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Abstract 
This paper presents a method for using probabilistic graphical models to discover dependency rela

tionships among the bit positions in a sample of multi-bit blocks of binary data. Since it is computation
ally infeasible to exhaustively test for all possible dependency combinations, a heuristic is needed. We 
use Bayesian networks to represent possible dependence structures and a genetic algorithm to evolve in
creasingly better-scoring Bayesian networks that best identify the statistical dependencies in the sample. 
A technique for graphical models is used to estimate the min-entropy of the unknown underlying joint 
probability distribution based on the best-scoring Bayesian network. This method has shown success 
for block sizes of several dozen bits, where the output spaces cannot be easily decomposed into smaller 
spaces for independent analysis. Future optimizations may allow for analysis of even larger block-size 
entropy sources 

1 Background 

When analyzing a non-deterministic random bit generation (RBG) process, it is important to quantify 
the entropy provided by the underlying noise sources. There are a number of tools available for this 
problem, including the entropy estimators proposed in [1], and various other specialized techniques that 
operate under the assumption that the noise source follows certain types of general statistical models. 
The success of these approaches depends on the ability to accurately estimate the conditional and 
unconditional probabilities that compose the appropriate statistical model of the source. In general, 
this requires that the basic output unit of the source not be excessively large. Otherwise the underlying 
dependence structure might be too large to be accurately reflected by any sample data set of reasonable 
size. For example, if a noise source produces 64-bit outputs, the probability distribution on the set of 
possible values cannot be computed and stored in memory unless the vast majority of 64-bit values can 
never occur. 

In many practical applications the block size is sufficiently small, allowing entropy to be accurately 
estimated. However, there are some applications where this is not the case, and a different approach is 
needed. In this paper we describe an approach that uses Bayesian networks to represent the dependence 
relationships among the individual bits of a data block. In order to find a Bayesian network that best 
reflects these dependence relationships, we use a genetic algorithm to explore the space of possibilities. 
This approach has so far shown promising results. 

2 Entropy Testing 

The concept of entropy is used to assess the quality of a noise source. Roughly speaking, entropy measures 
the unpredictability of output generated from a particular source. Sources with higher entropy are 
considered to be more unpredictable than lower entropy sources. Although there are several definitions 
of entropy, each appropriate for different situations, the min-entropy statistic is typically computed to 
assess the randomness of the output of sources used to derive cryptographically strong values. Given the 
distribution of outputs produced by a particular source, the min-entropy of this source is − log2(pmax), 
where pmax is the probability of the most likely output. Min-entropy is favored for cryptographic 
applications because it is an estimator of the average work, measured in bits, needed to correctly guess 
a particular output produced from a source, as described in Appendix D of [1]. Estimating the min-
entropy of sources that produce small, or reduced, output sizes (i.e., at most 8 bits) is the main focus of 
NIST’s Special Publication (SP) 800-90B [1]. 
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3 Preliminary Graphical Models 

The motivating question behind this paper is how to reliably estimate the min-entropy of noise source 
outputs that consist of a large number of bits. Since accumulating enough outputs to get a complete sense 
of the distribution is typically impossible for sufficiently large sizes, we have to look for an alternative 
approach. The most straightforward approach that we have considered is to model the dependency 
structure between bits within fixed positions of the output. For instance, suppose we have 12-bit output 
blocks. We could ask questions of the form: 

• Does the 1st bit depend on the 9th bit? 

• Do the 3rd, 6th, and 11th bits influence the 4th and 8th bits? 

The following sections present increasingly sophisticated graphical model approaches to solving this 
problem. The first idea considered accounts for dependencies among subsets of bits, but lacks the ability 
to optimally configure these subsets or the dependence relationships among them. We then build on 
this foundation with a technique that determines which of a certain class of models best represents the 
dependence structure among the bit position subsets. Finally, we move to a generalized family of models 
capable of representing a very broad class of approximations to the joint probability distribution of the 
data. 

3.1 A Basic Model 

One of the simplest ways to address this problem is to partition the bits of the output space into subsets 
and consider these subsets as random variables. Suppose we have an n-bit output space {b1, b2, ..., bn}, 
where bi is a random variable representing the bit in the ith position of an observed output block. 
Given a partition of these bits composed of the subsets X1, X2, ..., Xm, we can construct the following 
conditional distribution as an approximation to the joint distribution of these bits 

P (b1, b2, ..., bn) ≈ P (X1) · P (X2|X1) . . . P (Xm−1|Xm−2) · P (Xm|Xm−1). 

P (Xk|Xk−1) is a conditional probability distribution that can be written as a 2u × 2v table given that 
Xk−1 and Xk consist of u and v bits respectively. We define Pk(y|x) to be the probability of Xk = y 
given Xk−1 = x in P (Xk|Xk−1). Likewise, Pk(x) is the probability that Xk = x. We note that this 
approximation is in fact a valid distribution of X1, X2, ...Xm because it sums to one, as seen from the 
fact that the nested summation 

P1(x1) P2(x2|x1) . . . Pm(xm|xm−1) 
X1=x1 X2 =x2 XM =xm   

reduces to P1(x1) = 1 since each Pk(xk|xk−1) = 1.1 
X1=x1 Xk =xk 

This approximation can be represented as a graphical model by considering the subsets as nodes and 
placing a directed edge between two subsets that have a conditional dependency. Note that this model 
is a path, one of the simplest types of graphs. Figure 1 gives an example of this graph. 

Figure 1: Path Graphical Model 

1To avoid division by zero, we define Pk (xk|xk−1) = 0 if Pk−1(xk−1) = 0. 

2
 



We can compute the min-entropy implied by this type of approximate joint distribution using a 
slight modification to the Viterbi algorithm. The Viterbi algorithm applies to a hidden Markov chain 
and is used to find the most likely sequence of states that produced an observed set of outputs under 
the assumption that each state probabilistically emits a particular output. An in-depth description of 
this algorithm is provided in [6] (Section 4.11). However we give a brief summary here. Let Vk(j) be the 
probability corresponding to the most likely k-long sequence of states, ending with state j, that produced 
the first k outputs. Letting sk be the kth observed output and Pi,j be the transition probability from 
state i to j, it can be shown that  

P (sk|j) maxi(Pi,j · Vk−1(i)), 1 < k ≤ m;
Vk(j) =

P (s1|j)Pj , k = 1. 

where Pj is the probability that j is the initial state. Therefore Vk(j) can be computed recursively. 
Given m outputs, the probability corresponding to the most likely sequence of states that generated 
these outputs is maxi(Vm(i)), where i ranges over all possible states. 

