IID Testing in SP 800 90B

Meltem Sonmez Turan meltem.turan@nist.gov Random Bit Generation Workshop 2016 National Institute of Standards and Technology

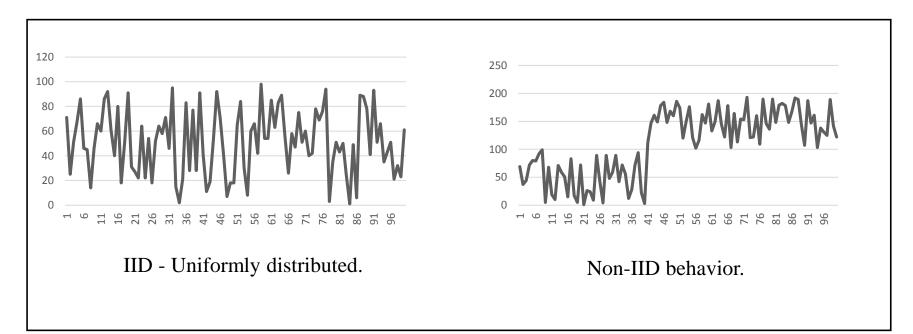
What is the IID Assumption?

Critical assumption in statistics, machine learning theory, entropy estimation, etc.

In probability theory, a collection of random variables is independent and identically distributed (IID or *i.i.d.*), if

- each sample has the same probability distribution as every other sample, and
- all samples are mutually independent.

Examples: dice rolls, coin flips



Why is IID testing important for SP 800-90B?

SP 800-90B has two tracks for entropy estimation:

- *IID track:* If the noise source is IID, the entropy is estimated using the *most common value* estimate.
- *Non-IID track:* If the noise source is not IID, the entropy estimation is more complex. We use ten estimators.

Determining the track:

The track is IID only if *all* of the conditions are satisfied;

- 1. The following datasets are tested, and the IID assumption is verified
 - Sequential dataset
 - Row and column datasets
 - *Conditioned sequential dataset* (if a non-vetted conditioning component is used).
- 2. IID claim by the submitter

IID Testing

Input: The sequence $S = (s_1, ..., s_L)$ where $s_i \in A = \{x_1, ..., x_k\}$ and $L \ge 1,000,000$.

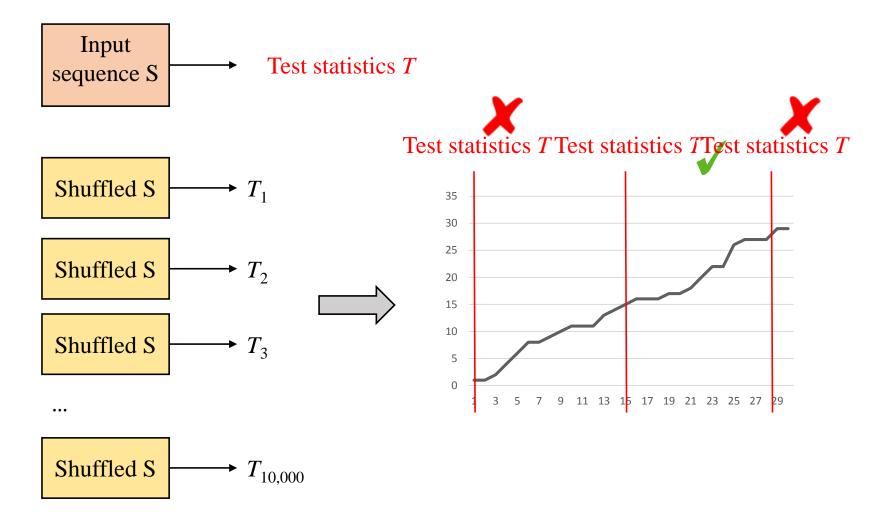
Output: Decision regarding the IID assumption: *The samples are not IID* OR *There is no evidence that data is not IID*.

