SP 800-90C: Random Bit Generator Constructions

Elaine Barker NIST May 2, 2016

Purpose of 800-90C:

- To construct RBGs from approved entropy sources (see SP 800-90B) and DRBG mechanisms (see SP 800-90A)
 - DRBGs (a.k.a. pseudorandom number generators)
 - NRBGs (a.k.a. true random number generators)
- To specify health and validation testing requirements

Assumptions (see Section 4.2):

- Each entropy source output has a fixed length and a fixed amount of entropy
- Entropy source outputs from the same source or multiple independent sources can be concatenated and the entropy added
- Entropy sources can provide indications of successes and failures
- Entropy source output can be conditioned to reduce bias or condense into a shorter bitstring
- Vetted conditioning functions can provide full-entropy output if entopy_in ≥ 2 × min(narrowest_internal_width, output_length);
 - Note: for the vetted conditioning functions, narrowest_internal_width = output_length
- SP 800-90A DRBG mechanisms meet their security claims (e.g., claimed security strengths)

Definitions

- Backtracking Resistance: Knowledge of the state at time
 T cannot be used to determine states prior to time T
- Prediction Resistance: The insertion of fresh entropy at time T disallows determining the state at time T and T+i when any state prior to time T is known

Definitions (contd.)

- Secure channel: A data path that ensures confidentiality, integrity, replay protection and mutual authentication
- Full entropy: Every bit of a bitstring has one bit of entropy; entropy_in ≥ 2n, where n is the size of the output

RBG Concepts:

• Single and distributed boundaries (conceptual)

RBG within
A Single
Cryptomodule:

Cryptographic Module Boundary

Distributed RBG over Multiple Cryptomodules

Concepts (contd.):

- Randomness source
 - Entropy source, RBG (DRBG or NRBG) or chain of RBGs
- Live Entropy Source: available when needed
- External conditioning on entropy-source output using vetted functions
- Prediction resistance: obtain fresh entropy from an entropy source (using a reseed capability)
- (Enhanced) NRBG (i.e., DRBG mechanism provided as a fallback)

DRBG Randomness Sources:

- Randomness source only <u>required</u> for instantiation
- Live entropy source allows prediction resistance
- Reseed from any randomness source

DRBG Chain:

DRBG Chain

Which Randomness Sources?

	Purpose				
Randomness Source	Provide NRBG output	Instantiate Target DRBG	Reseed Target DRBG	Provide prediction resistance from Target DRBG	
Entropy Source	Yes	Yes	Yes	Yes	
NRBG*	1	Yes	Yes	Yes	
DRBG (live entropy source available)		Yes	Yes	Yes	
DRBG (NO live entropy source available)		Yes	Yes	No	

^{*} Includes an entropy source

DRBG Capabilities, Given the Availability of a Randomness Source:

Randomness Source Availability	Live Entropy Source?	Comments
When required	Yes	The randomness source is an entropy source, an NRBG, or a source DRBG with access to a Live Entropy Source. A DRBG can be instantiated, generate bits, be reseeded, and provide prediction resistance.
When required	No	The randomness source is a source DRBG with no access to a Live Entropy Source. A DRBG can be instantiated, generate bits, and be reseeded, but cannot provide prediction resistance.
During instant. only	No	The randomness source is an entropy source, an NRBG, or a source DRBG with or without access to a Live Entropy Source. A DRBG can be instantiated and generate bits, but cannot be reseeded or provide prediction resistance.

NRBGs:

- Two constructions: XOR and Oversampling
- Live Entropy Source always required and used
- Approved DRBG mechanism required for the (enhanced) NRBG
 - Instantiated at the highest security strength possible
 - Fallback if an undetected entropy source failure
 - DRBG can be accessed directly (same or different instantiation)
- Provides full-entropy output
- Backtracking and prediction resistance always provided

NRBGs: XOR Construction

- Requires full entropy (on the left side of the figure)
- External conditioning required if entropy source does not provide full entropy output (i.e., not optional in this case)

NRBGs: Oversampling Construction

- Entropy source need not provide full entropy output
- External conditioning can reduce entropy source bias, shorten entropy source output or provide full entropy, if desired

Additional Constructions:

- Get_entropy_input specifications to access randomness sources:
 - Using a DRBG (with and without a prediction resistance capability)
 - Using an NRBG
 - Using an entropy source
 - ✓ The Get_Entropy call (i.e., interface with the entropy source capability); includes condensing constructions
 - ✓ With and without external conditioning
- Obtain full-entropy output from a DRBG with prediction resistance

Other Stuff:

- Combining RBGs: At least one must be approved
- Health testing
 - At startup and on-demand (entropy sources also have continuous tests)
 - Test whatever components are available
 - Enter an error state when an error is reported
 - ✓ Notify the consuming application
 - Consuming application then responsible for handling the error (e.g., request user guidance or prevent further RBG requests)

Other stuff (contd.):

- Implementation Validation
 - Validate 90A and 90B components
 - Validate 90C constructions (e.g., conditioning functions)
 - Documentation requirements (e.g., DRBG or NRBG, features supported, if the RBG is distributed)
- Examples:
 - XOR-NRBG
 - Oversampling NRBG
 - DRBG without a Randomness Source (after instantiation)
 - DRBG with a Live Entropy Source

SP 800-90C Availability

- SP 800-90C available for public comment at http://csrc.nist.gov/publications/PubsDrafts.html#SP-800-90-C.
- Comments requested by June 13, 2016.
- Send comments to rbg_comments@nist.gov, with "Comments on Draft SP 800-90C" on the subject line.

Questions?

• Note that further RBG discussions will be held at the end of the workshop on Tuesday.