took place. 

In the proposed implementations of the above applications the role of the beacon is limited 
to broadcasting the random numbers. Therefore the third-party that is responsible for the 
beacon does not have to perform any protocol-specific computation, making a beacon a very 
versatile and scalable solution. The security of the protocols relies on the unpredictability of 
the generated numbers: a party able to predict future values of the beacon could cheat. The 
fact that only one beacon is needed for different applications that may run simultaneously, 
and that it has a very simple behaviour, seems to make it easy to build a beacon, but the 
trust issue has to be addressed. Rabin concludes that the beacon has to be a trusted party. 
Section 3 will go through possible solutions to build a beacon that need not be trusted a priori. 
Another potential issue is that the random beacon values may be used for purposes for which 
they are not intended, such as seeding a pseudo-random number generator – with potentially 
disastrous consequences if secrecy of the resulting pseudo-random numbers is assumed. 

2.2 Seeding cryptographic standards 

Seeding the generation of elliptic curves. Another application of uncontestable genera
tion of random numbers is the seeding of the generation of standardized parameter choices for 
elliptic curve cryptography. Although there are many elliptic curve parameters that would be 
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suitable for cryptographic applications, there is only a small set of elliptic curve parameters 
that are recommended or standardized for general use [5]. Using either one of these curves 
implies trusting the way it was generated. A particular choice of parameters could hide spe
cial properties and potential weaknesses known only to the party publishing the curve: [4] 
elaborates why this could be problematic even if care seems to be taken to avoid trust issues. 
Having users use their own personalized parameters is not an option yet: due to the current 
state of the art in elliptic curve point counting, generating good random elliptic curve pa
rameters is a tedious process whereas parameters that can be quickly generated (using the 
complex multiplication method) are frowned upon – albeit for unknown reasons. 

The standardization effort has seen different strategies emerge to justify the choice of any 
particular set of parameters. The usual strategy to find a suitable elliptic curve is to define a 
set of requirements (addressing security or efficiency), and a procedure to derive a sequence 
of elliptic curves from an input seed (the sampling procedure). The first elliptic curve in the 
sequence that fulfills the set of requirements is chosen. See [16] for instance for more details 
on the design of such a procedure. The trust issue boils down to the choice of the seed. 

In most cases, the procedure and the seed are defined simultaneously: the seed is not 
chosen randomly but is specified together with the other parameters. As argued in [4] , these 
techniques result in malleable parameters, because in order to find a curve with some targeted 
properties the generating party has the freedom to play with the set of requirements, the 
sampling procedure and the seed. For instance, the seeds for the NIST P-curves [23] are hashes 
of strings. In this case, the resistance to manipulation is meant to arise from the pre-image 
resistance of the underlying hash function, rather than from a trustworthy choice of seed. The 
seeds for the Brainpool curves [21] are digits of natural constants (namely, of e = exp(1) and 
π ≈ 3.14). So-called rigid curves, such as the NUMS curves [8] or Curve25519 [3], justify the 
choices made by arguing that the entire generation process is carried out in a canonical or 
optimal way. This has also been shown to leave a number of degrees of freedom. 

Another approach consists in defining the procedure ahead of time, in a completely pub
lic and unambiguous way, and later generate an independant, trustworthy random number, 
which is then provided as a seed to the procedure to produce a curve. This is the approach 
taken by trx [20]: an online service that continuously produces new elliptic curves suitable 
for cryptographic applications, based on incorruptible random numbers generated using the 
unicorn protocol [19]. The Million dollar curve [2] has been generated in a similar fashion, 
but using entropy from national lotteries around the world. 
Seeding other cryptographic standards. In the same vein, public randomness could 
also be used to generate constants for other kinds of cryptographic parameters. In [28], it is 
described how to design the constants of the S-boxes in some block ciphers to hide a trapdoor. 
Therefore the choices of these constants need to be carefully justified. Similarly, [1] exposes a 
way to weaken SHA-1 and find collisions by simply tweaking its round constants. To establish 
public trust in standardized block ciphers and hash functions, it must be possible to prove 
that their parameters have been chosen in a trustworthy manner. 

