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Emerging crypto technologies

- lightweight crypto

- lighter versions of legacy protocols

- tinyDTLS, lightweight DTLS

- post-quantum cryptography

New crypto is cool but have we solved

all known problems with conventional 

crypto? 

A perspective: cryptography 

evolves very fast to provide 

security in cyberspace 



• In modern cryptography the 

algorithms are well-known

• Security depends largely 

on the secrecy of the keys

• Cryptographic keys must be 

(nearly) impossible to guess 

• Key generation and key 

management govern the 

strength and security of keys 

• Key generation is strongly 

dependent on entropy 

Courtesy of XKCD



The big question

Where are the keys coming from? 



Real World Examples 2013
• Factoring RSA keys from certified smart cards 

(Coppersmith in the wild), 

• Bernstein, Chang, Cheng, Chou, Heninger, Lange, van Someren

Problem: Low-quality hardware RNG, stuck in a short cycle:  

• 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 

1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 

0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 

0 0 1 etc.

Likely reasons for using this weak design: cost of high-quality 

hardware, the cost of licensing patents
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Real World Examples 2012
• Mining Your Ps and Qs: Detection of Widespread Weak Keys in 

Network Devices (Heninger, Durumeric, Wustrow, Halderman) 

Scanned 28 Mil TLS and 23 Mil SSH hosts on the Internet

• - 0.75% of TLS certificates share keys 

- due to insufficient entropy during key generation

- another 1.70% come from same faulty implementations 

• - able to obtain RSA private keys for 0.50% of TLS hosts and 

0.03% of SSH hosts

• - public keys shared nontrivial common factors due to entropy problems

• - able to obtain DSA private keys for 1.03% of SSH hosts    

- due to insufficient signature randomness 6



Real World Examples 2016
• The Linux kernel dissected - four sources of kernel entropy:

• • Device

• • Input

• • Interrupt

• • Disk

• “minimal” (no GUI) 

• Ubuntu Server 

• v14.04.3 64-bit w/ 

• Kernel v4.2.3 7

Strong demand for entropy 

through /dev/urandom

(non-blocking)



Testing randomness is hard

• Using a finite set of statistical tests on data samples can lead to 

misleading results

–

EXAMPLE: expand a well-known irrational number, e.g. π, and test the output 

bit sequence for randomness. Chances are, it will be reported as random.

Using the statistical test approach makes it hard to automate the 

estimation of entropy

– automation is critically important for the new CMVP NIST 
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Our approach

• How about delivering high-entropy random data from a provably 

good source to needy clients?

• Public service providing high-entropy random data for use in 

cryptography - Entropy as a Service (EaaS)

– - delivers entropy securely (no one can see) upon request from clients

– - clients seed DRBG’s after mixing EaaS random data with local random data

– - clients use the DRBG output to generate local keys independently from EaaS
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High-Quality entropy from a provably good source



Our solution is

• NOT a key generation service

– - cryptographic keys are generated locally on the client using DRBG’s

– - clients DRBG’s are seeded with random data resulting from mixing several  

independent sources, including local random data

– - even if an attacker gains full control of one server, he/she will have no 

possibility of gaining meaningful insights into the clients’ keys

• NOT similar to the NIST beacon 

– - EaaS does NOT record any incoming or outgoing record

– - EaaS does NOT record any internally generated  random data
10



Our solution is
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A protocol sketch
Client                                                                                               EaaS

HTTP GET 

(w/ own public key and the number of requested random bytes) 

•

• <response>

• <entropy>

• encrypted base64-encoded random blob

• </entropy>

• <timestamp></timestamp>

• <dsig></dsig>

• </response>
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Potential attacks and defenses
• Attacks mitigated by protocol features and provisioning

– - Message replay

– - Man-In-The-Middle

– - DNS poisoning
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Potential attacks and defenses
• Attacks mitigated by mixing data from multiple EaaS instances

– - Honest-but-curious EaaS instance

– - Dishonest but non-colluding EaaS instances

– - Dishonest and colluding EaaS instances
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Status and next steps
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Linux Kernel Entropy 

Revisited:

• uses EaaS client to request 

random bits from EaaS server

and seeds the image pool

•  C program, using the 
“RNDADDENTROPY” ioctl to 

add the entropy.



Status and next steps
• See project page at : http://csrc.nist.gov/projects/eaas/

– Functional prototype implemented

• - demonstrated in September at the CIF 2015 in Washington, DC

– Planning to stand-up a publicly accessible NIST EaaS in Q2, 2016

• - publish server and client sample code on GitHub

– - allow people to look, enhance, adopt as they please

–

Conceive a public criteria for reputable EaaS hosts
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http://csrc.nist.gov/projects/eaas/


Questions?