For our purposes, we aim to compute the probability of the most likely n-long sequence of bits emitted 
from the noise source (i.e., the most likely n-bit output block). Instead of a single Markov matrix, we 
have the m − 1 conditional probability matrices P (X2|X1), P (X3|X2), ..., P (Xm|Xm−1). Since hidden 
states do not apply to this model, we effectively ignore them by supposing that each state j emits a 
unique output sj with probability one. By considering the possible values of each Xk as a state, the 
Viterbi formula can be written as  

maxXk−1 =x(Pk(y|x) · V → (x)), 1 < k ≤ m;k−1V →(y) =k 
P1(y), k = 1. 

Although this algorithm as stated can be implemented for the path model, it is not sufficient for more 
general tree models that are discussed in the following section. To address this issue, we point out 
that this formula calculates the probability of the most likely sequence of states starting from X1 and 
proceeding to Xm. However, this probability can also be computed beginning from Xm and working 
backwards to X1. To accomplish this, we define the recursive formula  

maxXk+1 =y(Pk+1(y|x) · V ← (y)), 1 ≤ k < m;k+1V ←(x) =k 
P1(x) · V ←(x), k = 0,1 

subject to the initial condition V ←(x) = 1. Figure 2 displays the probability path traversal for m 
both V → and V ← . Therefore, these two recursive functions both compute the probability of the 
most likely output block, and thus, the min-entropy implied by the model can be calculated as either 
− log2(maxXm =y(V →(y))) or − log2(maxX1=x(V0 

←(x))).m 

Figure 2: Probability Paths Traversed By V → and V ← 
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Although this path model has motivated our approach, it is in general too primitive to handle data 
that contain complex dependencies. As an example, if there is a particular subset of bits that are 
mutually dependent, then unless this subset is selected as part of this model (or at least two subsets 
containing these bits with an edge between them), the dependency will be missed. A more general 
model is described in the following section that optimizes the dependence structure given a specific 
subset partitioning of the bits. 

3.2 Chow-Liu Trees 

A generalization of the path model approach is to approximate the joint probability distribution of 
several variables by a structure known as a Chow-Liu tree, described in [2]. Given a set of m random 
variables, consider these variables as nodes in a graph. Compute the mutual information2 between each e c 

mof the pairs of variables, which are used as the edge weights. Arrange these weights in a list in 2 
descending order and build a tree by taking the first m − 1 edges that do not cause an undirected 
cycle. The resulting graph is a Chow-Liu tree. It is shown in [2] that a Chow-Liu tree minimizes the 
Kullback-Leibler divergence from the joint distribution across all such tree models, and is therefore the 
optimum tree approximation to the joint distribution of these m variables. 

For the purposes of entropy estimation, we consider the random variables of the joint distribution 
to be subsets of bits that partition the bits in the output block, as described in Section 3.1. Viewing 
a Chow-Liu tree in this way provides a graphical model of the dependencies between subsets of bits. 
As an example, the following is a tree approximation to the joint distribution of the random variables 
X1, X2, ..., X6, depicted in Figure 3, 

P (X1, X2, ..., X6) ≈ P (X3) · P (X2|X3) · P (X4|X3) · P (X6|X3) · P (X5|X2) · P (X1|X5). 

It can be seen that a tree model is a valid distribution (i.e., the probabilities sum to one). To show this 
explicitly, we can sum the probabilities using the ordering returned by the following procedure. Given 
a tree T and empty list L: 

1. Prepend the variables corresponding to the leaf nodes of T to L. 

2. Define T ' to be the subgraph induced by removing the leaf nodes from T . 

3. If T ' is the null graph, return L as the ordering. Otherwise, apply Step 1 to T '. 

This eliminates the leaves at each step, while working backwards towards the root. For example, 
a possible ordering of the variables returned by this procedure applied to the tree in Figure 3 is 
X3, X2, X5, X1, X4, X6. This ordering yields the following sum, which is equal to 1, 

P3(x3) P3,2(x2|x3) P2,5(x5|x2) P5,1(x1|x5) P3,4(x4|x3) P3,6(x6|x3), 
X3=x3 X2=x2 X5=x5 X1=x1 X4=x4 X6=x6 

where Pi,j (xj |xi) is the probablity that Xj = xj given Xi = xi in P (Xj |Xi), and Pi(xi) is the probability 
that Xi = xi. 

Figure 3: Example of Tree Graphical Model 

The mutual information between two random variables X and Y is     P (x, y)
I(X; Y ) = P (x, y) log . 

P (x)P (y)
Y =y X=x 

Note that this quantity can be expressed as H(X) + H(Y ) − H(X, Y ), where H is the Shannon entropy function. 
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In order to compute the min-entropy associated with a Chow-Liu tree, we extend the definition 
of the Viterbi algorithm, specifically V ←, described in Section 3.1. We point out that by traversing 
the probability paths, beginning from the leaf nodes and working towards the root, these paths are 
independent prior to a junction (parent node), and can be merged at each junction (see Figure 4). Let 
Ci be the set of variables that are the child nodes of a variable Xi. Given a tree model on the variables 
X1, X2, ..., Xm, we relabel the indices X11 , X21 , ..., Xm to denote an ordering returned by the procedure 1 

described in the above paragraph. Note that X11 is the root. We now extend the definition of V ← as  
maxXl1 =y (Pk1,l1 (y|x) · V ←(y)) , 1 ≤ k ≤ m;

V ←(x) = Xl1 ∈Ck1 l1 

k 
P11 (x) · V ←(x), k = 0.1 

We define V ←(x) = 1 when Xk1 is a leaf node (i.e., Ck1 = ∅) so that V ← is consistent with subsequent k k 
computations. The min-entropy implied by the tree is − log2(maxX11 =x(V ←(x))).0 

Figure 4: Consolidating Probability Paths at a Junction 

To make this more concrete, we show the recursive step used to compute V ← when applying this 
function to the tree in Figure 3. We use the ordering X11 = X3, X21 = X2, X31 = X5, X41 = X1, 
X51 = X4, X61 = X6 to obtain 

V ←(x) = 1,6 

V ←(x) = 1,5 

V ←(x) = 1,4 

V ←(x) = max(P5,1(y|x) · V ←(y)),3 4
X1=y 

V ←(x) = max(P2,5(y|x) · V ←(y)),2 3
X5=y 

V ←(x) = max(P3,2(y|x) · V ←(y)) · max(P3,4(y|x) · V ←(y)) · max(P3,6(y|x) · V ←(y)),1 2 5 6
X2 =y X4 =y X6 =y 