Two types of tests:

- 1. *Permutation testing (shuffling tests):* based on test statistics with unknown distributions.
- 2. Chi-square tests: based on test statistics with approximated distributions.

If the hypothesis is rejected by any of the tests, the values in *S* are assumed to be non-IID.

Permutation Testing



Permutation Testing

Input: $S = (s_1, \dots, s_L)$

Output: Decision on the IID assumption

Assign the counters C_0 and C_1 to zero.

Calculate the test statistic T on S: denote the result as t.

For *j* = 1 to 10,000

• Permute *S* using the Fisher-Yates shuffle algorithm.

• Cal
• If (*t*)
• If (*t*)
• Output: Shuffled
$$S = (s_1, ..., s_L)$$

• If $((C_0 + noise s \in I), i = L$

- 2. While $(i \ge 1)$
 - a. Generate a random integer *j* that is uniformly distributed between 0 and *i*.
 - b. Swap s_j and s_i

i = i - 1

Test statistics for Permutation Testing

Eleven test statistics:

- 1. Excursion
- 2. Number of directional runs
- 3. Length of directional runs
- 4. Number of increases and decreases
- 5. Number of runs based on the median
- 6. Length of runs based on median
- 7. Average collision
- 8. Maximum collision
- 9. Periodicity (5 parameters)
- 10. Covariance (5 parameters)
- 11. Compression

Binary vs. non-binary samples

The number of distinct sample values, (size of *A*), significantly affects the distribution of the test statistics.

Two conversions for binary data:

• *Conversion I* partitions the sequences into 8-bit non-overlapping blocks, and counts the number of ones in each block.

S = (1,0,0,0,1,1,1,0,1,1,0,1,1,0,0,1,1) becomes (4, 6, 2).

• *Conversion II* partitions the sequences into 8-bit non-overlapping blocks, and calculates the integer value of each block.

S = (1,0,0,0,1,1,1,0,1,1,0,1,1,0,0,1,1) becomes (142, 219, 48).

1. Excursion Test Statistics

Based on how far the running sum of sample values deviates from its average at each point in the dataset.

Pseudocode:

1. Find
$$\bar{X} = (s_1 + s_2 + ... + s_L) / L$$
.

2. For
$$i = 1$$
 to *L*, find

$$d_i = |\sum_{j=1}^i s_j - i \times \overline{X}|.$$

3.
$$T = \max(d_1, ..., d_L)$$
.

Example:

```
Let S = (2, 15, 4, 10, 9).
```

The average
$$= 8$$
.

$$\begin{aligned} d_1 &= |2-8| = 6\\ d_2 &= |(2+15) - (2\times8)| = 1\\ d_3 &= |(2+15+4) - (3\times8)| = 3\\ d_4 &= |(2+15+4+10) - (4\times8)| = 1\\ d_5 &= |(2+15+4+10+9) - (5\times8)| = 0 \end{aligned}$$

$$T = \max(6, 1, 3, 1, 0) = 6.$$

2. Number of Directional Runs

Based on the number of runs constructed using the relations between consecutive samples.

Pseudocode:

1. Construct $S' = (s'_1, ..., s'_{L-1})$, where

$$s'_{i} = \begin{cases} -1, & \text{if } s_{i} > s_{i+1} \\ +1, & \text{if } s_{i} \le s_{i+1} \end{cases}$$

for *i* = 1, ..., *L*–1.
2. *T* = # runs in *S*'. *Binary data:* Apply Conversion *I*.

Example:

```
Let S = (2, 2, 2, 5, 7, 7, 9, 3, 1, 4, 4);
S' = (+1, +1, +1, +1, +1, -1, -1, +1, +1).
```

There are three runs:

```
(+1, +1, +1, +1, +1, +1), (-1, -1) and
(+1, +1).
T = 3.
```

3. Length of Directional Runs

Based on the length of the longest run constructed using the relations between consecutive samples.

