
TMAC: Two-Key CBC MAC

Submission to NlST

June 21, 2002

Kaoru Kurosawa

Department of Computer and lnformation S
ien
es,

lbaraki University

4-12-1 Nakanarusawa, Hita
hi, lbaraki 316-8511, Japan

+81-294-38-5135 oÆ
e

+81-294-38-5135 fax

kurosawa�
is.ibaraki.a
.jp

and

Tetsu Iwata

Department of Computer and lnformation S
ien
es,

lbaraki University

4-12-1 Nakanarusawa, Hita
hi, lbaraki 316-8511, Japan

+81-294-38-5266 oÆ
e

iwata�
is.ibaraki.a
.jp

http:iwata��is.ibaraki.a�.jp
http:kurosawa��is.ibaraki.a�.jp

TMAC: Two-Key CBC MAC

Kaoru Kurosawa a n d T etsu lwata

Department of Computer and Information S
ien
es,

Ibaraki University

4-12-1 Nakanarusawa, Hita
hi, Ibaraki 316-8511, Japan

{kurosawa, iwata}�
is.ibaraki.a
.jp

Abstra
t. In this paper, we propose TMAC, Two-Key CBC Message

Authenti
ation Code. TMAC is a refnement of X CBC (whi
h is a variant

of CBC MAC) shown by Bla
k and Rogaway. e use only (k + n)-bit

key for TMAC while XCBC uses (k + 2 n)-bit key, w he re k is the key

length of the underlying blo
k
ipher and n is its blo
k length. The
ost

for redu
ing the size of se
ret keys is almost negligible; only one shift

and one
onditional XOR. Similarly to XCBC, our algorithm
orre
tly

and eÆ
iently handles messages of arbitrary bit length.

1 Introdu
tion

Let E : {0, 1}k { 0, 1}n { 0, 1}n be a blo
k
ipher: it uses a k-bit key K E

{0, 1}k to en
rypt an n-bit blo
k X E { 0, 1}n into an n-bit
iphertext Y =

EK(X).

1.1 CBC MAC

The CBC MAC [8, 10] is the simplest and most well-known algorithm to make a

MAC from a blo
k
ipher. Let M = M1IIM2II IIMm

be a message string su
h

that IM1I = IM2I = = IMmI = n. Then CBC EK

(M), the CBC MAC of M

under key K, is defned as Cm, where

C�

= EK(M�

�C��1)

for i = 1 , , m and Co

= 0

n.

Bellare, Kilian, and Rogaway p r o ved the se
urity o f t h e C B C M A C for fxed

message length mn [3]. lt is well known, however, that the CBC MAC i s not

se
ure if the message length varies.

1.2 EMAC

To deal with variable message length in blo
ks m, En
rypted MAC (E M A C)

was developed. EMAC en
rypts CBCEK�

(M) using a new blo
k
ipher key K2.

That is,

EMACEK�
 EK�

(M) = EK�

(CBCEK�

(M))

http:iwata}��is.ibaraki.a�.jp

�

�

�

EMAC w as developed for the RACE proje
t [4]. Petrank and Ra
kof then proved

the se
urity [12].

A problem is that the message length is limited to a positive m ultiple of n,

that is, the domain is limited to ({0, 1}n)+. The simplest approa
h to deal with

messages whose lengths are not a multiple of n is to append the minimal 10 to

M as a padding so that the length is a multiple of n. Note that the padding is

appended even if the size of the message is already a multiple of n.

ln this way, E M A C
an deal with
ompletely variable message length. ln

other words, the domain is {0, 1}*. e
all this EMAC*.

1.3 RMAC

Jaulmes, Joux, and Valette proposed RMAC [11] whi
h is an extension of EMAC.

RMAC en
rypts CBCEK�

(M) with K2

R, w here R is an n-bit random string

and it is a part of the tag. That is,

RMACEK�
 EK�

(M) = (EK�

��(CBCEK�

(M)), R)

They showed that the se
urity o f R M A C i s b e y ond the birthday paradox

limit. However, the tag length is n bits longer than the other CBC MAC v ariants.

1.4 XCBC

EMAC* and RMAC require 1 + I(IM I + 1) /nl blo
k
ipher invo
ations. Bla
k

and Rogaway proposed XCBC [5] whi
h requires only IIM I/nl blo
k
ip h er

invo
ations.

XCBC takes three keys: one blo
k
 i p h e r k ey K1, and two n-bit keys K2

and K3. X CBC makes two
ases to deal with arbitrary length messages: M E

({0, 1})+ and M E ({0, 1})+. lf M E ({0, 1})+ then XCBC
omputes exa
tly the

same as the CBC MAC, ex
ept XORing an n-bit key K2

before en
rypting the

last blo
k. lf M E ({0, 1})+ then minimal 10 padding (i 2 0) is appended to

M so that the length is a multiple of n, a n d X CBC
omputes exa
tly the same

as the CBC MAC, ex
ept XORing another n-bit key K3

before en
rypting the

last blo
k.

