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Abstract

We convert a generic class of entropy tests from pass/fail to a measure of entropy.
The conversion enables one to specify a fundamental design criterion: state the number
of outputs from a noise source required to satisfy a security threshold. We define new
entropy measurements based on a three-step strategy: 1) compute a statistic on raw
output of a noise source, 2) define a set of probability distributions based on the
result, and 3) minimize the entropy over the set. We present an efficient algorithm for
solving the minimization problem for a select class of statistics, denoted as “entropic”
statistics; we include several detailed examples of entropic statistics. Advantages of
entropic statistics over previous entropy tests include the ability to rigorously bound
the entropy estimate, a reduced data requirement, and partial entropy credit for sources
lacking full entropy.

1. Good Entropy Sources and Tests

Consider a four-sided die (with faces labeled 1,2,3,4) that is weighted so that the prob-
ability of the value i’s being rolled is pi. If each pi has the value of 1

4
, then we consider the

die a fair die; we have no problem using the fair die as a source of randomness with each roll
producing two bits of randomness. If the values of pi are not equal, then the die is considered
weighted. There are a number of questions about the weighted die’s output that arise.

Question 1.1. Can the weighted die be used as a good source of randomness?

Question 1.2. How many rolls of the die are required to generate n random bits?

Question 1.3. How do the answers to the previous questions differ if the values of pi are
unknown versus if the values of pi are known?

Question 1.4. What complications arise if one considers a die with a large number of sides
versus a die with four sides?

The concept that a source can lack full entropy and nevertheless be an excellent source
of randomness has eluded some designers of random sources. There are suites of statistical
tests that test for full entropy in a source: the source fails the test if the probability is not
uniformly distributed among the possible output states. In particular, the weighted die would
fail the statisical tests. One goal of this paper is to convert the pass/fail tests into a measure
of entropy: the weighted die would receive partial credit as a source of randomness. With
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the proper understanding of the entropy produced by the source one can answer Question
1.2, however the actual generation process is beyond the scope of the paper.

The simple approach to Question 1.2 is to generate enough output to model the pi then
compute the entropy of the modeled distribution. Three complications that often arise with
this approach: the amount of output may be limited, outputs may be dependent, and there
are many notions of entropy. In section 2, we discuss the notions of entropy. When data is
limited, it may be impossible to estimate a probabilty distribution for the data; however, one
may be able to compute a derived value that is used to estimate the entropy of the outputs.
Most of this paper addresses issues related to this computation including:

1. What is the best statistic to compute from a random source?

2. How does one go from a statistic to a measure of randomness?

3. How does one combine multiple statistics to refine an estimate of entropy?

The most difficult complication to address is dependency in outputs—we attempt to address
this difficulty by admitting a simple dependent model of the data and performing analysis
based on this model. It may be impractical or impossible to obtain an accurate model of the
dependence between outputs; thus, we limit our scope of dependence to Markov processes.

2. Rényi Entropy

There are many measures of disorder, or entropy. In [1], Rényi developed a class of
entropy functions parameterized by a value α ∈ [1,∞]:

(2.1) Hα(p) =
1

1− α
log2

(
n∑
i=1

pαi

)
,

where the probability distribution p on n states has the probability of pk for states k =
1, · · · , n. In the limiting case of H∞, or min-entropy, we employ L’Hôpital’s Rule to obtain:

(2.2) H∞(p) = min
i=1,··· ,n

(− log2 pi).

Shannon entropy is a natural member of this class (also employing L’Hôpital’s Rule):

(2.3) H1(p) = −
n∑
i=1

pi log2 pi.

For evaluation purposes, we are interested in min-entropy, H∞ and Shannon entropy, H1.
We associate a cost of guessing the output of a noise source with the entropy of the noise
source. Min-entropy is a metric that measures the difficulty of guessing the easiest to guess
output of noise source. Shannon entropy is a metric that measures the difficulty guessing
a typical output of a noise source. The results in this paper attempt to bound H∞ based
on some data sampling. For iid sources, the lack of dependence simplifies the computations.
When one has dependence, the entropy does not scale linearly with the amount of output. In
the dependent case, one has to look at the entire block of outputs as one state and compute
the entropy over all possible blocks.
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3. Entropic Statistics

In this section we develop the theory on which examples in section 4 are based. Our main
result states criteria that a statistic must satisfy in order to relate a statistical test to an
entropy bound. We assume in this section that the output from the source are iid random
variables; further, we assume that the probability distribution of the output is unknown. In
the iid setting, the notion of entropy rate, or entropy per output, is well defined. Most of
the examples will choose H∞ as the entropy function, but the theory is general enough to
apply to other measures of entropy. It is common for an evaluator of a noise source to have a
sequence of its outputs yet not be able to resolve the probability distribution of the outputs.
While the full distribution is required to compute the entropy, one may be able to state
upper and lower bounds on the entropy with a prescribed degree of certainty by looking at
the data. Explicitly, we desire to bound the entropy rate of an unknown distribution given a
measurement, m, of a real-valued statistic, S, by optimizing over all probability distributions
having expected value equal to the observed measurement, m.

Problem 3.1. Solve the constrained optimization problem:

(3.1) hS(m) = min
p∈PS(m)

H (p) ,

where

(3.2) PS(m) = {p : Ep [S] = m} .

The notation Ep [S] is the expected value of the real-valued statistic S under the probability
distribution p.

To accommodate noisy measurements and confidence intervals, we often perform the
minimization over a superset of PS(m). Furthermore, we desire that hS(m) be monotonic
with respect to m, suggesting the notion of being “entropic.”

Definition 3.2. We say that a real-valued statistic, S, is entropic with respect to the
function H if for every pair of values, m and m′, such that the sets PS(m) and PS(m′) are
non-empty and m′ < m, we have hS(m

′) < hS(m).

We must solve the potentially difficult minimization problem with constraints before the
notion of an entropic statistic is useful. The following theorem allows us effectively to inter-
change the constraints and the function to be optimized under certain criteria, converting a
difficult minimization problem to an easier one (usually by simplifying the constraints).

Theorem 3.1 (Entropic). Let pθ be a one-parameter family of probability distributions on
n states parameterized by θ ∈ [θmin, θmax]. Suppose we have the following properties:

1. Monotonicity. The expected value of the real-valued statistic, S, is differentiable with
respect to the parameter θ and is strictly decreasing. Also, the function H is strictly
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decreasing with respect to the parameter θ. In other words, we have

d

dθ
Epθ [S] < 0,

d

dθ
H (pθ) < 0,

for θ ∈ (θmin, θmax).