V ←(x) = P3(x) · V ←(x).0 1 

The min-entropy of this tree distribution is − log2(maxX3=x(V ←(x))).0 

3.3 An Example Distribution 

Suppose we have a noise source that produces 10-bit outputs according to the distribution in Figure 5. 
We label the first bit b1, the second bit b2, and so on, up to b10. In this figure we see that, for example, 
bit b1 has no dependencies on other bits, while the value of bit b3 depends on the values of bits b1 and 
b2. 
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Figure 5: An Example 10-Bit Distribution 

Consider the following four bit partitions: 

P1 = {S1 = {b1}, S2 = {b2}, S3 = {b3}, S4 = {b4}, S5 = {b5}, S6 = {b6}, S7 = {b7, b8, b9, b10}},
 
P2 = {T1 = {b1, b4, b8}, T2 = {b2}, T3 = {b3}, T4 = {b5, b10}, T5 = {b6}, T6 = {b7, b9}},
 
P3 = {U1 = {b1, b2}, U2 = {b3, b4}, U3 = {b5, b6}, U4 = {b7, b8}, U5 = {b9, b10}},
 
P4 = {V1 = {b1, b4}, V2 = {b7, b10}, V3 = {b2, b5}, V4 = {b3, b8}, V5 = {b6, b9}}.
 

The min-entropy estimates derived from the corresponding Chow-Liu trees displayed in Figure 6 are 
6.5851, 6.5240, 5.3867, and 6.5565 for P1, P2, P3, and P4 respectively. Note that the edge weights, 
representing the mutual information between subsets, are provided as well. 

Figure 6: Chow-Liu Trees for Four Different Partitions 

This example shows that different subset partitions of the bits will in general yield different approx
imations to the joint distribution. For this noise source the actual min-entropy is known to be 5.40997, 
and although P3 results in the closest approximation to the actual min-entropy, there does not appear 
to be a straightforward way to check partitions that are “close” to P3. In other words, it is not clear 
how to converge to partitions that give better approximations to the actual joint distribution of the bits. 
In order to make progress on this problem, two concepts are explored in the following sections. The 
first is a Bayesian network, which is a generalization of a Chow-Liu tree, and is used to represent the 
dependencies between bits. The second is a genetic algorithm, which is used to converge to a Bayesian 
network that gives an optimal approximation of the joint distribution. 
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4 Bayesian Networks 

A Bayesian network (BN) is a type of probabilistic graphical model and, in our context, can be thought 
of as a generalization of a Chow-Liu tree (Section 3.2). The main advantage of using a BN over a Chow-
Liu tree is that a BN allows for greater versatility in expressing relationships between the individual bits 
of an output block and provides more granularity when visualizing these dependencies among the bits 
as opposed to subsets of bits. 

4.1 General Concepts 

A BN is a directed acyclic graph (DAG) where each node is a random variable and the edges indicate re
lationships between these variables. These relationships are encoded as conditional probabilities between 
the random variables. To illustrate this, Figure 7 gives an example of a BN for a 10-bit output block 
along with the corresponding adjacency matrix. By summing the variables according to a topological3 

ordering, it can be shown that the approximation to the joint distribution implied by a BN sums to one. 
Note that the procedure described in Section 3.2 provides such an ordering. 

Figure 7: Example of Bayesian Network and Adjacency Matrix 

In Figure 7, b1, b2, ..., b10 are random variables representing the value of each respective bit in a 
given output block. This BN approximates the joint distribution of these bits by 

P (b1) · P (b3) · P (b4) · P (b6|b4) · P (b8|b1) · P (b9|b8) · P (b10|b7) · P (b7|b4, b6) · P (b2|b3, b7) · P (b5|b3, b8). 

According to this model, the variables b1, b3, and b4 are not dependent on any other bits, and therefore 
each has an unconditional probability distribution on the two possible values 0 and 1. Each unconditional 
distribution can be thought of as a 1 × 2 table. On the other hand, b6, b8, b9, and b10 each depend on a 
single bit, and so, have conditional probability distributions, each represented by a 2 × 2 table. Likewise, 
b2, b5, and b7 each depend on two bits, yielding a 4 × 2 table for each of the conditional distributions. 
Figure 8 gives an example of each type of distribution. In general, if a BN implies that a particular bit 
depends on m other bits, then this conditional bit distribution can be represented by a 2m × 2 table, 
since the joint distribution of the m bits has 2m possible values, and there are only two possible values 
for the dependent bit. 

Suppose that a particular BN posits that a bit b is dependent on m bits, c1, c2, ..., cm. Consider 
the scenario where b is actually dependent on a subset consisting of only r of these m bits, such that 
0 ≤ r < m. We relabel the indices of these bits c11 ,c21 , ..., cr1 , along with the remaining bits c(r+1)1 , 
c(r+2)1 , ..., cm1 . We further assume that any random variable within one of the two sets {c11 , c21 , ..., cr1 }
and {c(r+1)1 , c(r+2)1 , ..., cm1 } is independent of all of the variables within the other set. These conditions 
imply (using lax notation) 

P (b, c1, c2, ..., cm) P (b, c11 , c21 , ..., cr1 ) · P (c(r+1)1 , c(r+2)1 , ..., cm1 )
P (b|c1, c2, ..., cm) = = 

P (c1, c2, ..., cm) P (c11 , c21 , ..., cr1 ) · P (c(r+1)1 , c(r+2)1 , ..., cm1 ) 

P (b, c11 , c21 , ..., cr1 ) 
= = P (b|c11 , c21 , ..., cr1 ). 

P (c11 , c21 , ..., cr1 ) 

3A topological ordering is defined such that for a pair of nodes X and Y , X precedes Y in the ordering if and only if there 
is a directed edge from X to Y . For details, refer to [4] (page 36). 
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Figure 8: Examples of Bit Distributions in a Bayesian Network 

This equation states that under the assumed conditions, P (b|c1, c2, ..., cm) = P (b|c11 , c21 , ..., cr1 ). There
fore, the m − r bits that are independent of b and c11 ,c21 , ..., cr1 , do not affect the distribution of b, and 
thus, their edges to b are unnecessary. A fitness function for a genetic algorithm that penalizes BNs 
with such extraneous edges will be discussed in Section 5.2.2. 