1.5 Our Contribution

The key length of XCBC is (k + 2 n) bits in total. To redu
e the key length, the

authors suggested the following solution [6] for n : k : 2n. A se
ret key is a

single key K of E. Then for some distin
t
onstants C1a, C1b, C2, and C3, let

K1

= the frst k bits of EK

(C1a)IIEK(C1b),

K2

= EK

(C2),

K3

= EK

(C3)

This key derivation uses one k-bit key, but it has two problems:

2

�

�

1. The number of blo
k
ipher invo
ations is no longer optimal sin
e it requires

3 or 4 additional blo
k
ipher invo
ations.

2. lt needs two k ey s
hedulings for two b l o
 k
ipher keys K and K1.

These problems may be signif
ant if one frequently
hanges the se
ret key.

ln this paper, we propose TMAC, Two-Key CBC Message Authenti
ation

Code. TMAC is a refnem ent of XCBC shown by Bla
k and Rogaway. e use only

(k+n)-bit key for TMAC while XCBC uses (k+2 n)-bit key. The
ost for redu
ing

the size of se
ret keys is almost negligible; only one shift and one
onditional

XOR. Similarly to XCBC, the domain is {0, 1}* and it requires IIM I/nl blo
k

ipher invo
ations.

e show a
omparison of CBC MAC and its variants in Table 1, where M

is the message and E is a blo
k
ipher. The third
olumn gives the numbe r o f

invo
ations of E, assuming IM I > 0. The fourth
olumn gives the numbe r o f

diferent k eys used for E.

Table 1. Comparison of CBC MAC and Its Variants.

Name Domain #E Invo
ations #E Keys Key Length

CBC MAC [8, 10, 3] ({0, 1}n)m IM I/n 1 k

EMAC� [4, 12] {0, 1}� 1 + I(IM I+ 1) /nl 2 2k

RMAC [11] {0, 1}� 1 + I(IM I+ 1) /nl 2 2k

XCBC [5, 6] {0, 1}� IIM I/nl 1 k + 2 n

TMAC (Our proposal) {0, 1}� IIM I/nl 1 k + n

1.6 Other Related Works

Re
ently, some resear
hers proposed parallelizable MAC algorithms. Bellare,

Gueerin, and Rogaway proposed XOR MAC [2]. Gligor, and Dones
u proposed

XECB-MAC [9]. Bla
k and Rogaway proposed PMAC [7].

However, these MAC algorithms have o verhead as follows. XOR MAC r e -
quires mu
h m o r e i n vo
ations of E than the other MAC algorithms. XECB-MAC

requires modulo 2n arithmeti
 and three more invo
ations of E than XCBC and

TMAC. PMAC needs to generate a sequen
e of masks.

Therefore, TMAC and XCBC are better than these algorithms in non-parallelizable

environment.

2 Mathemati
al Preliminaries

2.1 Notation

lf A is a fnite set then #A denotes the numbe r of elem ents in A. or a set A,

x f A means that x is randomly
hosen from A. lf a E { 0, 1}* is a string then

IaI denotes its length in bits. lf a, f E { 0, 1}* are equal-length strings then a f

is their bitwise XOR.

3

 �

� �

� �

�

�
�

�

�
� �

�

 � �
�

� �

�

 �

 �

�
�

�
� � �

�

or an n-bit string a = an 1

a1ao

E { 0, 1}n , let

a :: 1 = an 2an 3

a1ao0

Similarly, let

a >> 1 = 0 an 1an 2

a2a1

2.2 The Field with 2� Points

e i n ter
hangeably think of a point a in G (2n) i n a n y of the following ways:

1.	 as an abstra
t point in a feld;

2.	 as an n-bit string an 1

a1ao

E { 0, 1}n;

3.	 as a formal polynomial a(u) = an 1u

n 1 + + a1u + ao

with binary
oeÆ-

ients.

To add two points in G (2n), take their bitwise XOR. e denote this oper-
ation by a b.

To m ultiply two points, fx some irredu
ible polynomial f(u) h a ving binary

oeÆ
ients and degree n. T o be
on
rete,
hoose the lexi
ographi
ally frst poly-
nomial among the irredu
ible degree n polynomials h a ving a minimum numbe r

of
oeÆ
ients. e list some indi
ated polynomials. f(u) = u + u + u

3 + u + 1 for n = 64,

128 7 2f(u) = u + u + u + u + 1 for n = 128, and 2 1o 2f(u) = u + u + u + u + 1 for n = 256.

To	 m ultiply two p o in ts a E G (2n) and b E G (2n), regard a and b as polyno-
nmials a(u) = an 1u

n 1 + + a1u + ao

and b(u) = bn 1u

1 + + b1u + bo,

form their produ
t
(u) where one adds and multiplies
oeÆ
ients in G (2), and

take the remainder when dividing
(u) by f(u).