2. Convexity. For each θ ∈ [θmin, θmax], the probability distribution pθ maximizes Epθ [S]
over all probability distributions having a fixed value of H(pθ). Explicitly, we have

(3.3) Epθ [S] ≥ Ep [S] ,

for all p such that H(p) = H(pθ).

3. Surjectivity. For every probability distribution p, there exist values θ, θ′ ∈ [θmin, θmax]
such that

H(p) = H(pθ),

Ep [S] = Epθ′
[S] .

By monotonicity the values are unique but not necessarily distinct.

Then the statistic, S, is entropic with respect to the function H. Furthermore, there exists
a unique value of θ ∈ [θmin, θmax], such that the probability distribution pθ minimizes H over
the set of distributions having the same expected value of the statistic.

Proof. Let S be a real-valued statistic and suppose we have a one-parameter family of prob-
ability distributions pθ that satisfies the monotonicity, convexity, and surjectivity properties
with respect to the statistic S and function H.

We first show that there is a value of θ such that pθ minimizes H over all probability
distributions with a fixed expected value of the statistic S. Let G = {p : Ep[S] = m} for a
fixed value of m. By surjectivity, there exists θ ∈ [θmin, θmax] such that

(3.4) Eg[S] = Epθ [S],

for all g ∈ G. Now fix g ∈ G. By surjectivity, there exists a θg ∈ [θmin, θmax] such that

(3.5) H
(
pθg
)

= H(g).

By convexity, we have

(3.6) Epθg
[S] ≥ Eg[S] = Epθ [S].

By monotonicity, we have θg ≤ θ. Also by monotonicity, we have

(3.7) H(g) = H
(
pθg
)
≥ H (pθ) .
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Thus, for each g ∈ G, we have

(3.8) H(g) ≥ H (pθ) .

We now desire to show that S is entropic with respect to H. Let m and m′ be distinct
values such that PS(m) and PS(m′) are non-empty and m′ < m. By the preceding argument,
there exists θ, θ′ ∈ [θmin, θmax] such that

H (pθ) = min
p∈PS(m)

H(p),

H (pθ′) = min
p∈PS(m′)

H(p).

By monotonicity of E [S], we have θ < θ′. Subsequently, the monotonicity of H yields

(3.9) H (pθ′) < H (pθ) .

This completes the proof. �

There are times that one desires an upper bound for the entropy estimate. One method
for finding an upper bound is to replace the entropy function, H, with its negative, show
that the negative of the statistic is entropic with respect to −H and solve Problem 3.1.
Essentially, this is equivalent to solving the following problem:

Problem 3.3. Solve the constrained optimization problem:

(3.10) HS(m) = max
p∈PS(m)

H (p) ,

where

(3.11) PS(m) = {p : Ep [S] = m} .

Solving Problems 3.1 and 3.3 allows us to bound the entropy above and below with one
statistic, suggesting the following definition.

Definition 3.4. Let S be a real-valued statistic that is entropic with respect to a function
H. If −S in entropic with respect to −H, then we say that the S entropically bounds
H.

4. Entropic Examples

In this section, we present examples of statistics and bound entropy measurements based
on the statistics. For each of the statistics presented, we solve Problems 3.1 and 3.3. Before
we present the statistics, we discuss four selection criteria for the statistics.

The paramount criterion is that the statistic should be related to the entropy of the noise
source–entropic statistics. We will apply the tools in the previous section to prove rigorous
entropy bounds.
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data set ABCAACBCABBCABACBCBCA

Collision Blocks ABCA ACBC ABB CABA CBC

Collision Repeat Rate 4 4 3 4 3

Compression Blocks A A..AA...A...A.A.....A

Compression Repeat Rate A 1..31...4...4.2.....6

Compression Blocks B .B....B..BB..B..B.B..

Compression Repeat Rate B .2....5..31..3..3.2..

Compression Blocks C ..C..C.C...C...C.C.C.

Compression Repeat Rate C ..3..3.2...4...4.2.2.

Compression Repeat Rate 123313524314432432226

Partial Collection Blocks ABC AAC BCA BBC ABA CBC BCA

Partial Collection Repeat Rate 0 1 0 1 1 1 0

Partial Collection Distinct Elements 3 2 3 2 2 2 3

Table 1: Example of repeat rate information for collision, compression, partial collection.
The corresponding statistics uses the above repeat rates to bound the entropy of a noise
source.

Secondly, the statistics presented result in a loss of information about the noise source;
however, there should be a computational (in terms of data required) advantage from this
information loss. For example, one may have looser bounds on the entropy, but require less
data to produce these bounds. The presented statistics leverage the birthday paradox to
accommodate smaller data sets.

Thirdly, we desire efficient tests based on the statistics to be easy to implement. To ad-
dress this criterion, we present tests that perform local measurements, requiring less memory
and computation.

Finally, we desire that the collection of entropy estimates produced from the tests be
robust with respect to a larger class of probability distributions (e.g. some non-iid sources).
Assessment of the final criterion is beyond the scope of this paper.

We selected statistics based on the frequency of repeated outputs of the noise source,
since they tend to satisfy the second the third criteria. In each of the next three subsections,
we prove that the first criterion is satisfied by a different choice of statistic. The three
statistics that we present are the collision, the compression, and the partial collection.
The collision statistic measures the repeat rate without distinguishing different states: either
the output is a repeat or it is not. The compression statistic is a weighted average of the
repeat rates of every state. The partial collection statistic is a function of the average repeat
rate of every state in a block of output without distinguishing the states present in a block.
Thus the collision statistic is the most local measurement, the compression statistic is the
most global, and the partial collection is a hybrid of the other two. We will make these
descriptions precise in the subsequent subsections.

In the examples, we again assume iid output of entropy sources; we label the sequence
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of output as {Xi}ti=1. In these examples, the entropy function that we are interested in is
min-entropy, H∞. The one-parameter family for the lower bound is the near-uniform family
defined below.

Definition 4.1. We call the following one-parameter family of probability distributions
parameterized by θ ∈ [0, 1] on n states the near-uniform family:

(4.1) pθ[Z = i] =

{
θ i = i1,
1−θ
n−1

otherwise.