4.2 Implementation Details 

The BN object that we define consists simply of its corresponding adjacency matrix (as seen in Figure 
7) as well as its associated score from the fitness function used in the genetic algorithm (described in 
Section 5.2.2). In the first of the following sections, we discuss a technique for efficiently storing the 
BN’s probability tables that significantly improves the speed of generating and scoring each BN. Note 
that this section is not crucial for understanding the primary concepts of this paper, and can therefore 
be skipped. In the second section, we explore how different methods of sampling the output bits can, in 
some cases, enhance the effectiveness of the BN to approximate the joint distribution of these bits. 

4.2.1 Storing Probability Tables in Red-Black Trees 

A straightforward implementation would have a BN object, in addition to its adjacency matrix, include 
each of its probability tables. However, this is (not surprisingly) inefficient when dealing with sufficiently 
large output block sizes, since any probability table common to multiple BNs must be regenerated and 
stored for each of these BNs. A simple solution is to store each probability table as an entry in a global 
binary search tree. The downside to a standard binary search tree is that it may become increasingly 
unbalanced, resulting in search time that is closer to O(M) rather than O(log2 M), where M is the 
number of probability tables in the tree. We therefore choose to implement a red-black tree, which has 
the property that no path from the root to a leaf is more than twice as long as any other path from the 
root to a leaf. This is achieved by imposing a suitable red-black coloring of each node when building 
the tree. This type of tree maintains a search time of O(log2 M). For a rigorous discussion of red-black 
trees, refer to [3] (Chapter 13). 

Our implementation utilizes two red-black trees, denoted as Tc and Tg, each storing the same set of 
pointers4 to previously generated probability tables. In Tc, the pointers are ordered according to the 
variables involved in the respective probability table, and in Tg, they are ordered by the most recent 
generation in which a BN with this table was created (refer to the discussion of genetic algorithms in 
Section 5). Ties in Tg are decided by the ordering used in Tc. We point out that the ordering used in Tc 

can be achieved by noticing that each column of the BN’s adjacency matrix corresponds to a probability 
distribution and also specifies the variables involved. For example, the 7th column of the adjacency 
matrix in Figure 7 implies that b7 is dependent on b4 and b6, resulting in the probability table displayed 
in Figure 8. This column (transposed) is [7 0 0 0 1 0 1 0 0 0 0], where the column number is prepended 
to the column in order to differentiate columns that are identical. We can therefore index a probability 
table in Tc by its corresponding column in the adjacency matrix and order the columns lexicographically 

4In order to save memory, we use pointers, which avoids duplication of probability tables across the two trees. 
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(e.g., [7 0 0 0 1 0 1 0 0 0 0] > [2 0 0 1 0 0 0 1 0 0 0]). An example of these two orderings used for both Tc 

and Tg , across three generations, is provided in Figure 9. Note that a repeated column entry is updated 
with the most recent generation in which the corresponding BN occurs. 

Figure 9: Binary Search Tree Ordered By Column Index (Left) and Generation (Right) 

The purpose of Tc is to maintain a shared space in memory where each BN object can access 
probability tables that have already been created. However, too many such tables might be stored 
at a time and will need to be aged off. Tg allows us to efficiently identify the “eldest” (i.e., smallest 
generation) tables and remove them from both trees, as these tables are the least recently used. The 
frequency at which these tables are removed depends on the memory constraints for a given platform. 
Therefore, assuming that recurring tables are not frequently recreated and removed, most of the tables 
only need to be built once, and as the genetic algorithm converges, fewer new tables need to be built. 
Although we do not have a proof about the rate of convergence, in practice we have seen a considerable 
increase in the performance of the program as the generations progress. 

The use of binary search trees also allows us to efficiently compute the likelihood5 of observing a set of 
n-bit output blocks given a BN that models the n bits of each block as the random variables b1, b2, ..., bn. 
We denote this BN as a model M . Suppose there are N such output blocks, labeled B1, B2, ..., BN , with 
Bi consisting of the bits Bi,1, Bi,2, ..., Bi,n. Then the probability of observing this set of output blocks 

N
given M is provided by the likelihood function L(M : {B1, B2, ..., BN }) = P (Bi|M). In order i=1 
to determine P (Bi|M), we notate the probability distribution, posited by M , of a bit bj as PSj ,bj , 
where Sj is the set consisting of the bits that influence bj . Note that bj is unconditionally distributed 
if Sj = ∅. We define SBi to be the values of each random variable in Sj corresponding to Bi. Thenj
 

n

P (Bi|M) = j=1 PSj ,bj (Bi,j |SBi ), and so, j 

N nNN 
L(M : {B1, B2, ..., BN }) = PSj ,bj (Bi,j |SBi ).j 

i=1 j=1 

Alternatively, we can compute this likelihood by interchanging these products as 

n NNN 
L(M : {B1, B2, ..., BN }) = PSj ,bj (Bi,j |SBi ).j 

j=1 i=1 

5Note that computing the likelihood of the data for a particular model is required to evaluate the fitness function described 
in Section 5.2.2 (refer to Chapter 17 of [4] for an in-depth discussion of the likelihood function). 
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 This allows us to calculate the likelihood of observing the output blocks by independently determin-
N

ing the likelihood of each bj . Since we can easily compute πj = PSj ,bj (Bi,j |SBi ) when building i=1 j 
each probability table, we simply store this value in the binary search tree as well. Given a BN, we 
then compute the likelihood by retrieving each probability table in the search tree and multiplying the 
corresponding πj ’s. 

4.2.2 Relationship Between Bit Positions and Bayesian Network Structure 

Up to this point we have assumed a straightforward correspondence between the n bit positions of each 
observed sample value and the n nodes in a BN model of the data. However, there is flexibility in the 
interpretation of bit positions as nodes in a BN structure that can increase the utility of the method 
described in this paper. In particular, we can define the set of bit positions in the sample data in a way 
that reflects the extent of the dependence structure potentially existing in the data. For example, if it 
is believed that the n-bit sample values are independent of each other, but we want to identify possible 
dependencies among the bit positions in each n-bit block, then the straightforward approach would be 
to search for the BN that best describes the dependency relationship among the n bit positions. 

In some cases, a data sequence may consist of individually generated bits and therefore have no 
“natural” block size (other than 1). Suppose such a data sample has the property that a certain 
dependence structure applies to combinations of bits in regularly spaced positions. As an example, the 
bit position sets {1, 8, 11}, {51, 58, 61}, {101, 108, 111}, etc., could each be explained by a dependence 
where the bit in the third position in each set is exactly determined by the bits in the first two positions 
of that set with probability 0.6. There are several ways to handle this data that would allow us to identify 
this dependency. We could simply interpret the data as non-overlapping 50-bit blocks. However, if we 
have hints about the approximate locations and extent of the dependencies, we could choose a smaller 
block size and specify a corresponding skip distance. Depending on the values chosen, this allows us 
to omit any regions not of interest in our analysis. In this example we could incorporate the known 
relationship between the three bits in each set and also search for other nearby dependencies by choosing 
a block size of, say 20, and a skip distance of 50. This approach is illustrated in Figure 10. Note that 
this reinterpretation of block size (possibly in conjunction with a skip distance) can be performed even 
if the data sample does have an apparent block size. The point is that we are free to define a block in 
many different ways, resulting in the ability to extend the search for dependence outside the constraints 
of the formatting of the data. 

