Entropy as a Service

Unlocking the full potential of cryptography

Apostol Vassilev
Robert Staples

STVM/CSD/NIST

Petiestdrend A Derspective: cryptography
el cVvolves very fast to provide
gewess Ml sccurity in cyberspace

s

Emerging crypto technologies
- lightweight crypto
- lighter versions of legacy protocols
- tinyDTLS, lightweight DTLS
- post-quantum cryptography

New crypto Is cool but have we solved -
all known problems with conventional

crypto? !

ALAIH, DONEMLINI
DONEHLINI, ALA'IH,
ALATH, DONEH LN ,
DONEHLINI, DONEHLINI,
ALAIH, ALAIH,
DONEHLINI ALAIH,
perHan DONEHLIN,

DﬂMEHL]Nl

Courtesy of XKCD

FOR ADDED SECURITY, AFTER
WE ENCRYPT THE DATA STREAM,
WE SEND IT THROUGH OUR
NAVATO COPE TALKER.

\ Nﬂﬂﬂ:rf:r LJGF’_D.H FL R
"ZERG AND "ONE™?

WHOA, HEY, KEEP
YOUR \E ﬂLE COWN!

14

In modern cryptography the
algorithms are well-known

Security depends largely
on the secrecy of the keys

Cryptographic keys must be
(nearly) impossible to guess

Key generation and key
management govern the
strength and security of keys

Key generation Is strongly
dependent on entropy

The big question

Where are the keys coming from?

Real World Examples 2013

Factoring RSA keys from certified smart cards
(Coppersmith in the wild),

Bernstein, Chang, Cheng, Chou, Heninger, Lange, van Someren

Problem: Low-quality hardware RNG, stuck in a short cycle:

00100100100100100100100100100100100100100100100
1001001001001001001001001001200100100100100120010
010010010010010012001001001001002100100100120010012

001 etc.

Likely reasons for using this weak design: cost of high-quality
hardware, the cost of licensing patents

Real World Examples 2012

Mining Your Ps and Qs: Detection of Widespread Weak Keys In
Network Devices (Heninger, Durumeric, Wustrow, Halderman)

Scanned 28 Mil TLS and 23 Mil SSH hosts on the Internet

- 0.75% of TLS certificates share keys

- due to insufficient entropy during key generation
- another 1.70% come from same faulty implementations

- able to obtain RSA private keys for 0.50% of TLS hosts and
0.03% of SSH hosts

- public keys shared nontrivial common factors due to entropy problems

- able to obtain DSA private keys for 1.03% of SSH hosts

- due to insufficient signature randomness 6

Real World Examples 2016

The Linux kernel dissected - four sources of kernel entropy:
e Device fronfrkemelransamfatzop. e

. Input

. Interrupt

- e Strong demand for entropy
o
Dl S k through /dev/urandom

“minimal” (no GUI)
Ubuntu Server
v14.04.3 64-bit w/
Kernel v4.2.3

8 51 94 67 100 103 106 109 112 115 118

Testing randomness is hard

Using a finite set of statistical tests on data samples can lead to
misleading results

EXAMPLE: expand a well-known irrational number, e.g. TT, and test the output
bit sequence for randomness. Chances are, it will be reported as random.

Using the statistical test approach makes it hard to automate the
estimation of entropy

automation is critically important for the new CMVP NIST

Our approach

How about delivering high-entropy random data from a provably
good source to needy clients?

Public service providing high-entropy random data for use In
cryptography - Entropy as a Service (EaaS)

- delivers entropy securely (no one can see) upon request from clients
- clients seed DRBG’s after mixing EaaS random data with local random data
- clients use the DRBG output to generate local keys independently from EaaS

Our solution Is

NOT a key generation service

- cryptographic keys are generated locally on the client using DRBG’s

- clients DRBG’s are seeded with random data resulting from mixing several
Independent sources, including local random data

- even If an attacker gains full control of one server, he/she will have no
possibility of gaining meaningful insights into the clients’ keys

NOT similar to the NIST beacon

- EaaS does NOT record any incoming or outgoing record

- EaaS does NOT record any internally generated random data
10

1oT client w)/
network
capability,

i.e. device on the
loT

seed =
Hash[EaaSy ...
Eaas,, local];
Key =
DRBG (seed)

H/W Root of Trust
chip;

BEST, if available, to

hold a provisioned
key pair.

Otherwise, a
protected memory/
file location may be
used

MNOTE: EaaS,, ..., Eaas, above indicate data from n

different Eaaf serwver instances:

local indicates locally available random data, if any

MNIST
Internet

Entropy as a

| Service
(EaasS)
pProxy

MNIST
- Internet
Time Server

H5M device -

Quantum
! dewviece

i

Rs;) =
Hash[HS M,
rua mtu g

-~

.~ Eaas server

Requester's

public key %'“\‘T

F.AM

ERROR: Halt

Continuous

TrueRBG

health
monitor

(SP 800-90B

tests)

A protocol sketch

Client EaaS

<response>
<entropy>
encrypted base64-encoded random blob
</entropy>
<timestamp></timestamp>
<dsig></dsig>

</response>

12

Potential attacks and defenses

Attacks mitigated by protocol features and provisioning

- Message replay
- Man-In-The-Middle

- DNS poisoning

13

Potential attacks and defenses

Attacks mitigated by mixing data from multiple EaaS instances

- Honest-but-curious EaaS instance

- Dishonest but non-colluding EaaS instances

- Dishonest and colluding EaaS instances

14

Status and next steps

Linux Kernel Entropy
.. Kernel Entropy Pool Size Estimate

e uses EaasS client to request
random bits from EaaS server
and seeds the image pool

* C program, using the
“RNDADDENTROPY> 1ioctl to
add the entropy.

Status and next steps

See project page at .

Functional prototype implemented

- demonstrated in September at the CIF 2015 in Washington, DC

Planning to stand-up a publicly accessible NIST EaaS in Q2, 2016

- publish server and client sample code on GitHub

- allow people to look, enhance, adopt as they please

Conceive a public criteria for reputable EaaS hosts

16

http://csrc.nist.gov/projects/eaas/

Questions?