...

i1 i2 i3 i4 i5 in-1 in

Θ

Φ

Figure 1: Probability mass function for the near-uniform family. Here ϕ = 1−θ
n−1

.

In these examples, the one-parameter family for the upper bound is the inverted near-
uniform family:

Definition 4.2. We call the following one parameter family of probability distributions
parameterized by ψ ∈ [0, 1] on n states the inverted near-uniform family:

(4.2) pψ[Z = i] =


ψ i ∈

{
i1, · · · , ib 1

ψc
}
,

1−
⌊

1
ψ

⌋
ψ i = ib 1

ψc+1,

0 otherwise.

4.1. Entropic Example: Collision Statistic

The collision statistic computes the mean time to first collision of a sequence of output.
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g

1

Ψ
w

i
g

1

Ψ
w+1

i
g

1

Ψ
w+2

in

Ψ

Ξ

Figure 2: Probability mass function for the inverted near-uniform family. Here ξ = 1−
⌊

1
ψ

⌋
ψ.

Statistic 4.3 (Collision). Generate a sequence {Xs}ts=1 of iid outputs from the entropy
source. Let us define a sequence of collision times, {Ti}ki=0, as follows: T0 = 0 and

(4.3) Ti = min{j > Ti−1 : There exists m ∈ (Ti−1, j) such that Xj = Xm}.

The collision statistic is the the average of differences of collision times,

(4.4) Sk =
1

k

k∑
i=1

Ti − Ti−1 =
Tk
k
.

Theorem 4.1. The collision statistic is entropic with respect to H∞ with the optimal distri-
bution being a near-uniform distribution.

We decompose the proof of the above theorem into lemmas stating monotonicity, con-
vexity, and surjectivity.

Lemma 4.2 (Collision statistic monotonicity). Let pθ be the near-uniform family on n states
and let Sk be the collision statistic. The expected value of the collision statistic, Epθ(Sk), is
decreasing with respect to the parameter θ for θ ∈ (1/n, 1] :

(4.5)
d

dθ
Epθ [Sk] < 0 for θ ∈

(
1

n
, 1

]
.

Proof. Let p be written as a vector of probabilities (p1, · · · , pn). We explicitly compute the
expected value of the collision statistic Ep(Sk) as follows:

Ep[Sk] =
1

k
Ep[Tk],(4.6)

= Ep[T1],(4.7)
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by independence of the outputs. Since it is easy to compute the probability that a collision
has not occurred at a specified time, we rewrite the expected value of the statistic as follows:

(4.8) Ep[Sk] = Ep[T1] =
n+1∑
i=1

P[T1 > i] =
n+1∑
i=1

Pi,

where

(4.9) Pi = P[no collisions have occurred after i outputs]

Applying the above formula to the near-uniform family with ϕ = 1−θ
n−1

, we have

Pi = i!

((
n− 1

i− 1

)
θϕi−1 +

(
n− 1

i

)
ϕi
)
,(4.10)

= i!

(
n

i

)(
i

n
θϕi−1 +

(
1− i

n

)
ϕi
)
,(4.11)

for i ∈ {0, 1, 2, · · · , n}. Differentiating term by term, we have

d

dθ
Pi =

i!iϕi−2

n(n− 1)

(
n

i

)(
(1− iθ)− n− i

n− 1
(1− θ)

)
,

=
i!iϕi−2

n(n− 1)2

(
n

i

)
(i− 1)(1− nθ).

For each value of i ∈ {0, 1, 2, · · · , n}, the term d
dθ
Pi is negative for θ > 1

n
. This completes

the proof of Lemma 4.2. �

In many cases, we desire to efficiently compute Epθ [S]. The following proposition reduces
the computation to that of an incomplete gamma function, Γ(a, z).

Proposition 4.4 (Computation). Using the above notation, we have

(4.12) Epθ [S] = θϕ−2

(
1 +

1

n

(
θ−1 − ϕ−1

))
F (ϕ)− θϕ−1 1

n

(
θ−1 − ϕ−1

)
,

where

(4.13) F (1/z) = Γ(n+ 1, z)z−n−1ez.
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Proof. We simplify Equation 4.10 as follows:

n∑
i=0

Pi =
n∑
i=0

i!

(
n

i

)(
i

n
θϕi−1 +

(
1− i

n

)
ϕi
)
,

=
n∑
i=0

n!

(n− i)!

(
iθ

n
ϕi−1 +

(
1− i

n

)
ϕi
)
,

=
n∑
s=0

n!

s!

(
(n− s)θ

n
ϕn−s−1 +

(
1− n− s

n

)
ϕn−s

)
,

= n!ϕn
n∑
s=0

1

s!

(
(n− s)θ

ϕn
ϕ−s +

s

n
ϕ−s
)
,

= A0

n∑
s=0

ϕ−s

s!
+ A1

n∑
s=0

sϕ1−s

s!
,

= A0

n∑
s=0

ϕ−s

s!
+ A1

n−1∑
r=0

ϕ−r

r!
,

= (A0 + A1)
n∑
s=0

ϕ−s

s!
− ϕ−n

n!
A1

where

A0 = n!ϕn−1θ,

A1 = n!ϕn−1θ

(
θ−1 − ϕ−1

n

)
.

Using the relation (see [3] §26.4)

(4.14)
Γ(n+ 1, ϕ−1)

Γ(n+ 1)
=

n∑
s=0

e−1/ϕϕ
−s

s!
,

we obtain:

(4.15)
n∑
s=0

ϕ−s

s!
=
ϕ−n−1

n!
F (ϕ).

Then we have

n∑
i=0

Pi = (A0 + A1)
ϕ−n−1

n!
F (ϕ)− ϕ−n

n!
A1,

= θϕ−2

(
1 +

1

n

(
θ−1 − ϕ−1

))
F (ϕ)− θϕ−1 1

n

(
θ−1 − ϕ−1

)
,

as desired. �
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There are many efficient algorithms for computing F (ϕ) including the following continued
fraction (see [3] §6.5.31) :

(4.16) F (1/z) =
1

z +
− n

1 +
1

z +
1− n

1 +
2

z +
2− n

· · ·

.

Lemma 4.3 (H∞ monotonicity). Let pθ be the near-uniform family on n states. The value
of min-entropy, H∞, is decreasing with respect to the parameter θ ∈ (1/n, 1].