Figure 10: Block-Size Interpretation 

4.3 Estimating Min-Entropy 

Neither the Viterbi algorithm, nor its extension (described in Section 3.2), are sufficient to compute the 
min-entropy implied by a general BN. Instead, we use the max-product variable elimination algorithm, 
which can be considered a generalization of the Viterbi algorithm. This method works by choosing one of 
the random bit variables bi and computing the corresponding max-marginalization factor resulting from 
the elimination of bi. This process is then repeated for each remaining bit. We give a brief description 
of this algorithm, and adopt the notation used in Section 13.2 of [4], where a more elaborate description 
is provided. 

In order to compute the max-marginalization factor resulting from the elimination of a variable b, 
the following steps are performed. 
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1. Each probability distribution specified by the BN is converted into a factor, denoted as φ, which 
(for our purpose) can be thought of as “unrolling” a conditional probability table into a one-
dimensional list. For instance, given the conditional distribution P (b|c1, c2, ..., cm), represented 
by a 2m × 2 table, φ(cm, cm−1, ..., c1, b) is a list consisting of these 2m+1 conditional probabilities, 
corresponding to all the possible combinations of the values of cm, cm−1, ..., c1, b. Note that any 
ordering of the bits can be chosen for the factor. 

2. The product of factors, ψ, that includes all of the bits that have a common dependence with b, is 
computed by “multiplying” all of the factors that have b in common. 

3. The max-marginalization factor τ , obtained by eliminating b, is constructed by taking the maximum 
entry when b = 0 and b = 1 for each combination of variables in ψ. This incorporates into τ the 
maximum probability that b contributes to the BN. 

An example of creating a max-marginalization factor by eliminating a bit b is shown in Figure 11. In this 
diagram, φα(c2, c2, b) is the factor derived from P (b|c1, c2). Supposing that φα and another factor φβ are 
the only two factors that have b in common, ψ(c2, c1, b) is constructed by multiplying the probabilities 
of the matching values of the bits between these factors. The max-marginalization factor τ (c2, c1) is 
created by taking the maximum of the probabilities in each pair of rows where the values of c1 and c2 

are the same. 

Figure 11: Process of Generating a Max-Marginalization Factor 

Once the factors used to construct ψ are incorporated into τ , they are no longer needed. This process 
is repeated by selecting one of the remaining bits and computing its max-marginalization factor using 
the remaining factors along with τ . The max-marginalization factor of the last remaining bit is the max-
marginal. The maximium probability entry of this max-marginal is the maximum probability of the 
joint bit distribution implied by the BN, labeled pmax. The min-entropy is therefore − log2(pmax). Note 
that if a BN consists of multiple components, the cumulative min-entropy is the sum of the min-entropy 
indicated by each component. Although the max-product variable elimination algorithm succeeds for 
any bit-ordering, some orderings are more computationally intensive than others. However, determining 
an optimal elimination ordering is in general an NP-hard problem (Section 9.4.3 of [4]). We simply use 
a topological ordering as described in Section 3.2. 

Figure 12 provides an example of the steps performed in the max-product algorithm for a BN with 
the four bits b1, b2, b3, b4. Using the ordering b1, b3, b4, b2, we begin by eliminating b1. Since φ1(b3, b2, b1) 
is the only factor that contains b1, the product ψ1(b3, b2, b1) is equal to this factor. The resulting max-
marginalization factor τ1(b3, b2) replaces φ1(b3, b2, b1). The next variable to eliminate is b3. The only 
factors that include b3 are τ1(b3, b2) and φ3(b4, b2, b3), and so ψ3(b4, b2, b3) is equal to the product of 
these factors. Once τ3(b4, b2) is created by eliminating b3 in ψ3, it is multiplied by φ4(b4), resulting in 
ψ4(b4, b2), since these are the only factors that contain b4. After τ4(b2) is computed by eliminating b4, b2 

is the only remaining bit. The product of the last remaining factors φ2(b2) and τ4(b2) forms ψ2(b2) (i.e., 
the max-marginal). The two entries in ψ2(b2) correspond to the probability of the most likely values of 
b1, b3, and b4 when b2 = 0 and b2 = 1, respectively. Therefore, pmax is the largest entry of ψ2(b2). 
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Figure 12: Max-Product With Bit Ordering b1, b3, b4, b2 

5 Genetic Algorithms 

The previous section laid the groundwork for using a Bayesian network (BN) to represent the dependence 
relationships among the bit positions in the data blocks produced by the noise source. We now address 
the problem of finding the particular BN that best models the sample data. In general, this is is an 
NP-hard problem (see [4], Theorem 18.5), so it will not be possible to deterministically find the optimal 
BN for practical problems. What is needed, therefore, is a heuristic technique for exploring the space of 
possible solutions that has a good chance of finding a nearly optimal BN. The approach we will use is 
known as a genetic algorithm (GA). 

5.1 General Concepts 

A GA is a technique for finding a set of parameter values that maximize or minimize a given function. The 
approach taken is to mimic biological adaptation of traits to a species’ environment by forming an initial 
population of candidate solutions, then forming successive generations of new candidate solutions. Each 
new generation is created from the previous generation through a combination of replicating a certain 
number of best-scoring candidates (elitist selection), creating new candidates by combining features from 
pairs of candidates (crossover), and introducing small random changes in a few candidates (mutation). 
The intent is for the average fitness score for the candidate solutions in a generation (based on the 
function being optimized) to increase with subsequent generations, until a nearly optimal candidate 
solution is found. Section 5.2 presents a more detailed description of each of the components required 
to perform a GA for our specific application. We provide a summary of these components here. 

1. In order to use a GA to explore the space of possible candidate solutions and converge toward an 
optimal solution, we need a way to encode candidate solutions. For each candidate solution, this 
encoding scheme gives a representation of the parameter values that distinguish that particular 
candidate solution. This encoding scheme must be capable of representing the full range of potential 
solutions, and must be structured in a way that facilitates the crossover and mutation operations 
described below. 