Pseudocode:

1. Construct $S' = (s'_1, ..., s'_{L-1})$, where $s'_i = \begin{cases} -1, & \text{if } s_i > s_{i+1} \\ +1, & \text{if } s_i \le s_{i+1} \end{cases}$

for *i* =1, ..., *L*-1.

T = length of the longest run in S'.
 Binary data: Apply Conversion I.

Example:

Let
$$S = (2, 2, 2, 5, 7, 7, 9, 3, 1, 4, 4)$$
.
 $S' = (+1, +1, +1, +1, +1, -1, -1, +1, +1)$.

There are three runs:

Longest run has length T = 6.

4. Number of Increases and Decreases

Based on the maximum number of increases or decreases between consecutive sample values.

Pseudocode:

1. Construct $S' = (s'_1, ..., s'_{L-1})$, where $s'_i = \begin{cases} -1, & \text{if } s_i > s_{i+1} \\ +1, & \text{if } s_i \le s_{i+1} \end{cases}$

for *i* = 1, ..., *L*-1.

2. $T = \max$ (number of -1's in S', number of +1's in S').

Binary data: Apply Conversion I.

Example:

```
Let S = (2, 2, 2, 5, 7, 7, 9, 3, 1, 4, 4).
S'= (+1, +1, +1, +1, +1, -1, -1, +1, +1).
```

There are eight +1's and two -1's in S',

$$T = \max(8, 2) = 8.$$

5. Number of Runs Based on the Median

Based on the number of runs that are constructed with respect to the median of the input data.

Pseudocode:

- 1. Find the median \tilde{X} of *S*.
- 2. Construct $S' = (s'_1, \dots, s'_L)$ where

$$s'_{i} = \begin{cases} -1, & \text{if } s_{i} < \tilde{X} \\ +1, & \text{if } s_{i} \ge \tilde{X} \end{cases}$$

for i = 1, ..., L. 3. T = # runs in S'. *Binary data:* The median is assumed to be 0.5.

Example:

```
Let S = (5, 15, 12, 1, 13, 9, 4).
```

```
The median is 9.
```

```
S' = (-1, +1, +1, -1, +1, +1, -1).
```

There are five runs: (-1), (+1, +1), (-1), (+1, +1), and (-1).

T = 5

6. Length of Runs Based on Median

Based on the length of the longest run that is constructed with respect to the median of the input data.

Pseudocode:

1. Find the median \tilde{X} of $S = (s_1, ..., s_L)$.

2.Construct
$$S' = (s'_1, \dots, s'_L)$$

 $s'_i = \begin{cases} -1, & \text{if } s_i < \tilde{X} \\ +1, & \text{if } s_i \ge \tilde{X} \end{cases}$

for i = 1, ..., L.

3. T =length of the longest run S'.

Binary data: The median of the input data is assumed to be 0.5.

Example:

Let *S* = (5, 15, 12, 1, 13, 9, 4).

The median is 9.

S' = (-1, +1, +1, -1, +1, +1, -1).

Runs: (-1), (+1, +1), (-1), (+1, +1), and (-1).

The length of longest run is 2; T = 2.

7. Average Collision Test Statistics

Based on the number of successive sample values until a duplicate is found.

Pseudocode:

- 1. *C* is an empty list. i = 1.
- 2. While *i* < *L*,

Find the smallest *j* such that $(s_i, ..., s_{i+j-1})$ contains two identical values. If no such *j* exists, break.

Add *j* to the list *C*.

i = i + j + 1

3. T = average of all values in C.

Binary data: Apply Conversion II.

Example:

Let S = (2, 1, 1, 2, 0, 1, 0, 1, 1, 2).

The first collision occurs for j = 3. Add 3 to *C*.

In remaining sequence (2, 0, 1, 0, 1, 1, 2), next collision occurs for j = 4. Add 4 to *C*.

The third sequence is (1,1,2), and j = 2.

C = [3,4,2]. The average is 3, T = 3.

8. Maximum Collision Test Statistics

Based on the number of successive sample values until a duplicate is found.