Proof. The log2 function is monotonic. This completes the proof. �

Lemma 4.4. Let T denote the first collision time of a sequence of iid outputs from a prob-
ability distribution p on a finite number of states. The value of Ep [T ] is maximized by the
uniform distribution.

Proof. Suppose there are n states in the probability space. Let p be written as a vector
of probabilities (p1, · · · , pn). To show that the uniform distribution maximizes Ep [T ], it is
sufficient to show that

(4.17) Ep′ [T ] ≥ Ep [T ] ,

where

(4.18) p′ = (
1

2
(p1 + p2),

1

2
(p1 + p2), p3, · · · , pn).

Let P[T = t] denote the probability that the first collision occurs at time t; then we have,

(4.19) P[T = t] =
∑
i∈It

t∏
j=1

pij ,

where

(4.20) It =
{
(i1, · · · , it) ∈ {1, 2, · · · , n}t|ij 6= ik∀j 6= k

}
.

Replacing p1 and p2 with their average will affect only the terms in the sum containing p1, p2,
or both. By symmetry, any term containing p1 or p2 but not both has an analog that offsets
the difference, so it suffices to consider what happens for P[T = t] when terms containing
both p1 and p2 in the product are changed. We have

(4.21)

(
p1 + p2

2

)2

− p1p2 =

(
p1 − p2

2

)2

≥ 0.
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Thus, P[T = t] increases. Since

(4.22) E [T ] =
∑
t

tP[T = t],

we have E [T ] also increases. �

Lemma 4.5 (Collision H∞ convexity). Let PH be the set of discrete probability distributions
on n states with min-entropy H:

(4.23) PH = {p : H∞(p) = H} .

The near-uniform distribution, pθ, maximizes the expected collision time over all p ∈ PH .

Proof. Suppose we have a collection of probability distributions, PH , such that each prob-
ability distribution, p ∈ PH , has min-entropy H. Without loss of generality, let pn be the
probability of the most likely state. Since the min-entropy is constant on the set PH , the
value of pn is also constant on the collection PH .

Let ij and ik represent two states distinct from state in. The proof of Lemma 4.4 also
shows that replacing the probabilities of ij and ik with their average value increases the
expected mean collision time. This completes the proof. �

Lemma 4.6 (Collision surjectivity). Let p be a probability distribution on n states. There
exist values θ, ψ ∈ [ 1

n
, 1] such that the near-uniform and inverted near-uniform probability

distributions pθ and pψ satisfy the following:

H∞(p) = H∞(pθ),

Ep [S] = Epψ [S] ,

where S is the collision statistic.

Proof. The functions H∞ and E [S] are continuous with respect to the parameters θ and ψ.
Invoking Lemma 4.4, we have E [S] is maximized when ψ = 1

n
. The choice of θ′ = 1 minimizes

E [S]. By the Intermediate Value Theorem, we have surjectivity of E [S]. Surjectivity of H∞
is trivial. �

Corollary 4.5. Let S be the collision statistic. Then we have −S is entropic with respect
to −H∞ with the inverted near-uniform distribution being optimal.

Proof. Surjectivity follows from the Lemma 4.6. Monotonicity follows from the chain rule
and the calculations in Lemma 4.2:

(4.24)
d

dϕ
Pi =

d

dθ
Pi
dθ

dϕ
= −(n− 1)

d

dθ
Pi.

Convexity follows from the fact that the extrema of the Pi occur on the boundary. �

We combine the above results in a theorem.
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Figure 3: Example of entropy bounds for collision test on four states. The upper bound of
Ep(S) is from the near-uniform distribution. The lower bound of Ep(S) is from the inverted
near-uniform distribution. Sample distributions are also plotted.

Theorem 4.7. Let p be a probability distribution on n states and let S be the collision
statistic. Let us choose θ, ψ ∈ [ 1

n
, 1] such that pθ is a near-uniform distribution with

(4.25) Epθ [S] = Ep [S] ,

and pψ is an inverted near-uniform distribution with

(4.26) Epψ [S] = Ep [S] .

Then we can bound the min-entropy of p above and below:

(4.27) H∞ (pθ) ≤ H∞ (p) ≤ H∞ (pψ) .

4.2. Entropic Example: Compression Statistic

We analyze the Universal Maurer Statistic ([5]) in the entropic setting. This compression
test has two phases: a dictionary creation phase and a computation phase. We show that
the entropic nature applies to both a finite creation and an infinite creation. We now define
the compression statistic of entropy.

Statistic 4.6 (Compression (Maurer)). Generate a sequence {Xs}ts=1 of outputs from the
entropy source. Partition the outputs into two disjoint groups: the dictionary group comprises
the first r outputs and the test group comprises the next k outputs. The compression
statistic, Sr,k, is the average of the following compression values computed over the test
group:

(4.28) Sr,k =
1

k

r+k∑
s=r+1

log2As (Xs) ,
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where

(4.29) As =

{
s if Xs 6= Xu∀0 < u < s,

s−max {u < s : Xs = Xu} otherwise.

Theorem 4.8. The compression statistic is entropic with respect to H∞ with the near-
uniform distribution being the optimal distribution.

Proof. We will substitute the function ζ(x) for log2(x) for generality. When computing the
expected value of the compression statistic, Epθ [Sr,k], we decompose the computation into
times that a collision had been detected:

Ep [Sr,k] =
1

k

r+k∑
s=r+1

E[ζ(As(Xs))],(4.30)

=
1

k

r+k∑
s=r+1

(
s∑

u=1

ζ(u)P[As = u]

)
,(4.31)

=
1

k

r+k∑
s=r+1

(
s∑

u=1

ζ(u)
∑
i

P[As = u ∩Xs = i]

)
,(4.32)

=
1

k

∑
i

(
r+k∑
s=r+1

s∑
u=1

ζ(u)P[As = u ∩Xs = i]

)
,(4.33)

=
∑
i

G(pi),(4.34)

where

(4.35) G(pi) =
1

k

r+k∑
s=r+1

s∑
u=1

ζ(u)P[As = u ∩Xs = i],

and

(4.36) P[As = u ∩Xs = i] =

{
p2
i (1− pi)

u−1 if u < s,

pi(1− pi)
s−1 if u = s.