2.3 A tool for democracy 

Randomness can play a crucial role in various models of governance. The first known democ
racy in the world, in the Greek city-state of Athens, distributed the power to assemblies of 
randomly selected citizens. In today’s world, the benefits of sortition-based democracy are 
defended by some as a fairer alternative to elected assemblies. Without going as far as a full 
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Athenian-like democracy, more familiar modern-day models of governance can make use of 
random-sample voting: instead of consulting the full population for elections or referenda, 
one can randomly select a small, yet statistically significant, sample of voters. Such a system 
is advocated as leading to a better quality voting at a far lower cost [10]. In Switzerland, 
the population regularly votes for diverse elections, referenda, and popular initiatives. For 
reasons of cost, these so-called votations are organized four times per year, each time about 
multiple topics. Being questioned so often about so many issues sometimes far from their 
everyday life, voters can feel overwhelmed and unable to develop an informed opinion for 
each question. In such a system, replacing the full population by random samples would have 
multiple advantages: while remaining statistically representative as long as the sample has 
an appropriate size, the costs would be dramatically reduced. At the same time, each voter 
would be requested much more rarely and about a single topic at a time, allowing for a more 
important involvement. 
Secure random sampling. Whether it be for legislative assemblies, small samples of voters, 
or juries for public policy, the random sampling must be conducted in a trustworthy, incor
ruptible and verifiable manner. Designing such a procedure is a delicate task which [13] tries 
to address. It boils down to two main components: a public random number generator, and a 
deterministic procedure which, when fed an input number, outputs a sample of citizens in a 
completely unambiguous and verifiable manner. This second component needs to be precisely 
defined and published ahead of the random number generation. An example of such a proce
dure can be found in [13, Section 4]. See [10] for discussions on how to design this component 
in order to render impractical vote buying or other ways to influence voters. 

The first component is critical to the fairness of the outcome: it must provide convincing 
evidence that the random number was not cooked to result in a biased sample of voters. 
The author of [13] suggests to select different sources of randomness in advance (examples 
include government run lotteries, the daily balance in the US Treasury, or sporting events), 
and to combine the outcomes via a secure hash function. Various strategies are conceivable 
to manipulate those sources. Great care needs to be taken to audit each of them, and even 
if various presumably independent parties are involved, not every skeptical citizen can be 
given the chance to personally make sure everything went right and no form of manipulation 
happened. It would be immensely preferable to rely on an actual trustworthy, secure source 
or public randomness. 
Cryptographic elections. Public randomness has also found applications in the context 
of cryptographic election systems: auditing via random selection and generation of random 
challenges (often used to establish that the tally was computed correctly) both require an 
unpredictable and incorruptible source of randomness. In at least two cases ([14] and [11]) 
the random generation was based on financial data. 

2.4 Smart contracts and crypto-currencies 

Randomness for smart contracts. Verifiable public randomness would be a powerful ad
dition to the smart contracts’ toolbox. This concept of self-enforcing contracts turned out to 
be especially useful in the context of crypto-currencies, such as Bitcoin [22] or Ethereum [33]. 
These systems have scripting languages which can be used to define specific conditions un
der which funds can be moved. To include some randomness in smart contracts, a verifiable, 
secure source of randomness would be necessary. At the moment even the currencies with 
the most powerful scripting languages do not allow random execution. A few Bitcoin pro

