
Reactive and Proactive
Standardisation of TLS
Kenny Paterson and Thyla van der Merwe
Royal Holloway, University of London

Security Standardisation Research (SSR)
5 December 2016

1

Motivation
● TLS is the de facto standard for securing communications on the

Web
● Pressure to improve the protocol’s efficiency and the need to

address the many weaknesses identified in TLS 1.2 and below →
TLS 1.3

● Analysis-prior-to-deployment design philosophy for TLS 1.3 vs
post-deployment-analysis for TLS 1.2 and below. Why?

● What can the standards community learn? What standardisation
model best fits critical protocols such as TLS?

2

TLS and the IETF

3

● Started life as the Secure Sockets Layer (SSL) protocol, developed
by Netscape

● SSL 2.0 (1995) → SSL 3.0 (1996)

 TLS 1.0 (1999) → TLS 1.1 (2006) → TLS 1.2 (2008)

4

● Started life as the Secure Sockets Layer (SSL) protocol, developed
by Netscape.

● SSL 2.0 (1995) → SSL 3.0 (1996)

 TLS 1.0 (1999) → TLS 1.1 (2006) → TLS 1.2 (2008)

5

● More of the handshake encrypted, 1-RTT, only (EC)DHE
● Resumption replaced by Pre-Shared Keys (PSKs)
● Renegotiation removed, 0-RTT functionality, and AEAD only

 TLS 1.0 (1999) → TLS 1.1 (2006) → TLS 1.2 (2008)

15

6

● No formal membership
● Open model for standards development - no barriers to entry,

many-to-one development, and no financial barriers to adoption 7

TLS 1.2 and below - Design, Release, Break, Patch
● Development followed a reactive standardisation process
● An attack → releasing a extension OR making the change in the

next version of the standard

8

● Bleichenbacher attack affects SSL 3.0 - uses an RSA PKCS#1 v 1.5
padding oracle to uncover the pre-master secret

● Briefly addressed in TLS 1.0 - a mechanism that eliminates the
oracle (TLS 1.1 and TLS 1.2)

● Attack re-enabled in various forms - Jager et. al, DROWN
● Better to switch to PKCS#1 v2.1? Not done to maintain backwards

compatibility

9

● Vaudenay’s padding oracle attack affects TLS 1.0 - exploits
CBC-mode padding format in the MEE construction to recover
plaintext

● Addressed in TLS 1.1 - try to keep record processing time constant
● Left a small timing side-channel, not believed to be exploitable -

cue Lucky Thirteen!
● Easier to replace the MEE construction at an earlier stage?
● Attacks need to be practical before a change is considered

10

● Renegotiation attack of Ray and Rex exploits the lack of binding
between an attacker’s initial handshake and a subsequent
renegotiation handshake

● Attacker convinces the server that all data came from the client
● Mandatory extension - include Finished in renegotiation Hello
● Resurrected by the Triple Handshake attack
● Analysis tools premature prior to 2014?

11

● BEAST attack of Duong and Rizzo affects TLS 1.0 and exploits the
known chained-IV vulnerability of Moeller and Bard to recover
plaintext

● Opened the floodgates - introduced techniques that made the
attack practical and everyone took notice.

● TLS 1.1 removed this vulnerability BUT deployed implementations
did not move as quickly - TLS 1.0 is still popular today!

12

● RC4 suggested as the counter-measure to BEAST
● RC4 keystream has long been known to be biased - using the new

BEAST techniques, researchers started mounting increasingly
practical attacks

● Deprecated by the IETF in February 2015
● Could have been phased out a long time ago, before attacks

became so powerful, particularly with AES support present

13

Attack Damage Fix Resurrected

Bleichenbacher SSL 3.0, recover
keys

Note in TLS 1.0
(1.1, 1.2)

Jager et al.,
DROWN, others

Vaundenay TLS 1.0, recover
plaintext

Addressed in TLS
1.1

Lucky Thirteen,
POODLE
(related)

Renegotiation TLS 1.2 and
below

Mandatory
extension

Triple Handshake

BEAST TLS 1.0, recovery
plaintext

Addressed in TLS
1.1

Made practical
with new
techniques!