2. A fitness function is required to quantify the progress of the GA toward an optimal solution. This 
function assigns to each candidate solution a numerical indication of its quality as a solution to the 
optimization problem. It provides the basis for comparing the fitness of multiple candidates, which 
allows the prioritization of higher-fitness candidate solutions in the selection process described 
below. For many applications, the fitness function is simply the function to be optimized. In other 
applications, the fitness function must be augmented with additional components to account for 
other necessary factors. This is the case for our application. 

3. In order to encourage the development of “beneficial” traits in subsequent generations of candidate 
solutions, a GA can use the process of crossover. In biological reproduction, an offspring (typically) 
is a combination of features of two parents. A GA can mimic this process using the concept of 
crossover, giving the GA a way to form new candidate solutions that combine features of current 
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candidate solutions. The intended benefit of crossover can be explained as follows. Combining pairs 
of candidates to form new candidate solutions results in the traits of the individual candidates being 
mixed in various ways. Whenever each candidate in a pair includes a portion of a beneficial trait 
(which might not be beneficial on its own), the offspring of that pair can potentially include the full 
beneficial trait. The selection process used to form subsequent generations will reward this trait 
with ongoing reproductive success, leading to the spread of this trait (which may be a component 
of the optimal solution) throughout the population. Thus, in order to produce improved candidate 
solutions, the GA explores various combinations of traits included in the previous generation. 

4. A GA can also cause slight random changes in a small proportion of candidate solutions in each 
generation as an additional way of introducing novel traits into a population. These mutations 
provide extra variability in the population as the GA combines and assesses candidate solutions. 
Since each mutation is random, it may or may not contribute to the formation of new beneficial 
traits, and may in fact either increase or decrease the fitness level for the offspring candidates that 
experience the mutation. 

5. As the GA forms each subsequent generation, it uses a selection process to prioritize the choice 
of candidate solutions for crossover from the current generation according to their fitness. The 
selection process may also be designed to directly copy one or more candidates from the cur
rent generation to the new generation. This selection process is probabilistic, assigning a higher 
probability of selection to better-fit candidates. This results in better-fit candidates having more 
reproductive success than worse-fit candidates, which encourages the spread of beneficial traits 
(characteristics of better-fit candidate solutions) throughout the population, and the elimination 
of harmful traits (characteristics that worsen the fitness score) from the population. However, 
the probabilistic nature of the selection function occasionally allows worse-fit candidates to be 
selected for crossover or copying, which is useful when an offspring candidate includes a portion 
of a poorer-fitting trait combined with another trait from a different candidate to form a more 
beneficial trait. 

A candidate solution encoding, as well as the crossover and mutation operations are illustrated in Figure 
13, while Figure 14 displays the formation of successive populations using these operations. 

Figure 13: Genetic Algorithm Operations 
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Figure 14: Formation of Successive Genetic Algorithm Generations 

5.2 Implementation Details 

In the following sections, we provide additional detail on the major GA components that are used in 
our implementation. Although there are many design decisions that can be made, our instantiation of 
these components has proven quite successful in practice. 

5.2.1 Encoding of Candidate Solutions 

There is a very simple way to encode a candidate BN for use in a GA. Given the definition of a BN in 
Section 4.1, we can simply represent a BN describing the dependencies in a sequence of n-bit blocks as 
an n × n adjacency matrix, in which the entry in row i and column j is a one if bj (the bit in position 
j) is dependent on bit bi (the bit in position i), and zero otherwise. For example, Figure 7 shows a BN 
representing the dependence relationships for a 10-bit block-size data sample, and the corresponding 
adjacency matrix. 

For each of the nodes in the BN, we also require the probability distribution for the corresponding 
value at a given bit position be computed from the observed n-bit values. Note that this distribution 
is conditional or unconditional depending on whether or not any edges point to that node. These 
probability distributions are discussed in Section 4.1 and illustrated in Figure 8. This encoding of a BN 
as a candidate solution allows straightforward implementations of crossover and mutation as described 
below. 

5.2.2 Fitness function 

For our application, the goal is to find the “best” BN describing the dependence structure among the bit 
positions in a sample data set, although it is not immediately clear what is meant by “best” candidate. 
In general, a good statistical model that describes a given set of observed data is one for which the 
likelihood function, the probability of the data sample given the model, is high. Intuitively then, we 
might suspect that since we should search for the BN that maximizes this function, the fitness function 
should simply be the likelihood function. The probability of each observed n-bit value is the product 
of the appropriate probabilities indicated by the BN, and the overall likelihood is the product of these 
probabilities for all n-bit sample values.6 An efficient method for computing the likelihood is described 
in Section 4.2.1. 

There is a problem with this approach, however, as alluded to at the end of Section 4.1. Suppose 
that bit position j is not dependent on bit position i, and that a candidate BN reflects this fact by 
having a zero in position (i, j) of its adjacency matrix. Suppose this zero is replaced with a one, thereby 
allowing the BN to account for this possible dependency, even though this dependency is not present in 
the sample data. There is no influence from bi on the resulting conditional probability distribution for bj , 

6In practice, we replace multiplication of these probabilities with summing of the logarithms of the probabilities in order 
to avoid dealing with extremely small numbers. 
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so the likelihood for this candidate will not be significantly changed by this modification. However, since 
the crossover and mutation operations described below may result in several replacements of zeroes with 
ones (many of which may be unwarranted) in the candidates as the GA proceeds, and there is no penalty 
in terms of a decrease in the likelihood for these changes, the population of candidates soon consists 
of adjacency matrices filled with ones. Although the optimal BN is contained within this “solution,” 
this is of course an unhelpful answer to our optimization problem. What is needed is a way to penalize 
hypothesized dependencies (ones in the adjacency matrices) that merely add complexity to the model 
without significantly increasing the model’s explanatory power. 

We address this problem by choosing a fitness function that takes model complexity into account. 
Specifically, we use the Bayes Information Criterion (BIC) as our fitness function ([4], Section 18.3.5).7 

The BIC is defined as −2 log(L) + k log(N), where L is the likelihood of the sample data given the BN, 
N is the sample size (the number of n-bit sample values), and k is the number of free parameters in 
the BN model. Since we prefer a high likelihood value and low complexity, a lower BIC is preferable 
to a higher BIC. For a BN, the model parameters consist of the tables of conditional or unconditional 
probabilities indicating the distribution of the n bits in the graph. The value of k can be computed as 

n 
j=1 2

kj , where kj is the number of bits that bj is dependent on according to that BN. This can be seen 
by noting that for each combination of values for the bits that bj is dependent on, the model requires 
one free parameter – the probability that bj is a zero given that particular combination of values. On 
the other hand, the conditional probability that bj is a one is determined by the probability that bj is a 
zero, and is therefore not a free parameter. 