Note that it is parti
ularly easy to multiply a point a E { 0, 1}n by u. e

128 7 2show a method for n = 128, where f(u) = u +u +u +u + 1. T hen m ultiplying

a = a127

a1ao

by u yields a produ
t an 1u

n + an 2u

n 1 + + a1u

2 + aou.

128Thus, if an 1

= 0, then a u = a :: 1. lf an 1

= 1, then we m ust add u to

128 7 2	 128 7 2a :: 1. Sin
e u + u + u + u + 1 = 0 we have u = u + u + u + 1, so adding

u128 means to xor by 0

12o10000111. ln summary, when n = 128,

a :: 1	 if a127

= 0,
a	 u = (1)

(a :: 1) 012o10000111 otherwise,

where a u = a(u) u mod f(u).

Also, note that it is easy to devide a point a E { 0, 1}n by u, meaning that

one multiplies a by t h e m ultipli
ative i n verse of u in the feld: a u

1 . e show a

method for n = 128. Then multiplying a = a127

a1ao

by u

1 yields a produ
t

n	 2 n 3 1 1an 1u +an 2u + +a2u+a1+aou . T h us, if ao

= 0, then a u = a >> 1.

1 128 7 2lf ao

= 1, then w e m ust add u to a >> 1. Sin
e u + u + u + u + 1 = 0 we

4

 � �

 �

�

127 1 127have u = u + u + 1 + u

1, so adding u = u + u + u + 1 means to xor

by 10

12o1000011. ln summary, whern n = 128,

a >> 1 if ao

= 0,

a u

1 = (2)
(a >> 1) 1012o1000011 otherwise.

3 Spe
if
ation

3.1 Basi
 Spe
if
ation

To use TMAC, one must spe
ify a blo
k
ipher E.

The blo
k
ipher E is a fun
tion E : KE { 0, 1}n { 0, 1}n, where ea
h

E(K,) = EK

() is a p erm utation on {0, 1}n , KE

is the set of possible keys and

n is the blo
k length. The popular blo
k
ipher to use with TMAC is likely to

be AES, but any other blo
k
ipher is fne.

TMAC is a fun
tion taking two k eys K1

E K E

, K2

E { 0, 1}n and a message

M E { 0, 1}*, and returning a string in {0, 1}n . T he key spa
e K of TMAC is

K = KE { 0, 1}n. The fun
tion is defned in ig. 1 and illustrated in ig. 2.

Algorithm TMACEK�

.K�

(M)

if M E ({0, 1}n)+

then K + K2 u and P + M

else K + K2

and P + M II10i, where i + n - 1 - I M I mod n

Let P = P1IIP2II IIPm, w here IP1I = IP2I = = IPmI = n

co

+ 0n

for i + 1 to m - 1 do

ci

+ EK�

(Pi

E ci�1

)

return T = EK�

(Pm

E cm�1

E K)

Fig. 1. Defnition of TMAC.

M1

E�K1

�

M2

�

E�K1

�

M�

�

E�K1

�K2 u

M1

EK1

�

�

M2

�

EK1

�

�

M� 10i � �� �

�

EK1

�

�K2

T T

Fig. 2. Illustration of TMAC.

ln the third line of ig. 1 and in the last blo
k of left hand side in ig. 2,

K2

u is a multipli
ation in G (2n). lt
an be
omputed with only one shift and

one
onditional XOR as shown in (1).

5

 �

� �

�

3.2 User Option

e h a ve t wo options on the
omputation of K2

u. The frst option is to keep

both K2

and K2

in the memory. lt uses a memory of 2n bits.u

The se
ond option uses a memory of only n bits. e frst keep K2

in the

memory. hen K2

is needed, we
ompute K2

u from K2. e then repla
e u

K2

with K2

in the memory. Next when K2

is needed, we
ompute K2

fromu

K2

u and repla
e K2

u with K2

in the memory. Repeat this pro
ess.

Note that it is easy to
ompute K2

from K2

u sin
e multipli
ation by u

1

an be
omputed with only one shift and one
onditional XOR as shown in (2).

3.3 Comparison with XCBC

XCBC is obtained by repla
ing K2

x with K3

in ig. 2, where K3

E { 0, 1}n

is a random string. ln another way around, TMAC is obtained from XCBC by

repla
ing K3

with K2

x. The size of keys is redu
ed from (k+2 n) bits to (k+ n)

bits in this way.

4 Se
urit o f M C

4.1 Se
urity Defnitions

An adversary A is an algorithm with an ora
le (or ora
les). The ora
le
omputes

some fun
tion. ithout loss of generality, a d v ersaries are assumed to never ask

a query outside the domain of the ora
le, and to never repeat a query.

A b l o
 k
ipher is a fun
tion E : KE { 0, 1}n { 0, 1}n where KE

is a fnite

set and ea
h EK

() = E(K,) is a p erm utation on {0, 1}n. Let Perm(n) denote

the set of all permutations on {0, 1}n . e sa y that P is a random permutation

if P is randomly
hosen from Perm(n).