4
 



tocols are however already relying on the blockchain (Bitcoin’s data structure) as a source 
of public randomness to design secure multi-player lotteries, non-interactive cut-and-choose 
protocols [6], or randomized mixing fees [7]. A cut-and-choose protocol deals with the sit
uation where a party tries to convince another party that some data he sent was honestly 
constructed according to an agreed-upon method. The beacon-based method proposed in [6] 
implements the first self-enforcing, non-interactive cut-and-choose scheme. 
Preventing selfish mining. Bitcoin’s blockchain is created by a set of active participants, 
the miners, who in exchange for their work can receive a reward consisting of a few bitcoins. 
More details about blockchains and miners are provided in Subsection 3.4. It is possible 
for large groups of miners to maliciously boost their rewards via a strategy called selfish 
mining [15]. For selfish mining to be profitable, the group should control at least 25% of 
the worldwide mining power. In [18], a modification of the Bitcoin protocol is described 
that increases this threshold: assuming the existence of an unpredictable public source of 
random numbers – which can be used to create unforgeable time-stamps –, selfish mining 
in this modified protocol is profitable if and only if the group controls at least 32% of the 
worldwide mining power. Selfish mining involves withholding valid blocks found by a miner. 
When included in a block, the timestamp guarantees that it was not mined before a certain 
point in time, and it can be detected if a miner has been withholding that block for a prolonged 
period of time. 

3 Generating public randomness 

3.1 Using widely accessible real-world entropy 

A first, straightforward way to generate some public random numbers would be to commit in 
advance to using the result of some future, publicly verifiable observation that is expected to 
be impossible to manipulate. This is for instance the approach taken in [12], where a beacon is 
described that derives random numbers from the daily closing prices of a number of common 
stocks. Financial data has also been used as a source of randomness in [14] and [11]. It is easy 
to imagine that financial exchanges could subtly adjust the prices they announce to bias the 
“random” output. 

The idea of using the results of national lotteries has also been raised [2]. Complex trans
parent machines with balls flying around in seemingly total chaos, as commonly used for 
national lotteries, are not incorruptible [31,9], and the situation gets even worse when the 
winning numbers are generated by a computer [30]. The process described in [2] combines the 
outcomes of multiple, seemingly independent lotteries – a practical difficulty which they can 
deal with because they only need to generate one number, with no strong calendar constraint. 
It raises a security issue: it is sufficient to corrupt the chronologically last lottery draw to sig
nificantly manipulate the outcome. This is referred to as the Last Draw Attack. The proposed 
countermeasures are either to only use simultaneous lottery draws (but it is unlikely that one 
could get independent lottery operators to synchronise their draws), to rely on a third party 
that is trusted to be independent from that last lottery (but if two parties are trusted to 
be fully independent, the whole trust issue is easy to solve), limiting the entropy of the last 
draws (the potential weakness of the very last draw is diluted among the last few draws), 
or to combine the different lotteries in a secure way that prevents manipulations, using slow 
functions [19], which is the core of the protocol described in Subsection 3.3. 
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Many other forms of publicly available entropy are conceivable: sports results, meteorolog
ical measures, or pictures of sunspots. The issues raised are always the same: to what extent 
are they susceptible to manipulation, and how can they be securely combined. 

3.2 The NIST random beacon 

In reaction to the number of potential applications, NIST has implemented their own source 
of public randomness [24]. This beacon outputs every minute a string of 512 random bits. 
Extensive documentation is provided that explains how these “truly random” bits – almost 
in a metaphysical sense – are generated based on quantum mechanical phenomena. 

This beacon is advertised to provide unpredictability. Even though the machine that is 
described can be argued to be perfectly unpredictable even by the party running it, users 
of the beacon have no formal guarantee whatsoever that NIST is truly complying with the 
procedure. The bits as produced by the beacon come with no proof that they have been 
generated by the quantum machine as described. 

3.3 Unicorn: uncontestable random numbers 

Unicorn, as proposed in [19], provides a way to create incorruptible random numbers, the 
correct generation of which can be verified by the most mistrustful users. It relies on a simple 
observation: a number can be fully determined at point in time t, while none of its bits can 
actually be known to anyone before time t + Δ when its computation is completed, where 
Δ > 0 is some delay. Unicorn makes use of a delaying function called sloth (for slow-timed 
hash): a hash function that takes, for any pre-specified value Δ > 0, at least wall-clock time Δ 
to compute, irrespective of the amount of parallel computational power available, and whose 
outcome, once computed, can quickly be verified by anyone. The design of such a function 
takes inspiration from the literature of time-sensitive cryptography, introduced by Rivest, 
Shamir and Wagner in [29]. 