Pseudocode:

- 1. *C* is an empty list. i = 1
- 3. While i < L

Find the smallest *j* such that $(s_i, ..., s_{i+i-1})$ contains two identical values.

If no such *j* exists, break.

Add *j* to the list *C*.

i = i + j + 1

4. *T* = the maximum value in the list *C*.*Binary data:* Apply Conversion II.

Example:

Let S= (2, 1, 1, 2, 0, 1, 0, 1, 1, 2).

C = [3,4,2] is computed as in previous example.

 $T = \max(3, 4, 2) = 4$

9. Periodicity Test Statistics

Based on the periodic relations in the data. The test takes a lag parameter p as input.

The test is repeated for five different values of p: 1, 2, 8, 16, and 32.

Example:

```
Let S = (2, 1, 2, 1, 0, 1, 0, 1, 1, 2), and
let p = 2.
Since s_i = s_{i+p} for five values of i (1, 2,
4, 5 and 6)
T = 5
```

Pseudocode:

- 1. Initialize *T* to zero.
- 2. For i = 1 to L p

If $(s_i = s_{i+p})$, increment *T* by one.

Binary data: Apply Conversion I.

10. Covariance Test Statistics

Based on the strength of the lagged correlation.

Pseudocode:

- 1. Initialize *T* to zero.
- 2. For i = 1 to L p

 $T=T+(s_i \times s_{i+p})$

Handling Binary data: Apply Conversion I.

The test is repeated for five values of p: 1, 2, 8, 16, and 32.

Previous version:

$$T=T+(s_i - \mu)(s_{i-1} - \mu)$$
, where $\mu =$ mean.

Example:

Let S = (5, 2, 6, 10, 12, 3, 1).

Let *p* = 2.

T is calculated as $(5 \times 6) + (2 \times 10) + (6 \times 12) + (10 \times 3) + (12 \times 1) = 164.$

11. Compression Test Statistics

Based on the size of the data subset after the samples are encoded into a character string and processed by a general-purpose compression

Pseudocode:

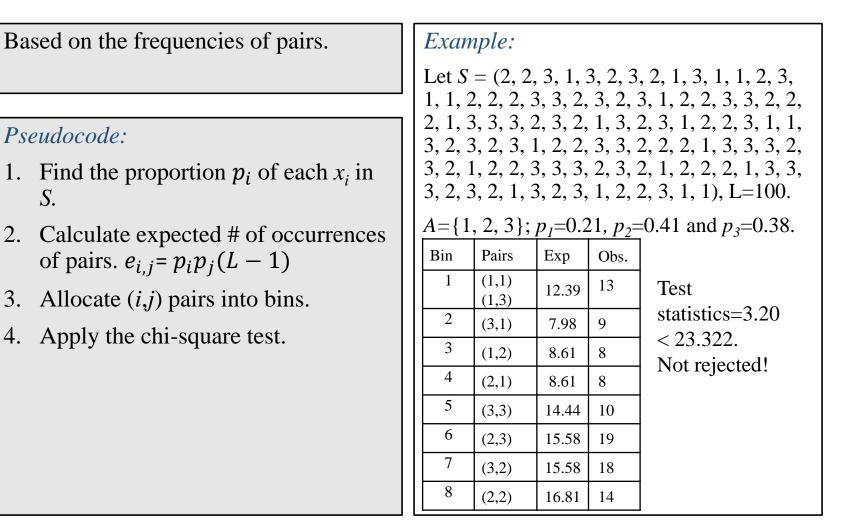
1. Encode the input data as a character string containing a list of values separated by a single space, e.g., "S = (144, 21, 139, 0, 0, 15)" becomes "144 21 139 0 0 15".

- 2. Compress the character string with the bzip2 compression algorithm.
- 3. T =length of the compressed string, in bytes.