Applying the above formula to the near-uniform distribution on n states we have

(4.37) Epθ [Sr,k] = G(θ) + (n− 1)G(ϕ),

where ϕ = 1−θ
n−1

.

Monotonicity: To show monotonicity, we desire to show

(4.38)
d

dθ
Epθ [Sr,k] < 0,
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for θ ∈
(

1
n
, 1
)
. Differentiating term by term, we have

d

dθ
Epθ [S] = G′(θ) + (n− 1)G′(ϕ)

dϕ

dθ
,(4.39)

= G′(θ)−G′(ϕ).(4.40)

Treating G as a function on [0, 1], we can write G(x) in powers of (1− x):

(4.41) G(x) =
1

k

r+k∑
s=r+1

(
s+1∑
u=0

gu(1− x)u

)
,

where

(4.42) gu =


ζ(1) if u = 0,

ζ(2)− 2ζ(1) if u = 1,

ζ(u+ 1)− 2ζ(u) + ζ(u− 1) if u ∈ {2, · · · , s− 1},
ζ(u− 1)− ζ(u) if u = s.

Differentiating term by term, we have

(4.43) G′′(x) =
1

k

r+k∑
s=r+1

(
s+1∑
u=2

u(u− 1)gu(1− x)u−2

)
.

To show G′′(x) < 0, we can impose some restrictions on ζ so that the terms in the expansion
of G′′(x) are negative. If ζ is concave down and increasing (as log2 is), then gu < 0 for
u = 2, · · · , s. Thus we have,

(4.44) G′′(x) < 0,

for x ∈ (0, 1) and

(4.45) G′(θ)−G′(ϕ) < 0,

as desired. Since ζ = log2 is concave down, increasing, and positive, we have completed the
proof of monotonicity.

Convexity: Convexity follows directly from Equation 4.44.

Surjectivity: Surjectivity follows from convexity and the extremal nature of the near-
uniform distribution.

Applying the Entropy Theorem (Theorem 3.1), we have the desired result. This completes
the proof. �

Corollary 4.7. Suppose we replace the log2 function in the compression statistic with the
function ζ to define a new statistic S. If ζ is concave down, increasing, and positive then we
have the statistic S is entropic with respect to H∞ with the near-uniform distribution being
the optimal distribution.
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Corollary 4.8. Suppose we replace the log2 function in the compression statistic with the
function ζ to define a new statistic Sr,k. If ζ is such that

(4.46)
1

k

r+k∑
s=r+1

(
s+1∑
u=2

u(u− 1)gu(1− x)u−2

)
< 0,

for x ∈ [0, 1] and where gu is defined in terms of ζ in Equation 4.42, then we have the
statistic Sr,k is entropic with respect to H∞ with the near-uniform distribution being the
optimal distribution.

Corollary 4.9. Suppose one computes the dictionary over a sliding window of length τ :

(4.47) As =

{
τ if Xs 6= Xu∀s− τ < u < s,

τ −max {u : s− τ < u < s,Xs = Xu} otherwise.

The statistic using the new definition of As is entropic with respect to H∞.

Corollary 4.10. The negative of the compression statistic is entropic with respect to −H∞,
with the inverted near-uniform distribution being the optimal distribution.

We combine the above results in a theorem.

Theorem 4.9. Let p be a probability distribution on n states and let Sr,k be the compression
statistic. Let us choose θ and ψ such that pθ is a near-uniform distribution with

(4.48) Epθ [Sr,k] = Ep [Sr,k] ,

and pψ is an inverted near-uniform distribution with

(4.49) Epψ [Sr,k] = Ep [Sr,k] .

Then we can bound the min-entropy of p above and below:

(4.50) H∞ (pθ) ≤ H∞ (p) ≤ H∞ (pψ) .

4.3. Entropic Example: Partial Collection Statistic

The partial collection statistic computes the expected number of distinct values observed
in a fixed number of outputs.

Statistic 4.11 (Partial Collection). Generate a sequence {Xs}ts=1 of iid outputs from the
entropy source. Let us partition the output sequence into non-overlapping sets of length
k ∈ N. Let Ai denote the number of distinct values in the ith set. The partial collection
statistic, S, is the average of the number of distinct outputs, Ai:

(4.51) S =
1⌊
t
k

⌋ b tkc∑
i=1

Ai.
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Figure 4: Example of entropy bounds for compression test on four states. The upper bound
of Ep(S) is from the near-uniform distribution. The lower bound of Ep(S) is from the
inverted near-uniform distribution. Sample distributions are also plotted.

Theorem 4.10. Let p be a probability distribution on n states and let S be the partial collec-
tion statistic. Then there exist values of θ and ψ such that pθ is a near-uniform distribution
with

(4.52) Epθ [S] = Ep [S] ,

and pψ is an inverted near-uniform distribution with

(4.53) Epψ [S] = Ep [S] .

Furthermore, we can bound the min-entropy of p above and below:

(4.54) H∞ (pθ) ≤ H∞ (p) ≤ H∞ (pψ) .

Proof. We first compute the expected value of the partial collection statistic by computing
the probability that the jth state is in the partial collection and summing:

(4.55) Ep [S] =
∑
j

1− (1− pj)
k,

where k is the length of each non-overlapping set. For the optimal distributions we have

Epθ [S] = 1− (1− θ)k + (n− 1)
(
1− (1− ϕ)k

)
,(4.56)

Epψ [S] =

⌊
1

ψ

⌋ (
1− (1− ψ)k

)
+ 1− (1− ξ)k,(4.57)

where ϕ = 1−θ
n−1

and ξ = 1 −
⌊

1
ψ

⌋
ψ. Monotonicity, convexity, and surjectivity follow from

direct computation. �
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4.4. Entropic Example: Rényi Entropy

In this section, we apply the above technique to bound min-entropy based on a measure
of a Rényi entropy. We present a theorem that strengthens a classical result of ordering
Rényi entropies for a specified probability distribution (i.e. H∞ ≤ Hα if α ≥ 1) by giving
a formula for the optimizing distribution. This construction yields explicit bounds on the
min-entropy given other Rényi entropy measurements.

Theorem 4.11. Let p be a probability distribution on n states and let α ∈ [1,∞]. Choose
θ, ψ ∈ [ 1

n
, 1] such that the near-uniform and inverted near-uniform distributions, pθ, pψ,

satisfy the following:

(4.58) Hα(pθ) = Hα(pψ) = Hα(p).