Let C be a central party running unicorn. A decentralised version is straightforward to 
conceive, but we chose to present it in a centralised context for clarity. Also, C need not be 
a trusted party, as all actions taken by C will be publicly verifiable. The protocol goes as 
follows. In a first phase, everyone is invited to contribute any type of home-made entropy. 
Any party who wants to get involved can then send its contribution to a public bulletin 
board or publish it on twitter. C collects the contributions received during the first phase, 
and concatenates them to form a public string s0. Each contributing party can check that 
its contribution was included in s0. Optionally (and on top of this), C can generate its own 
random contribution s1 which is not published, but which is committed to. The second phase 
begins: the concatenation of s0 and s1 is fed to sloth, with the guarantee that the outcome 
cannot be known to anyone (including C) before a prescribed amount of time – say, ten 
minutes – has elapsed. At the end of the computation, the outcome, which is the verifiable 
random number, is published, alongside data for its verification, including an opening of the 
commitment on s1. Note that the order of the concatenation of the contributions (to s0) is 
significant, but because s0 is made public right away while the resulting sloth-value cannot 
be known until ten minutes later, C cannot make an informed decision between different 
orderings. 

Assuming the slowness of sloth, the protocol is proven secure in [19] in the worst case 
situation where any particular party, say user U , can only trust him or herself: the other 
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contributors to s0, the parties gathering the data (e.g., twitter), generating s1 and computing 
sloth might all be colluding to manipulate the outcome, while still trying to convince U 
that the outcome was honestly generated. Security in the proposed model renders any such 
manipulation infeasible: any manipulation of the outcome will be detected by a fast run of 
the public verification procedure. 

It also allows to transfer trust: if U did not get the chance to take part in the protocol, 
security in the proposed model implies that U can still trust the outcome if U trusts at least 
one of the contributions included in s0 (either because U has personal trust in the contributor, 
or because s0 includes some piece of time-stamped information that U is ready to believe was 
not predictable). An interesting side effect is that U can also trust the outcome if U knows 
that two of the contributors are unlikely to have colluded, even if U does not trust either of 
them. 

Note that it would be possible for the party C running unicorn to discard U ’s con
tribution to s0, e.g., by claiming that it was sent after the deadline, maybe due to clock 
mis-synchronization. Despite the fact that a careful contributor would take this claim with 
high suspicion, this strategy does not allow manipulation because the attacker would need 
to discard all the honest contributions, thereby failing to provide trust to anyone suspicious 
about any other party not playing fair. Making a change to a contribution to s0 (by the party 
running unicorn) would have the same effect. 

Also, it is important to notice that the possibility to manipulate s1 (the part of the seed 
generated by C) does not negatively affect the security in the proposed model as long as it is 
committed to in due time. This s1 serves other purposes exposed in the original paper. As a 
final note, it is trivial to observe that the protocol does not provide more guarantee than the 
methods expounded in subsections 3.1 or 3.2, in the case where nobody contributes to s0. 

3.4 Bitcoin as a source of public randomness 

In another attempt to build a decentralised beacon with no trusted parties, it has been sug
gested to exploit the inherent unpredictability of blockchains, in particular that of the Bitcoin 
protocol. A blockchain is a form of distributed database, introduced in [22] as the backbone 
of the Bitcoin protocol (and a classical cryptographic construction, cf. [17]). At regular time 
intervals, a new block is added to the blockchain, testifying for the latest transactions that 
happened in the Bitcoin worldwide system. To be added to the chain, a block needs to be 
valid, which implies in particular that its hash value for some chosen secure hash function has 
a certain number d of leading zeros. The process of finding a valid block is called mining, and 
it simply consists in hashing a block with slight modifications until a valid version is found; 
on average this requires 2d attempts, and thus a substantial amount of time even for modest 
d-values (the current d-value in Bitcoin is approximately 64). This mining task is performed 
by miners in exchange for a reward (a few bitcoins) whenever they find a valid block. 