Note that {EK

() I K E K E} should look like P erm(n). or an adversary A,

we defne ���

���

i?i

���

: AEK

() A� () = 1) � Pr(P f Perm(n) :(A) Pr(K fK 1)
Adv =
 =
 EE

The adversary A
annot distinguish {EK() I K E K E

} from Perm(n) if Adv
i?i(A)E

is negligible.

Similarly, a M A C fun
tion family from {0, 1}* to {0, 1}n is a map F : KF

{0, 1}* { 0, 1}n where KF

is a set with an asso
iated distribution. e w r i t e

FK() for F (K,). e sa y that AFK

() forges if A outputs (x, FK(x)) where A

never queried x to its ora
le FK

(). Then we defne

�����
 : AFK

()AdvF

(A) = Pr(K fK F

forges)

Let Rand(*, n) denote the set of all fun
tions from {0, 1}* to {0, 1}n. This set is

given a probability measure by asserting that a random element R of Rand(*, n)

6

���
��� � �

� �
���

���

��� ���

��� � �

�
� �

���

asso
iates to ea
h string x E { 0, 1}* a random string R(x) E { 0, 1}n . Then we

defne

vii?f : AFK

() () AdvF

(A) = Pr(K fK F

= 1) Pr(R f Rand(*, n) : A = 1)

Also we w rite

i?i i?i

AdvE

(t, q) = max {AdvE

(A)} ,
;

where the maximum is over all adversaries who run in time at most t and make

at most q queries. urther we write � �

AdvF

��
(t, q, p) = m a x

;

{AdvF

��
(A)} and Adv

vii?f

F

(t, q, p) = m a x

;

Adv

vii?f

F

(A) ,

where the maximum is over all adversaries who run in time at most t, m ake at

most q queries, ea
h of whi
h is a t m o st p-bits.

4.2 Theorem Statements

e give the following information-theoreti
 bound on the se
urity of TMAC. A

proof of this lemma is given in the next se
tion.

e idealize a blo
k
ipher by a random permutation drawn from Perm(n).

Lemma 4.1. Let A be an adversary whi
h asks at most q queries, ea
h of whi
h

is at most nm-bits. Mssume m : 2n/4. Then

: ATMAC��

�K�

() Pr(P1

f Perm(n); K2

f { 0, 1}n = 1)

2 q2(3m + 1)() Pr(R f Rand(*, n) : A = 1) :

2n

rom the above theorem, it is standard to pass to the
omplexity-theoreti

result. (or example, see [3, Se
tion 3.2].) Then we h a ve the following
orollary.

Corollary 4.1. Let E : KE { 0, 1}n { 0, 1}n be the underlying blo
k
ipher

used i n TTM C. Then

2 q2

vii?f

(3m + 1) i?i

AdvTMAC(t, q, nm) : + Adv (t1 , q

1) ,
2n E

where t1 = t + O(mq) and q1 = mq.

The se
urity o f M A C is also derived in the usual way. (or example, see [3,

Proposition 2.7].) Then we h a ve the following theorem.

Theorem 4.1. Let E : KE { 0, 1}n { 0, 1}n be the underlying blo
k
ipher

used i n TTM C. Then

2 q2

��

(3m + 1) + 1

AdvTMAC(t, q, nm) : + Adv

i?i (t1 , q

1) ,
2n E

where t1 = t + O(mq) and q1 = mq.

7

�

�

� �

�

�

�

�

�

�

� �

�

�

�� �� �

�

�
�

���
�

���
 �

��� � � � � � � �

�
� � � �

���

Algorithm FCBCEK�

.EK�

.EK�

(M)

if M E ({0, 1}n

c

)+

then K + K2, and P + M

else K + K , and P + M II10i , w here i + n - 1 - I M I mod n

Let P = P1IIP2II II Pm, w here IP1I = IP2I = = IPmI = n

o

+ 0n

for i + 1 to m - 1 do

ci

+ EK�

(Pi

E ci�1)

return EK

(Pm

E cm�1

)

Fig. 3. Defnition of FCBC.

M1

EK1

M2

EK1

M

EK2

M1

EK1

M2

EK1

M 10i

EK

T T

Fig. 4. Illustration of FCBC.

4.3 Proof of Lemma 4.1

or a random permutation P and a random n-bit string K, let

Q1(x) = P (K x),

Q2(x) = P ((K u) x)

e frst show that P (), Q 1(), Q 2() are indistinguishable from three independent

random permutations P1(), P 2(), P 3().

Lemma 4.2. Let A be an adversary whi
h asks at most q queries. Then

() (K) ((K �))Pr(P f Perm(n); K f { 0, 1}n : A = 1)

2q
�

() �

() �

() Pr(P1, P 2, P 3

f Perm(n) : A = 1) :

2n

A proof is given in the appendix.