Additional Chi-Square Statistical Tests

- 1. Testing independence for non-binary data
- 2. Testing goodness-of-fit for non-binary data
- 3. Testing independence for binary data
- 4. Testing goodness-of-fit for binary data
- 5. Length of the Longest Repeated Substring (LRS) Test

Testing independence for non-binary data



Testing goodness-of-fit for non-binary data

Based on the frequencies of samples in different parts of the input.

Pseudocode:

- 1. $c_i = \# \text{ of } x_i \text{ in } S. e_i = c_i/10.$
- 2. Construct a chi-square table based on expected values, starting from smallest.
- 3. Partition the input sequence into 10 non-overlapping parts and apply the chi-square test with 9 (#bins 1).

Example:

Let $A = \{1, 2, 3\}$, and let $c_1 = 43$, $c_2 = 55$, $c_3 = 52$, $c_4 = 10$.

$$e_1 = 4.3, e_2 = 5.5, e_3 = 5.2, e_4 = 1.$$

30 bins,

Bin	Pairs	Exp	Obs.	
1	1,4	5.3	7	
2	2	5.5	7	5
3	3	5.2	1	S
4	1,4	5.3	5	2 I
5	2	5.5	3	1
6	3	5.2	8	
30	3	5.2	2	

Test statistics=37.08 < 42.312. Not rejected!

Testing independence for binary data

Based on the independence between adjacent bits.

Pseudocode:

- 1. p_0, p_1 :proportion of zeroes and ones.
- 2. For each $P=(a_1, a_2, ..., a_m)$,

o = # of occurrences P in S.

e = expected number of P in S, based on p_0, p_1 .

$$T=T+\frac{(o-e)^2}{e}.$$

Example:

Bin	Pairs	Exp	Obs.
1	(0,0)	9.32	5
2	(0,1)	7.12	8
3	(1,0)	7.12	8
4	(1,1)	5.44	8

Test statistics=3.42 < 11.345 Not rejected!

Testing goodness-of-fit for binary data

Based on the distribution of ones throughout the sequence.

Pseudocode:

- *1. p* :proportion of ones.
- 2. Partition S into 10 non-overlapping subsequences S_i . For each S_i

$$o = #$$
 of ones in S_i .

e

. . .

$$e = p \left\lfloor \frac{L}{10} \right\rfloor.$$
$$T = T + \frac{(o - e)^2}{10}$$

1,1,0,0,1,1). p = 0.58.

> Test statistics=3.03 < 21.666 Not rejected!

Bin	Exp	Obs.
1	5.8	7
2	5.8	7
3	5.8	3
4	5.8	6
5	5.8	6
6	5.8	4
7	5.8	5
8	5.8	7
9	5.8	6
10	5.8	7

Length of the Longest Repeated Substring Test

Based on the length of the longest repeated substring (*W*).

Pseudocode:

- 1. Collision pr. $p_{col} = \sum p_i^2$
- 2. Let *E* be a Binomially distr. r.v.

with parameters $N = \begin{pmatrix} L - W + 1 \\ 2 \end{pmatrix}$ and $(p_{col})^{W}$.

3. If Pr $(E \ge 1) = 1 - Pr (E = 0) = 1 - (1 - p_{col})^N$ is less than 0.001, the test fails.

Example: Let S = (1,1,0,1,0,1,0,1,0,0,0,0**1,0,0,1,1,0,1**,0,1,0,1,1,0,1,0,1,0,1,1,1,0, 0,1,**1,0,0,1,0,0,0,1,0,1,1,0,0,1,1,0,1**,1,0, 1,1,0,0,1,1). W = 17Collision probability = $0.42^2 + 0.58^2 =$ 0.5128 $N=3486, p_{col}^{W}=0.000012.$ Pr $(E \ge 1) = 1 - (1 - p_{col}^{W})^N = 0.04.$

0.04 > 0.001 ! Not rejected!

Summary

- The shuffling tests were restructured; we call them permutation testing. More extensive and requires more time.
- Removed some of the tests that were not very effective (variant of directional runs and collision tests)
- Added new Periodicity test with five parameters.
- Added new parameters to the covariance test.