Assuming the underlying hash function is secure, one can derive that each valid block 
found via the mining process contains at least d bits of computational min-entropy. The 
computational cost of the mining process seems to render this entropy difficult to predict or 
manipulate, and has in fact already been used as a source of public randomness, in particular 
in some Bitcoin lotteries. Such a lottery would go as follows: first the index of a future block 
of the chain is announced, the decisive block. Then, the lottery tickets are sold, but the sale 
must end before the decisive block is mined. Once the decisive block has been mined, its bits 

7
 



are used as a random seed for a sampling function which picks the winner among the lottery 
tickets. 

Bonneau, Clark and Goldfeder in [6] proposed a first security analysis of this technique. 
They consider a model where the attacker controls all the miners, and suffers a monetary 
penalty whenever a miner finds a valid block that the attacker does not want to see included 
in the blockchain. This is a bribing model, where the penalty is meant to compensate for the 
loss of the reward going to a miner who finds a valid block. They come to the conclusion that 
the adversary’s expected cost is 2r to enforce a particular value of a random bit generated by 
this beacon, where r is the reward for one valid block. That is an expected cost of US$12,000 
at the time of publication. 

This analysis suffers a few limitations which makes it difficult to analyse the threat of this 
attack: it only considers financial costs, with no computational considerations, it assumes all 
the miners are willing to blindly accept the bribes, and it only considers attacks that force the 
value of the beacon rather than simply introducing a bias, which might be doable at a much 
lower cost. A subsequent analysis, in [25], overcomes these limitations. It allows for instance 
to conclude that, again when a single bit is generated, an adversary controlling only a quarter 
of the miners (rather than all of them as in the previous model) can bias the probability 
of obtaining a particular value from 0.5 to 0.6 for an expected cost of US$9,400. A cheaper 
strategy can increase the probability from 0.5 to 0.57 for only US$1,320; and on the other 
hand, with a higher cost it can increase up to 0.74. This shows that in their current form, 
blockchain-based random beacons are not a secure source of public randomness. 

4 Discussion 

These various directions in the design of a secure source of public randomness all come with 
a different set of assumptions, advantages and drawbacks. The current form of the NIST 
random beacon requires full trust in the single entity that built, runs, and audits the source. 
But an outsider cannot in any way ascertain that the random numbers have been generated 
as advertised. The idea of using lotteries, financial data or other forms of publicly available 
entropy attempts to address the lack of verifiability by combining a number of pre-specified, 
different, and presumably independent sources of entropy. This may increase the trust in the 
party running the beacon, but introduces a complication: that party cannot control the time 
of the day, or even the day of the week, when entropy can be harvested. It raises two issues: 
firstly, it makes it difficult to output a beacon value at a reasonably high frequency (e.g., 
every minute like the NIST beacon). Secondly, it is sufficient to corrupt the chronologically 
last source of entropy to manipulate the beacon value: once the values from all the other 
sources are publicly known, the last source fully determines the outcome. 

Both unicorn and blockchain-based methods get rid of the assumption that there is a 
trusted external source of randomness, and replace it with computational assumptions. This 
is a necessary step to obtain some security in the worst case situation where a user of the 
beacon does not trust anyone but him or herself. 