Next we re
all CBC whi
h appeared in the analysis of XCBC [5]. CBC

is a fun
tion taking three keys K1, K 2, K 3

E K E

and a message M E { 0, 1}* ,

and returning a string in {0, 1}n, where E is the underlying blo
k
ipher. The

fun
tion is defned in ig. 3 and illustrated in ig. 4. Bla
k and Rogaway s h o wed

the following result for CBC [5].

Proposition 4.1 (Bla
k and Rogaway 5] . Let A be an adversary whi
h

asks at most q queries, ea
h of whi
h is at most nm-bits. Mssume m : 2n/4.

8

��� �
� �� ��

�
� �

���

��� � �
�

�
� �

���
��� �

� �� ��

�
� �

���
��� � �

�

�
�

� �� ��
���

��� � � � � � � �

�
� � � �

���

Then

AFCBC

�

()

� �Pr(P1, P 2, P 3

f Perm(n) : = 1)

(2m2 + 1) q2

() Pr(R f Rand(*, n) : A = 1) :

2n

e fnally give a proof of Lemma 4.1.

Proof (of Lemma 4.1). By the triangle inequality,

: ATMAC ()

�

�K�Pr(P1

f Perm(n); K2

f { 0, 1}n = 1)

(3)
() Pr(R f Rand(*, n) : A = 1)

is at most

AFCBC ()

� � �Pr(P1, P 2, P 3

f Perm(n) : = 1)

(4)
() Pr(R f Rand(*, n) : A = 1)

0, 1}n : ATMAC ()

�

�K�+ Pr(P1

f Perm(n); K2

f { = 1)

(5)

AFCBC

�

()

� �Pr(P1, P 2, P 3

f Perm(n) : = 1)

Proposition 4.1 [5] gives us an upper bound on (4). e next bound (5). (5) is at

most

() (K) ((K �))Pr(P f Perm(n); K f { 0, 1}n : A = 1)

(6)

�

() �

() �

() Pr(P1, P 2, P 3

f Perm(n) : A = 1)

sin
e any adversary whi
h d o e s w ell in the setting (5)
ould be
onverted to

one whi
h d o e s w ell in the setting (6), where we assume that A in (6) makes at

most mq total queries to her ora
les. By applying Lemma 4.2, (5) is bounded by

m2q2/2n. Therefore (3) is at most

2 2 2 2 2 2(2m + 1) q m q (3m + 1) q
+ =

2n 2n 2n

D�

5 Dis
ussion

5.1 Summary of Properties

e give a summary of properties of TMAC i n T able 2.

9

Table 2. Summary of Properties.

Se
urity F un
tion Message Authenti
ation Code. More generally,

TMAC i s a v ariable input length ({0, 1}�) pseudo-
random fun
tion (VIPRF) with fxed output length

({0, 1}n).

Error Propagation Not appli
able.

Syn
hronization Not appli
able.

Parallelizability Sequential.

Keying Material Two eys. One blo
k
ipher key and one n-bit key,

where n is the blo
k length of the blo
k
ipher.

Ctr/IV/Non
e Requirements None. No
ounter/IV/non
e is used.

Memory Requirements Very modest. Memory requirements for the CBC

MAC p l u s n bit for key.

Pre-pro
essing Capability Limited. Key-setup of the underlying blo
k
ipher

and K2

u
an be pre-
omputed. Additional pre-

omputation is not possible.

Message-Length Requirements Arbitrarily length. Any bit string M E { 0, 1}�
an

be
omputed, in
luding the empty string. The length

of the string need not be known in advan
e.

Ciphertext Expansion Not appli
able.

5.2 Advantages

Short Key. TMAC requires only (k +n)-bit keys while XCBC uses (k +2 n)-bit

keys.

Provable Se
urity. e p r o ved that TMAC i s a v ariable input length ({0, 1}*)

pseudorandom fun
tion (VlPR) with fxed output length ({0, 1}n) by as-
suming that the underlying blo
k
ipher is a pseudorandom permutation.

EÆ
ien
y. TMAC uses max{1, IIM I/nl} blo
k
ipher
alls. The overhead be-
yond blo
k
ipher
alls is almost negligible.

Arbitrarily Message Length. Any bit string M E { 0, 1}*
an be
omputed,

in
luding the empty string. The length of the string need not be known in

advan
e.

No Re-Keying. hereas some
ompeting s
hemes (e.g., in [1, 4, 11]) would

require invoking E with two or three diferent k eys, TMAC requires only one

key as XCBC. Therefore any k ey-setup
osts are minimized. This enhan
es

eÆ
ien
y in both software and hardware.

No de
ryption. As for any CBC MAC v ariant, TMAC does not use de
ryption

of the blo
k
ipher.

Ba
kwards Compatibility. TMAC with K2

= 0

n is ba
kwards
ompatible

with the CBC MAC.

Simpli
ity. Be
ause TMAC is simple, it is easily implemented in both software

and hardware.