Then we have,

(4.59) H∞(pθ) ≤ H∞(p) ≤ H∞(pψ).

Proof. We model the proof on the proof of Theorem 3.1, replacing expected value of the
statistic with the value of the Hα. One may rigorously obtain the same result as a limit-
ing process of expected values of a family of statistics; however, the proof of Theorem 3.1
generalizes to function evaluations.

Previously, we have shown monotonicity and surjectivity of H∞. We now desire to show
monotonicity of Hα. Let pθ be a near-uniform probability distribution; then we have for
α 6= 1 and α 6= ∞,

(4.60) Hα(pθ) =
1

1− α
log2

(
θα + (n− 1)

(
1− θ

n− 1

)α)
.

Differentiating with respect to θ, we have

(4.61)
d

dθ
Hα(pθ) =

α (θα−1 − ϕα−1)

(1− α) ln 2 (θα + (n− 1)ϕα)
,

where ϕ = 1−θ
n−1

. For θ ∈
(

1
n
, 1
]
, the numerator is positive and the denominator is negative,

proving monotonicity of Hα(pθ). In the limiting cases (α ∈ {1,∞}), the result also holds:

d

dθ
H1(pθ) = − d

dθ
(θ log2 θ + (n− 1)ϕ log2 ϕ) ,

=
−1

ln 2
(ln θ + 1− lnϕ− 1) ,

= − log2

(
θ

ϕ

)
.

Now we desire to show convexity. Assume that p = (p1, p2, · · · , pn) where pk ≤ pn for
k = 1, · · · , n. Replacing two probabilities with their average, we obtain a new probability
distribution p′ = (p1+p2

2
, p1+p2

2
, p3, · · · , pn). It is sufficent to show

(4.62) Hα(p) ≤ Hα(p
′).
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Taking the difference, we have

(4.63)
1

1− α

(
log2

(
pα1 + pα2 +

n∑
k=3

pnk

)
− log2

(
2

(
p1 + p2

2

)α
+

n∑
k=3

pnk

))
.

Since the log2 is monotonic, it suffices to show

(4.64) pα1 + pα2 − 2

(
p1 + p2

2

)α
≤ 0,

with equality iff p1 = p2, which holds by convexity of f(x) = xα for α > 1. Explicitly
computing the limiting case, we have

(4.65) H1(p)−H1(p
′) = p1 log2 p1 + p2 log2 p2 − (p1 + p2) log2

(
p1 + p2

2

)
.

By convexity of f(x) = x log2 x, we have

(4.66) H1(p)−H1(p
′) ≤ 0,

with equality iff p1 = p2.

Surjectivity of Hα follows from the Rényi entropies’ bounds of 0 and log2 n. The proof
of Theorem 3.1 yields the desired lower bound when one replaces Ex[S] with Hα(x). The
upper bound follows for a similar computation applied to −Hα and pψ. �

5. Comparing Entropy Statistics

The power of entropically bounding statistics is that they are quantitatively comparable.
The dual-sided entropic property of an entropically bounding statistic allows us to define
Hmax as a function of Hmin.

Definition 5.1. Suppose S entropically bounds the entropy function H. Let m be a mea-
surement of the statistic S and define Hmax(m) and Hmin(m) as follows:

Hmax(m) = max
p∈PS(m)

{H(p)} ,(5.1)

Hmin(m) = min
p∈PS(m)

{H(p)} .(5.2)

We define the spread of S at m as the function:

(5.3) spread(S,m) = Hmax(m)−Hmin(m).

Since Hmin is monotonic, its inverse, H−1
min, is well defined. We define the spread of S as

(5.4) spreadS(h) = spread
(
S,H−1

min(m)
)
.
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Definition 5.2. The average spread of S is the average of the spread over all possible
values of entropy:

(5.5) spreadS =

∫
spreadS(h) dh∫

dh
,

where the limits of integration are defined by the surjectivity of the entropic statistic.

Definition 5.3. Let ε > 0. Let Bε(m) denote the closed ball around m of radius ε in a
metric space and

Hmax,ε(m) = max {H(p) : Ep [S] ∈ Bε(m)} ,(5.6)

Hmin,ε(m) = min {H(p) : Ep [S] ∈ Bε(m)} ,(5.7)

Then the ε-dilation spread of S at m is defined as

(5.8) dspreadε(S,m) = Hmax,ε(m)−Hmin,ε(m).

If Hmin,ε is well defined monotonic, we define the ε-dilation spread of S and the average
ε-dilation spread of S as follows:

dspreadε,S(h) = dspreadε(S, (H
−1
min,ε(m)),(5.9)

dspreadε,S =

∫
dspreadε,S(h) dh∫

dh
.(5.10)

The spread of a statistic is useful when comparing two statistical tests. Moreover, one
could hope to compute the best statistical test to perform on a source to estimate the entropy
of the output. From our analysis, a statistical test whose expected value is a monotone
function of the entropy yields an identically zero spread. However, this optimum neglects
the variance inherent in a finite collection of data.

Problem 5.4. Let S be a collection of statistics that each entropically bounds the entropy
function H. Given an ε > 0, suppose the average ε-dilation spread is well defined for all
S ∈ S. Find the statistic Sε that minimizes the average ε-dilation spread.

Normalization remains an issue in solving the above problem. In the limit as ε tends
to zero, we see that any statistic with the expected value being a monotonic function of
entropy becomes optimal. However, other statistics might be more robust with respect to ε.
We leave this topic to future research.

In particular, the estimation of H∞ directly from a frequency count is optimal when ε is
zero. However, for ε > 0, other statistics may have a smaller spread.

20



0.5 1.0 1.5 2.0
H_min

0.5

1.0

1.5

2.0

H_max

Figure 5: For the compression test on four states, Hmax is plotted as a function of Hmin

for the following choices of ζ: blue is for ζ(x) =
√
x, red is for ζ(x) = log2 x, green is

for ζ(x) = 1 − e−x. The dashed purple line is the identity bound. Additionally, the same
function is plotted for the collision test as black points.

5.1. Examples: Compression Spread versus Collision Spread and Optimal ϕ

Even in the case where ε is zero, Problem 5.4 introduces a way to compare seemingly
uncomparable statistics. We can tighten the comparison using a pointwise comparison of
the spread function. In Figures 5 and 6, we present a summary of the analysis of spread for
the collision test and the compression test with three choices of the weighting function ζ.