While the blockchain method is vulnerable to manipulation by a group of corrupted min
ers, the unicorn protocol is provably secure under the sole assumption that the underlying 
sloth function is slow to compute. Of the methods discussed here it is the only one that 
allows anyone to make personally sure that the generation process was done honestly. Two 
drawbacks however remain. These are discussed below, after which it is informally shown that 
both drawbacks are unavoidable. 
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The first drawback is that unicorn requires public input. Trust can only be provided to 
users who trust at least one of the contributions to the public seed s0: because not every single 
user of the beacon can be expected to personally take part in the generation process unicorn 
cannot be expected to be provide global trust. On the bright side however, it is sufficient 
for a user to trust any single one of the contributions. Financial data, lottery draws, Bitcoin 
blocks or NIST-generated values can all be contributed to the s0-value for an outcome of this 
beacon, and a user trusting any one of these contributions will be able to trust the outcome. 
Note the contrast with the idea from [2] of combining lottery draws and such: even if all the 
contributions are trusted except the last one, then the outcome cannot be fully trusted. This 
shows that assuming the slowness of sloth, a unicorn-based beacon is stronger than all the 
previous constructions thanks to the flexibility allowed by the openness of the contribution 
system. 

The second drawback is the time delay imposed by sloth. Once the public input s0 has 
been collected, the outcome will only be known at the end of the sloth computation, which is 
designed to take time. Even though this delay is key to the security of unicorn, and verifiable 
“freshness” intuitively looks like a necessary constraint to trust a beacon’s outputs, one can 
wonder if this can be proved. 

In the design of a beacon secure in the model where users do not trust anyone but them
selves, it can informally be argued that both drawbacks noted above are unavoidable and 
thus that public contributions and a delay are necessary. First, suppose the beacon, which 
runs a protocol P , does not allow a user U to contribute his own entropy. In the worst case 
situation where U believes everyone is secretly colluding against him, the beacon has no way 
to convince U of the freshness of the output random number, as U might believe that the 
protocol P has secretly been run in advance any number of times required to allow the beacon 
to choose a desirable outcome1. So the beacon must accept input from the concerned users 
(this is s0 in unicorn). 

Secondly, suppose the beacon does not commit to the exact computations that will be 
done before publishing the output (this is done in unicorn by letting s0 be publicly available 
immediately, and by publishing a cryptographic commitment on s1 before starting the sloth 
computation). Without such a commitment, the beacon could, right after having received the 
public contributions s0, run in parallel the protocol P for various values of s̃0, each being a 
concatenation of all honest contributions to s0 and a single unique malicious contribution. 
Once all the parallel computations are done, the beacon can choose its favorite outcome, and 
the associated variant s̃0. The commitment defines a point in time at which the output is 
already determined – even though it may not yet be known: once the beacon has committed 
to the exact computations that will be performed, the outcome is the result of this compu
tation and cannot be tampered with anymore. Now, suppose there is no delay between the 
commitment (which determines the output) and the moment the beacon is done computing 
the output (this is the delay imposed by the slowness of sloth in unicorn). It means the beacon 
already knows the output at the moment it is committing to it. This again allows the beacon 
to choose the variant s̃0 that it prefers depending on the output it leads to. The delay forces 
the beacon to commit to some output before having got the time to actually compute it, and 
therefore cannot do any meaningful guess on the most favorable s̃0. 

1 Attempts to justify that nothing was done in advance by involving sporting results or weather data, not 
only would provide no formal guarantee, but would definitely not help convincing a user U suffering from 
The Truman Show delusion [32]. 
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5 Conclusion 

The last four decades a lot of thought has been put in design and implementation of methods 
that can be used to protect information, allowing the widest possible interpretation of what it 
means to protect information. Relatively little effort has gone into building confidence among 
the user population that these methods have been incorporated in an effective manner in our 
current communication infrastructures. Quite on the contrary: any even half informed user 
has every reason to be highly skeptical. 

Given the complexity of the hardware and software involved, there may be many entities 
– of any number of different nationalities – that seek to profit from undocumented features. 
Addressing this problem and offering users assurance that they can control and verify how 
their data are collected and processed is an unsolved problem for which we do not offer 
a solution. We wish we could. In the very limited scenario, however, where public random 
numbers are generated, we offer an approach that considerably improves on previous methods 
and that achieves our goal of giving the user precisely the right level of control. 
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