10

 �

�

� �

�

�

�

 �

�

�

�

� �

�

�

�� �� �
 �

�

�

5.3 Limitations

e note the following limitations. They apply to any C B C M A C v ariants and

therefore none of them is spe
if
 to TMAC.

Sequential Blo
k Cipher Calls. The CBC MAC and its variants, in
luding

TMAC, are not parallelizable.

Limited Pre-pro
essing Capability. Key-setup of the underlying blo
k
 i -
pher and K2

u
an be pre-
omputed. Additional pre-
omputation is not

possible without knowing the message.

5.4 Design Rationale

TMAC is generalized to TMAC family as follows. Let C1

and C2

in {0, 1}n be

two distin
t
onstants. Let H : KH { 0, 1}n { 0, 1}n be a (universal) hash

fun
tion as follows, where KH

is the set of possible keys of H.

or any y E { 0, 1}n , # {K E K H

I HK(C1) = y} =

#
2
f
;
H , (7)

or any y E { 0, 1}n , # {K E K H

I HK(C2) = y} =

#
2
f
;
H , and (8)

or any y E { 0, 1}n , # {K E K H

I HK(C1) HK(C2) = y} =

#
2
f
;
H . (9)

By using C1, C 2

and H, T M A C family is spe
ifed in ig. 5 and ig. 6.

Algorithm TMACEK�

.HK�

.c�

.c�

(M)

if M E ({0, 1}n

c

)+

then K + HK�

(c1) and P + M

else K + HK�

(c2

) and P + M II10i, where i + n - 1 - I M I mod n

Let P = P1IIP2II IIPm, w here IP1I = IP2I = = IPmI = n

o

+ 0n

for i + 1 to m - 1 do

ci

+ EK�

(Pi

E ci�1)

return EK�

(Pm

E cm�1

E K)

Fig. 5. Defnition of TMAC family.

M1

EK1

M2

EK1

M

EK1

HK�

(c1)

M1

EK1

M2

EK1

M 10i

EK1

HK�

(c2)

T T

Fig. 6. Illustration of TMAC family.

e
an then prove the se
urity o f T M A C family similarly to Lemma 4.1,

Corollary 4.1 and Theorem 4.1. The se
urity bounds are exa
tly the same as

Lemma 4.1, Corollary 4.1 and Theorem 4.1.

11

Our
hoi
e for TMAC
orresponds to KH

= {0, 1}n , HK

(x) = K x, C1

= u,

and C2

= 1, or equivalently HK(C1) = K u and HK(C2) = K, w here K E

{0, 1}n. lt is easy to see that our
hoi
e meets the
onditions (7),(8), and (9).

Below, we list reasons of this
hoi
e.

 e adopted multipli
ations in G (2n) sin
e it is simple, easy to understand,

and easy to im plem ent for appropriate
onstants.
 e adopted 1 and u as
onstants, sin
e multipli
ations by 1 and u are both

easy to implement eÆ
iently as we h a ve seen in (1).
 The reason why w e let HK(C1) = K u and HK

(C2) = K (not HK(C1) = K

and HK(C2) = K u) is that, most of the
ase we h a ve M E ({0, 1}n)+ ,

rather than M E ({0, 1}n)+, if the message is a random string. Therefore we

have
 hosen
omputationally easier way for the
ase M E ({0, 1}n)+ .

6 est Ve
tors

Test ve
tors will be provided in a separate paper.

7 Performan
e Estimation

Similarly t o X CBC, TMAC uses IIM I/nl blo
k
ipher invo
ations for any n o n -
empty message M . (The empty string is an ex
eption; it requires one blo
k

ipher invo
ation.) Overhead beyond blo
k
ipher
alls is almost negligible.

The size of se
ret keys is n bits smaller than XCBC. The
ost for this short

key is to use K2

u. lt is
omputed with only one shift and one
onditional XOR.

8 Intelle
tual Propert Statement

The authors of this paper have no patent related to TMAC. As far as we know,

TMAC i s
 o vered by no patents.

Referen
es

1. ANSI X9.19.	 Ameri
an national standard - Finan
ial institution retail message

authenti
ation. ASC X9 Se
retariat - Ameri
an Bankers Asso
iation, 1986.

2. M. Bellare, R. Gueerin, and P. Rogaway. X OR MACs: New methods for message

authenti
ation using fnite pseudorandom fun
tions. Advan
es in Cryptology -

CRYPTO '95, LNCS 963, pp. 15-28, Springer-Verlag, 1995.

3. M. Bellare, J. Kilian, and P. Rogaway.	 The se
urity of the
ipher blo
k
 haining

message authenti
ation
ode. JCSS, vol. 61, no. 3, 2000. Earlier version in Ad­

van
es in Cryptology - CRYPTO '94, LNCS 839, pp. 341-358, Springer-Verlag,

1994.