Recall from the analysis of the compression statistic, there was a large amount of freedom
for the weighting function: ζ had to be increasing and concave down. The default choice
of ζ was the logarithm function log2. In this subsection, we compare the spread of several
choices of ζ.

The data suggest that the collision statistic is a tighter statistic than the default com-
pression statistic (ζ = log2). However, we have only performed the analysis for a small
number of states. Furthermore, it appears that by optimally choosing ζ, one can improve
the compression statistic so that it is tighter than the collision statistic.

Problem 5.5. Find the ζ that minimizes the average spread for the compression statistic
such that ζ ′′(t) < 0 and ζ ′(t) > 0.

6. Entropy Measurements

Suppose we have an unknown probability distribution, p, that produces a sequence of
outputs. A statistic computed on the sequence of output will usually not be the expected
value of the statistic. To accommodate this noise, we relax the constraint, generate a set of
admissible distributions based on distance to the measured statistic, and solve the following
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Figure 6: For the compression test on four states, the spread is plotted as a function of
Hmin for the following choices of ζ: blue is for ζ(x) =

√
x, red is for ζ(x) = log2 x, green is

for ζ(x) = 1 − e−x. Additonally, the same function is plotted for the collision test as black
points.

problem.

Problem 6.1. Solve the constrained optimization problem:

(6.1) Hε(m) = min
p∈PS,ε(m)

H (p) ,

where

(6.2) PS,ε(m) = {p : Ep [S] ∈ Bε (m)} .

We present three types of entropy tests to solve Problem 6.1: entropic, dilation, and
dilation with confidence. Based on the motivating pass/fail tests of full entropy, we continue
to use the term “test.”

6.1. Entropic Tests

If the statistic is entropic, the relaxed minimization problem effectively reduces to Prob-
lem 3.1 with a shifted value of m. The following entropic test shifts the value of m based on
the number of samples of output.

Test 6.2 (Entropic). Generate a sequence of output from the entropy source. Let S1, S2, · · · , Sk
be a sequence of independent measurements of an entropic statistic S, with respect to the func-
tion H, computed from the sequence, with sample mean S̄ and sample variance σ̃2 over the
k samples. Given a confidence level α, let us define an adjusted mean S̄ ′ as follows:

(6.3) S̄ ′ = S̄ − Φ−1(1− α)
σ̃√
k
.
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where Φ is the standard normal cumulative distribution function. Define the entropy estimate
Hest by minimizing the function H over all distributions on the same state space that have
the expected value of the statistic S greater than or equal to S̄ ′ :

(6.4) Hest = min
{
H(p) : Ep[S] ≥ S̄ ′

}
.

6.2. Dilation Tests

The following is the general dilation test.

Test 6.3 (Dilation). Generate a sequence of output from the entropy source. Let H be an
entropy function. Let S1, S2, · · · , Sk be a sequence of independent meaurements of a statistic,
S, computed from the sequence, with sample mean S̄. Given a tolerance level ε, define the
entropy estimate Hest by minimizing the function H over the set of distributions PS,ε(S̄):

(6.5) Hest = min
p∈PS,ε(S̄)

H(p).

The dilation test is easily adapted to vector-valued statistics. Since we have relaxed
the monotonicity condition, the optimization problem may be intractable. We have not
prescribed a method for choosing the value of ε. We can realize the entropic test as a special
case of a dilation test with ε depending on the standard deviation of the statistic and the
number of samples.

A standard result for Bernoulli(p) distributions motivates a further generalization.

Test 6.4 (Dilation with confidence). Generate a sequence of output from the entropy source.
Let H be an entropy function. Let S1, S2, · · · , Sk be a sequence of measurements of a statistic,
S, computed from the output sequence, with sample mean S̄. Given a confidence level α and
tolerance level ε, define a dilation collection of probability distributions, Pα,ε,S(S̄) as follows,

(6.6) PS,α,ε(S̄) =
{
P : P

[
S ∈ Bε

(
S̄
)]
≥ α

}
,

where P is the probability measure for the computed statistic S (considered a random vari-
able). Define the entropy estimate Hest by minimizing the function H over the set of distri-
butions PS,α,ε(S̄):

(6.7) Hest = min
P∈PS,α,ε(S̄)

H(P).

In the dilation with confidence test, the choice of ε and of α control the set of admissible
probability distributions over which to optimize. As the value of ε decreases, admissibility
becomes more restrictive, resulting in an expected increase in the value of Hest.

Hoeffding’s Inequality (see [4]) relates the value of the confidence level α to the tolerance
level ε for Bernoulli(p) streams.

Theorem 6.1 (Hoeffding’s Inequality). Let X1, · · · , Xn ∼ Bernoulli(p). Then, for any
ε > 0,

(6.8) P
[
p ∈ Bε(X̄)

]
≥ α,

where X̄ = 1
n

∑n
i=1Xi and α = 1− 2e−2nε2 .
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6.3. Multiple Tests

Often one computes several statistics on a data source and estimates the entropy based
on all of the results. If one performs a test on each statistic, the estimate of the entropy will
most likely be different for each test. In this section, we present ways to resolve the issue.

If all of the tests computed are of the same type (entropic, dilation, or dilation with
confidence) using the same entropy function, then there are two simple approaches. The
first simple approach is to be conservative: choose the minimum estimate as the estimate.
The second simple approach is to choose the maximal estimate as the estimate. The maximal
approach can be made rigorous when all of the tests are entropic using interval arithmetic
on the concept of spread.

During each statistical test, one optimizes over a set of probability distributions satis-
fying constraints determined by the statistic. A general approach is to optimize over the
intersection of the sets. In some cases, this optimization problem is similar to the individual
optimizations. If all of the tests are entropic, then the surjectivity condition implies that the
intersection is nonempty. For each dilation test, one can increase the tolerance level until
the intersection is nonempty.

Alternatively, one could vectorize the statistic and apply a vectorized dilation test (rewrit-
ing entropic tests as dilation test). The difficult result here is that the optimization problem
may be intractable.

A. Example Dilation Test: Frequency Statistic

The frequency statistic computes the entropy by modeling a probability distribution
based on output of a random source.