RC4 TLS 1.2 and
below

Eventually
deprecated

Old weakness

14

● Is a more cautious approach warranted for critical protocols?
● Backwards compatibility, wide deployment of TLS and time lags in

adopting new versions hinder meaningful change
● Analysis tools not yet fully developed before TLS 1.2 release
● Lack of engagement by the academic community - reward came

from producing high impact attacks
● Incentive model leaves users vulnerable to attack and imposes a

patch action

15

Contributing factors

TLS 1.3 - Design, Break, Fix, Release
● Development has followed a proactive standardisation process
● Working closely with the academic community, multiple drafts

have been developed prior to official release

16

● draft-00 - draft-05
○ removal of compression (CRIME attack)
○ inclusion of a session hash (Triple Handshake attack)
○ removal of renegotiation (RENEGOTIATION attack)
○ removal of MEE (Lucky Thirteen attack)
○ Handshake and Record protocols no longer overlap
○ analysed by Dowling et al., as well as Kohlweiss et al. -

provided valuable feedback to the WG on TLS 1.3 design

Academic community starts to get heavily involved!

17

● draft-07
○ becomes highly influenced by OPTLS of Krawczyk and Wee
○ OPTLS uses ephemeral DH and offers 0-RTT and PSK modes
○ key derivation is similar to OPTLS, using HKDF designed by

Krawczyk
● draft-08 - draft-09

○ removal of SHA-1 and MD5 (SLOTH)

WG draws inspiration from secure designs and acknowledges the
research community’s concerns.

18

● draft-10
○ Cremers et al. perform an automated analysis in the symbolic

setting, looking at the interaction of the different handshakes
○ Li et al. develop a computational model and find draft-10 to

be secure
○ The work by Cremers et al. finds a potential attack in the newly

proposed post-handshake authentication mechanism -
communicated via the mailing list - fixed in draft-11

19

● “TLS Ready or Not?” (TRON 1.0) workshop in February 2016
○ showcased work by the academic community - computational

analyses, symbolic analyses, implementations
○ brought the WG and the research community together
○ definition of properties - late in the game?
○ followed up by the less formal TRON 2.0

Huge amount of back and forth between the WG and the research
community.

20

What’s changed?
● Available tools

○ cryptographic protocol analysis tools have matured since TLS
1.2
■ primitives - HKDF, authenticated encryption
■ modelling secure channels and key exchange - ACCE,

multi-stage KE
■ program verification - miTLS
■ automated tools - Tamarin and ProVerif

Post-2008 a design-break-fix-release cycle can thrive!
21

● Involvement, impact and incentives
○ WG has removed weak primitives and switched to secure

designs
○ WG has responded to the academic community’s needs -

easing analysis of the protocol
○ academic community appreciates the complexity and many

use cases of the protocol
○ many top-tier publications prior to official release

Implementers and researchers seem to understand each other better.

22

Can we do better?
● Many cooks in the kitchen brings conflict
● Rapidly moving target! Analyses become easily outdated
● TRON 1.0 - full set of requirements missing

23

Beyond TLS 1.3
● Is this newer, collaborative process unique to TLS?
● How does this process compare to ISO, NIST?
● What’s best for critical protocols such as TLS?

24

vs vs

25

IETF (TLS 1.3) ISO NIST (SHA-3)

Model Open Closed Open competition

Organisation WGs WGs Teams

Membership Individuals National Bodies N/A

Contributions Many-to-one Many-to-one One-to-one

Cost Free $ 175 Free

Analysis Prior-to-deployment Post-deployment Prior-to-deployment

 protocol primitives

Closing remarks
● Move from design-release-break-patch to design-break-fix-release

enabled by better tools and greater engagement of the academic
community

● Newer process allows for preemptive decision making and
hopefully produces a stronger protocol, requiring less patching

● Perhaps requirements analysis-design-prove-release process
would have been better

● Competition model as employed by NIST potentially suits TLS

26