The effect of using the BIC as our fitness function is that the GA is forced to balance the goals of 
increasing the likelihood and avoiding unnecessary model complexity. For models of equal complexity, 
we prefer the model with the highest likelihood. For models having equal likelihoods, we prefer the 
model with the lowest complexity. In general, decreased explanatory power can be compensated by a 
sufficient decrease in complexity, and increased complexity can be compensated by a sufficient increase 
in explanatory power. 

5.2.3 Crossover 

Our implementation performs crossover on a pair of candidate solutions in a straightforward way. Since 
each candidate BN is represented by a n × n adjacency matrix, we simply choose a crossover point at 
random. We then form the first (second) child candidate by joining the portion of the first (second) 
parent’s adjacency matrix lying above the crossover point with the portion of the second (first) parent’s 
adjacency matrix lying below the crossover point. This is illustrated in Figure 15. 

Figure 15: Example of Crossover 

7An observation regarding why we do not use min-entropy as a fitness function is in order. We believe it is the case that as 
a model incorporates additional dependencies present in the sample data, the average work required by the optimum guessing 
attack for that model decreases. However, this does not hold in general for min-entropy. We suspect this is due to the fact 
that min-entropy is an approximation of the logarithm of this average work (refer to Appendix D of [1]). In fact, we have 
observed occasional increases in min-entropy within the overall downward trend when using this GA approach. We therefore 
conclude that min-entropy is not an appropriate choice for our fitness function. 
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Note that it is possible for this method of crossover to result in an adjacency matrix containing 
cycles, which cannot exist in a valid BN. For example, the first part of the first parent could specify that 
node i influences node j, and the second part of the second parent could specify that node j influences 
node i. Since each of the offspring candidate solutions resulting from crossover must be a valid BN, we 
remove these cycles. To accomplish this, our implementation uses a method that recursively traverses 
the edges of the graph and randomly selects an edge to remove from each cycle found. It is important 
to note that the cycle removal process must not introduce bias into the resulting offspring. For example, 
suppose that when we locate a cycle, we always remove an outward edge from the lowest-numbered node 
included in the cycle. This would favor the removal of edges from lower-numbered nodes, thereby giving 
the GA a preference for certain regions of the search space at the expense of other regions. 

5.2.4 Mutation 

In our implementation, a mutation consists of a slight change in the candidate’s adjacency matrix. Even 
though a mutation causes only a small change in the visual appearance of the graph associated with the 
BN, it can potentially lead to a significant increase or decrease in the fitness value. Our implementation 
uses the following five types of mutations: 

• Add a new edge from node i to node j. 

• Delete an existing edge from node i to node j. 

• Reverse an existing edge from node i to node j, making it an edge from node j to node i. 

• Change the destination of an existing edge from node j to node j ' . 

• Change the origin of an existing edge from node i to node i ' . 

These types of mutations are illustrated in Figure 16. Reference [4] (Section 18.4.3.1) suggests the 
first three of these mutation types as “operators” connecting BNs that are “neighbors” of a given BN, 
as a way of establishing a local search space for optimization. The additional mutation types can occur 
as a combination of the first two mutations, but we include them as separate mutation types in order to 
allow the possibility of somewhat larger changes in a candidate solution. Note that with the exception 
of an edge deletion, a mutation can result in a cycle being formed. We therefore use the cycle removal 
procedure described for crossover. 

Figure 16: Types of Mutations in a Bayesian Network Adjacency Matrix 

5.2.5 Selection 

Selection is the process of choosing candidate solutions from the current population to influence the 
next generation in a way that favors better-fit candidates while still occasionally choosing worse-fit 
candidates. This process encourages the spread of beneficial traits throughout the population. Note 
that various selection methods exist. One method, called roulette wheel selection, chooses a candidate 
with probability proportional to the candidate’s fitness score. That is, candidate i is selected with 
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probability  Si

Sj 
, where Si is the fitness score for this candidate and M is the number of candidates 

=1 

in the population. This method is not particularly useful in two types of situations. The first situation 
is where a small number of candidates have fitness values that are much higher than those of the other 
candidates. In such cases, roulette wheel selection gives too much priority to the better-fit candidates 
and rarely selects any of the others. The second situation is the case in our application, where the 
fitness scores (BIC values) tend to be fairly close to each other, which makes the selection probabilities 
essentially a uniform distribution and leaves the selection process having little preference among the 
candidates. We use an alternative selection method, known as rank selection. This method selects each 
candidate with probability proportional to its ranking when the fitness scores are sorted in descending 
order. That is, if the fitness scores are sorted and relabeled so that SM ≥ SM−1 ≥ ... ≥ S1, then 

M
j

candidate i is selected with probability i 2i 
=1 

M
j

= . 
j M(M+1) 

Prior to using the selection process, our implemementation directly copies the best-fit candidate 
solution from the current generation to the new generation. This is known as elitist selection and is 
performed in order to ensure that the best-fit candidate in each generation is at least as good as the besti a 

Mfit candidate in the previous generation. We then select pairs of candidates to perform crossover (as 2 
displayed in Figure 15), producing M −1 offspring candidate solutions for the next generation. Note that 
we make no attempt to prevent candidate solutions from being selected more than once for crossover. 

5.2.6 General Outline 

When designing a GA, several options are available, even after deciding on the details of the components 
described in Sections 5.2.1 - 5.2.5. Our GA implementation is essentially as described in [5] (page 251). 
The following pseudocode gives the general structure of our implementation. 

Input sample data
 
Input GA parameters (population size, mutation probability, number of generations)
 

Do for each member of initial population: 
Generate random adjacency matrix 
Remove cycles 
Compute all probability distributions needed 
Compute fitness function (BIC) 

End Do 

Do until maximum generation count or fitness threshold reached: 
Copy best-fit candidate solution into new generation 
Do until new population is filled: 

Select pair of candidate solutions using rank selection 
Produce two offspring candidate solutions using crossover 

For each of the two offspring: 
If Random number in range [0, 1] <= specified mutation probability, 

Generate one of the random mutation types (1-5) 
Apply mutation to offspring 

End If 

Remove cycles in offspring 
Compute all probability distributions implied by offspring 
Compute fitness function (BIC) for offspring 

End For 
End Do 

Replace current generation with new generation 
End Do 

After the GA has completed for the specified number of generations, there may still be extraneous 
edges that have not been pruned from the most-fit candidate. We check for such edges by removing each 
edge, one at a time, from this solution and recomputing the BIC to determine if the fitness score has 
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improved. If this score has not improved, the removed edge is restored. We consider the resulting solution 
to be the “best-fit” candidate returned by the program. This candidate solution is then saved to a file, 
which gives us the option to restart the program with the best-fit candidate in the initial generation. 
This allows us to continue searching for better-fit candidates based on the previous best-fit solution, and 
also serves as a “meteorite” effect, meaning that since the initial population is randomly generated, the 
best-fit candidate now has the chance to crossover and mutate within a brand-new population. 