Statistic A.1 (Frequency: min-entropy). Generate a sequence {Xs}ts=1 of outputs from the
entropy source. For each state i of the output space estimate the probability of occupancy of
state i:

(A.1) Pi =
1

t

t∑
s=1

χi(Xs),

where

(A.2) χi(Xs) =

{
1 if i = Xs,

0 if i 6= Xs.

The min-entropy frequency statistic, S, is the negative logarithm of estimated probability
of the most frequent state:

(A.3) S = − log2(max
j
Pj).
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Even though the min-entropy frequency statistic is entropic by Theorem 4.11, data re-
quirements suggest that one use a dilation with confidence test for the frequency statistic.
In the case of iid output, we can realize the frequency statistic as a Bernoulli(p) process in
each state and invoke Hoeffding’s Inequality.

B. Collection Statistic

The collection statistic is a complement to the collision test. The statistic yields low
entropy estimates for output streams that diversify quickly and yields high entropy estimates
for output streams that fail to diversify quickly enough. The collection test is a sanity
check that may increase the accuracy of entropy estimates of counters, linear feedback shift
registers, and linear congruential generators; other statistics may overestimate the entropy
from these type of sources.

Statistic B.1 (Collection). Generate a sequence {Xs}ts=1 of output from the entropy source.
Let us define a sequence of collection times, {Ti}ki=0, as follows: T0 = 0 and
(B.1)

Ti = min
{
{Ti−1 + ∆} ∪ {j > Ti−1 : every output state has occured in {Xm}jm=Ti+1}

}
,

where ∆ is the maximum allotted collection time. The collection statistic, S, is the average
of differences of collection times,

(B.2) S =
1

k

k∑
i=1

Ti − Ti−1 =
Tk
k
.

A major concern with the collection statistic is that it may require too much data to
collect a full collection, let alone a statistically significant number of full collections. As
min-entropy tends to zero, the expected time of completion tends to infinity. Most imple-
mentations bound the collection time, making it impossible to relate the collection statistic
to min-entropy. In contrast, the partial collection test entropically bounds min-entropy.

C. Markovity and Dependencies

Independence is a tricky issue when it comes to entropy testing. Almost all of the rigorous
results assume iid output of the source. One can construct entropy sources with dependen-
cies in time and/or state such that the entropy tests overestimate the entropy instead of
underestimating it. However, a large, diverse battery of tests minimize the probability that
such a source’s entropy is greatly overestimated. The tests provide a sanity check for the
entropy estimate instead of a rigorous bound!

One difficulty in modeling sources with dependencies is the large data requirement to
resolve the dependencies from sampling. The canonical example of dependent data is a
Markov process: the output state only depends on the current state. We can use the Markov
model as a template on which to project more complicated sources with dependencies.
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The key component of estimating the entropy of a Markov process is the ability to accu-
rately estimate the matrix of transition probabilities of the Markov process. When computing
the min-entropy we can use a dilation with confidence test to minimize the required data.
The technique sacrifices large data requirements for overestimations of unlikely transitions.

C.1. Dynamic Programming

Let X(t) be a Markov process with transition matrix T . By estimating the probability
of the initial distribution, one computes the largest probability of a fixed number of outputs,
N , of the process and estimate the min-entropy of the outputs collectively. Explicitly, we
minimize over all chains of N states labeled i0, · · · , iN−1 :

H∞ (T,p, n) = min
i0,··· ,iN−1

− log2 P[X0 = i0 ∩ · · · ∩XN−1 = iN−1],(C.1)

= min
i0,··· ,iN−1

− log2

(
pi0

N−1∏
j=0

Tij ,ij+1

)
,(C.2)

where pi0 is the initial probability of outputing state i0. We solve the optimization problem
with standard dynamic programming techniques.

C.2. Bounds on the Transition Matrix

When one estimates the transition matrix from a fixed data set, the size of the data set
significantly impacts the accuracy of the estimate. In particular, low probability transitions
may not occur often in the data set. If one is able to overestimate the transition probability,
we obtain an underestimate of min-entropy.

Proposition C.1. Let X(t) be a Markov process on n states with one-step transition matrix
T , and initial distribution p where H∞(T,p, N) denotes the solution to the above dynamic
programming problem. If S ∈ [0, 1]n×n is a matrix such that Sij ≥ Ti,j for i, j = 1, · · · , n,
then we have

(C.3) H∞(S,p, N) ≤ H∞(T,p, N).

Proof. In Equation C.1, we have

(C.4)
N−1∏
j=0

Tij ,ij+1
≤

N−1∏
j=0

Sij ,ij+1
.

The desired inequality follows directly from the decreasing property of the function − log2. �

It is interesting to note that the bounding matrix, S, is not a transition matrix since
the sum of transitions out of a state will exceed unity for at least one state (except for the
uninteresting case where T = S).
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C.3. Confidence Intervals

In this section, we develop a strategy to compute a matrix S with a prescribed amount
of confidence that bounds T . Let us begin by explicitly writing the transition matrix T ,

(C.5) T =

T11 · · · T1n
...

Tn1 · · · Tnn

 .
Suppose that we observe k outputs from the process partitioned into ki observations of state
i and kij observations of transitions from state i to state j for i, j ∈ {1, · · · , n}. We would
like to choose a value sij to define a confidence interval [0, sij]: i.e., for a confidence level α
our choices satisfy

(C.6) P [Tij ≤ sij|ki, kij] ≥ α.

One interval with a confidence α is obtained by computing the probability that one expects
to observe more transitions than were observed. Equivalently, we can define sij in terms of
the observed proportion

(C.7) sij = min

{
1,
kij
ki

+ ε

}
,

where

(C.8) ε =

√
1

2ki
log

(
1

1− α

)
.

We are now in a position to apply Hoeffding’s Inequality to bound the error within the
prescribed confidence.

Proposition C.2. Let X(t) be a Markov process with transition matrix T. Using the above
notation, let us define the matrix S,

(C.9) S =

s11 · · · s1n
...

sn1 · · · snn

 ,
where sij is determined by Equations C.7 and C.8. With probability αmin{n2,N}, the compu-
tation of the min-entropy (as defined formally by Equation C.1) for the matrix S is a lower
bound for the min-entropy of N outputs of the process:

(C.10) H∞(S,p, N) ≤ H∞(T,p, N).

A similar upper bound holds if we underestimate the initial probability distribution p.
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