4. A. Berends
hot, B. den Boer, J. P. Boly, A. Bosselaers, J. Brandt, D. Chaum,

I. Damgaard, M. Di
htl, . Fumy, M . v an der Ham, C. J. A. Jansen, P. L a n d r o
 k,

B. Preneel, G. Roelofsen, P. de Rooij, and J. Vandewalle. Final Report of RACE

Integrity Primitives. LNCS 1007, Springer-Verlag, 1995.

12

�

�

� �

�
� �

 �
� �

5. J. Bla
k and P. Rogaway. C B C M A Cs for arbitrary-length messages: The three

key
onstru
tions. Advan
es in Cryptology - CRYPTO 2000, LNCS 1880, pp.

197-215, Springer-Verlag, 2000.

6. J. Bla
k a n d P . Rogaway. Comments to NIST
on
erning AES modes of operations:

A suggestion for handling arbitrary-length messages with the CBC MAC. Se
ond

Modes of Operation Workshop. Available at

http://www.
s.u
davis.edu/-rogaway/.

7. J. Bla
k and P.	 Rogaway. A blo
k-
ipher mode of operation for parallelizable

message authenti
ation. Advan
es in Cryptology - EUROCRYPT 2002, LNCS

2332, pp. 384-397, Springer-Verlag, 2002.

8. FIPS 113.	 Computer data authenti
ation. Federal Information Pro
essing Stan-
dards Publi
ation 113, U.S. Department of Commer
e/National Bureau of Stan-
dards, National Te
hni
al Information Servi
e, Springfeld, Virginia, 1994.

9. V. Gligor, and P. Dones
u. Fast en
ryption and authenti
ation: XCBC en
ryption

and XECB authenti
ation modes. Fast Software En
ryption, FSE 2001, to appear

in LNCS, pp. 97-111, 2001. Full version is available at

http://
sr
.nist.gov/en
ryption/modes/proposedmodes/.

10. ISO/IEC 9797-1. Information te
hnology	 - se
urity te
hniques - data integrity

me
hanism using a
ryptographi

he
k fun
tion employing a blo
k
ipher algo-
rithm. International Organization for Standards, Geneva, Switzerland, 1999. Se
-
ond edition.

e

be y ond the birthday paradox limit: A new
onstru
tion. Fast Software En
ryption,

FSE 2002, to appear in LNCS, pp. 231-245, 2002. Full ve r s i o n i s a vailable at

11.	 E. Jaulmes, A. Joux, and F. Valette. On the se
urity of randomized CBC-MAC

http://eprint.ia
r.org/2001/074/.

12. E. Petrank and C. Ra
kof.	 CBC MAC for real-time data sour
es. J.Cryptology,

vol. 13, no. 3, pp. 315-338, Springer-Verlag, 2000.

Proof of Lemma 4.2

(1)	 () Let	 {A , , A

(q)} be a set of n-bit strings, that is, A E { 0, 1}n for 1 :

(1)	 () Vi : q. e say {A , , A

(q)} are distin
t as shorthand for A = A(j) for

1 : Vi : Vj : q.

Before proving Lemma 4.2, we need the following lemma.

Lemma A.1. Let q, q1, q2, q3

be p ositive integers su
h that q = q1

+ q2

+ q3. Let

(1) (q�

) (1) (q�

) (1) (q�

)
x , , x , x , , x , x , , x1 1 2 2 3 3

(1) (q�)	 (1) (q�

)be fied n-bit strings su
h that {x , , x } are distin
t, {x , , x } are 1 1	 2 2

(1) (q�

)
distin
t, and {x3

, , x3

} are distin
t. Similarly, Let

(1) (q�

) (1) (q�

) (1) (q�

)
y , , y , y , , y , y , , y1 1 2 2 3 3

(1) (q�

) (1) (q�

) (1) (q�

)
be 	 fi ed n-bit strings su
h that {y , , y , y2

, , y2

, y3

, , y } are 1 1	 3

distin
t. Let P E Perm(n) and K E { 0, 1}n. Then the number of (P, K) whi
h

satisfes
() () P (x1

) = y1

for 1 : Vi : q1,

() ()

P (K x2

) = y2

for 1 : Vi : q2, and

(10) () ()

P ((K u) x3

) = y3

for 1 : Vi : q3

13

http://eprint.ia�r.org/2001/074
http://�sr�.nist.gov/en�ryption/modes/proposedmodes
http://www.�s.u�davis.edu/-rogaway

� �

 � � �

� � � �

� �

�
�

� �

� �

�
�

 �

� � �

�

�
 �

�
 �

� � �

� � � �

�
�

is at least (2n (q1

+ q2

+ q3))! (2n (q1q2

+ q1q3

+ q2q3)).

ne note that (2 (q1

+ q2

+ q3))! (2n (q1q2

+ q1q3

+ q2q3)) 2 (2n q)!
�

� � � �

q

q q q q
� � �2n

2 sin
e q1q2

+ q1q3

+ q2q3

= 2

.

Proof (of Lemma M.1). e frst
ount the numbe r of K.