6 An Example 

We now illustrate the operation of our implementation of this technique with the following example. 
Suppose a noise source produces a sequence of 32-bit outputs, where the portions in bit positions 4-8, 
11-15, 18-22, and 25-29 each follow a biased joint distribution on five bits, while the remaining twelve 
bits are independent and unbiased. This is illustrated in Figure 17. 

Figure 17: Sample Noise Source Data Dependence Structure 

We generate 15,000 32-bit sample outputs from this distribution. Given the specific probability 
distribution governing the four five-bit segments, we were able to determine that the true min-entropy 
for the 32-bit blocks is 17.2877. We ran our min-entropy estimation program on this sample data using 
the following parameter values: 

• Block size: 32 

• Population size: 100 (number of candidates in each generation) 

• Number of generations: 5000 

• Skip distance: 32 (data blocks will be interpreted as non-overlapping) 

• Mutation probability: 0.1 (probability that a given candidate experiences a mutation) 

• Edge probability: 0.1 (probability that a pair of nodes in initial population is connected) 

For this example, the program converges to a good approximation to the unknown joint distribution 
on 32-bit blocks within a few hundred generations. The accuracy of the approximation to the joint 
distribution is attested to by the fact that the estimated min-entropy per 32-bit block is 17.0506, which 
is very close to the true min-entropy. Figures 18 - 22 show the progress made by the GA as it explores the 
solution space and converges toward an optimal BN. The GA process has effectively explored the space of 
possible joint probability distributions on 232 32-bit blocks and converged on a reasonable approximation 
to the true joint distribution. Note that in the best BN in the final generation, the program has found 
different graphical representations of the dependencies among the four sets of dependent bits, even though 
these four sets of bits follow the same joint distribution. This is not surprising, since the program has no 
way of knowing that these underlying joint distributions are the same, and there will in general be many 
reasonable approximations to this joint distribution. It is interesting to observe the effect of our fitness 
function as subsequent generations are produced. Because this function addresses both likelihood and 
model complexity, we see the gradual elimination of unhelpful edges and the inclusion of edges useful to 
a good model of the data. 
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Figure 18: Best-scoring Candidate Solution in Initial Generation 

Figure 19: Best-scoring Candidate Solution After 100 Generations 
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Figure 20: Best-scoring Candidate Solution After 250 Generations 

Figure 21: Best-scoring Candidate Solution After 375 Generations 
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Figure 22: Best-scoring Candidate Solution After Final Generation (With Edge Pruning) 
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7 Future Work 

There are several aspects of our approach that could be examined for possible improvements. Three 
noteworthy areas to consider are the implementation of the GA, the storage technique used for the 
adjacency matrices, and the computation of the probability of the most likely output bit sequence given 
a BN. 

As discussed in Section 5.2, there are several choices regarding the implementation of a GA. The 
process of forming each new generation could be modified to make greater use of elitist selection to 
directly copy other candidates in addition to the best-scoring one. We could also consider a broader 
class of mutation types, giving the potential for more significant changes in a candidate. For example, 
this could include mutations that affect a larger number of edges. Further investigation of the effect of 
particular parameter values – various mutation rates, density of the adjacency matrices for the initial 
generation, and population size – may lead to more reliable convergence toward an optimal solution. 

We currently use a two-dimensional array to store each of the adjacency matrices. Since in many 
real-world applications we do not expect many dependencies to exist, most of the adjacency matrices 
will be sparse. A more efficient implementation would utilize a sparse matrix structure. This would 
potentially be a significant benefit in the case of large block sizes. 

We currently use the max-product variant of the variable elimination algorithm (explained in Section 
4.3) to compute the probability of the most likely output block predicted by the BN. However, identifying 
the optimal variable ordering for this algorithm is an NP-hard problem. We use a straightforward 
topological ordering, with the understanding that we may forego an optimal ordering. This can result 
in the inability to complete this algorithm when estimating min-entropy, although the algorithm might 
have completed successfully using a different ordering. An alternative approach would be to investigate 
the effects of the belief propagation method for estimating min-entropy. 

References 

[1]	 Meltem Sonmez Turan, Elaine Barker, John Kelsey, Kerry A. McKay, Mary L. Baish, and Mike 
Boyle. Recommendation for the Entropy Sources Used for Random Bit Generation, Second DRAFT, 
NIST Special Publication 800-90B, January 2016. 

[2]	 C.K. Chow and C.N. Liu. Approximating Discrete Probability Distributions with Dependence Trees, 
IEEE Transactions on Information Theory, Vol. IT-14, No. 3, May 1968. 

[3]	 Thomas Corman, Charles Leiserson, Ronald Rivest, Clifford Stein. Indroduction to Algorithms, 
Third Ed., 2009. 

[4] Daphne Koller and Nir Friedman. Probabilistic Graphical Models: Principles and Techniques, The 
MIT Press, 2009. 

[5]	 Tom M. Mitchell. Machine Learning, McGraw-Hill, 1997. 

[6]	 Sheldon M. Ross. Introduction to Probability Models, 9th Edition, Academic Press, 2007. 

22
 


	Structure Bookmarks
	Figure 11: Process of Generating a Max-Marginalization Factor 
	Figure 12: Max-Product With Bit Ordering b1,b3,b4,b2 
	Figure 13: Genetic Algorithm Operations 
	Figure 14: Formation of Successive Genetic Algorithm Generations 
	Figure 15: Example of Crossover 
	Figure 16: Types of Mutations in a Bayesian Network Adjacency Matrix 
	Figure 18: Best-scoring Candidate Solution in Initial Generation 
	Figure 19: Best-scoring Candidate Solution After 100 Generations 
	Figure 20: Best-scoring Candidate Solution After 250 Generations 
	Figure 21: Best-scoring Candidate Solution After 375 Generations 
	Figure 22: Best-scoring Candidate Solution After Final Generation (With Edge Pruning) 