Number of K. irst, for any fxed i and j su
h that 1 : i : q1

and 1 : j : q2,

() (j)we h a ve exa
tly one K su
h that x1

= K x2

. Sin
e there are q1q2

hoi
e of

(i, j), we have

() (j)
#{K I x1

= K x2

for 1 : � i : q1

and 1 : � j : q2} : q1q2

(11)

Next, for any fxed i and j su
h that 1 : i : q1

and 1 : j : q3, w e have

() (j)exa
tly one K su
h that x1

= (K u) x3

. Sin
e there are q1q3

hoi
e of (i, j),

we have

() (j)#{K I x1

= (K u) x3

for 1 : � i : q1

and 1 : � j : q3} : q1q3

(12)

Next, for any fxed i and j su
h that 1 : i : q2

and 1 : j : q3, w e have

() (j)
exa
tly one K su
h that K x2

= (K u) x3

. Sin
e there are q1q3

hoi
e of

(i, j), we have

() (j)#{K I K x2

= (K u) x3

for 1 : � i : q2

and 1 : � j : q3} : q2q3

(13)

Then from (11), (12) and (13), we h a ve at least 2n (q1q2

+ q1q3

+ q2q3)

hoi
e of K E { 0, 1}n whi
h satisfes the following three
onditions:

x
()

1

= K x
(j)

2

for 1 : V i : q1

and 1 : V j : q2,

x
()

1

= (K u) x
(j)

3

for 1 : V i : q1

and 1 : V j : q3, a n d

K x
()

2

= (K u) x
(j)

3

for 1 : V i : q2

and 1 : V j : q3.

e now fx any K whi
h satisfes these three
onditions.

Number of P . Now K is fxed in su
h a w ay th a t

(1) (q�

) (1) (q�

) (1) (q�

){x , , x , K x , , K x , (K u) x , , (K u) x }1 1 2 2 3 3

(whi
h are inputs to P) are distin
t. Also, the
orresponding outputs

(1) (q�

) (1) (q�

) (1) (q�

){y , , y , y , , y , y , , y }1 1 2 2 3 3

are distin
t. ln other words, for P , the above q1

+ q2

+ q3

input-output pairs are

determined. The remaining 2n (q1

+ q2

+ q3) input-output pairs are undeter-
nmined. Therefore we h a ve (2 (q1

+ q2

+ q3))! possible
hoi
e of P for any su
h

fxed K.

14

 �
 �

�

 � �

� �

� �

�

� � �

��� ���

���

�

� �

Completing the Proof. To summarize, we h a ve:

at least 2n (q1q2

+ q1q3

+ q2q3)
 hoi
e of K, and

(2n (q1

+ q2

+ q3))!
hoi
e of P when K is fxed.

This
on
ludes the proof of the lemma. D

e n o w prove Lemma 4.2.

Proof (of Lemma 4.2). Let 01, 02, 03

be either P (), P (K), P ((K u))

or P1(), P2(), P3(). The adversary A has ora
le a

ess to 01, 02

and 03.

There are three types of queries A
an make: either (1, x) w h i
h denotes the

query "what is 01(x)?," (2, x) whi
h denotes the query "what is 02(x)?," or

(3, x) w h i
 h denotes the query "what is 03(x)?." or the i-th query A makes to

() ()

0j, defne the query-answer pair (xj

, y j

) E { 0, 1}n { 0, 1}n , w here A's query

() ()

was (j, xj

) and the answer it got was yj

.
 ithout loss of generality, w e assume that A makes q1

queries to 01(x), q2

queries to 02(x), and q3

queries to 03(x), where q1

+ q2

+ q3

= q. urther, we

assume that A is deterministi
 (otherwise we
onsider arbitrarily fxed random

tape).

Defne view v of A as

(1) (1) (q�

) (q�

)
v = ((x , y), , (x , y),1 1 1 1

(1) (1) (q�

) (q�

)
(x , y), , (x , y),2 2 2 2

(1) (1) (q�

) (q�

)(x3

, y 3

), , (x3

, y 3

))

e sa y that v is a possible view if the following three
onditions are satisfed:

(1) (q�

)
{y1

, , y 1

} are distin
t,

(1) (q�

){y2

, , y 2

} are distin
t, and

(1) (q�

){y3

, , y 3

} are distin
t.

e note that sin
e A never repeats a query, w e h a ve

(1) (q�

){x1

, , x 1

} are distin
t,

(1) (q�

)
{x2

, , x 2

} are distin
t, and

(1) (q�

)
{x3

, , x 3

} are distin
t.

e also note that sin
e A is deterministi
, the i-th query A makes is fully

determined by the frst i 1 query-answer pairs. Then the number of all possible

(2;)' (2;)' (2;)'view Nall

is Nall

= . Similarly, the fnal output of A(2; q�

)' (2; q�

)' (2; q�

)'

(0 or 1) depends only on v. Hen
e denote by C;(v) the fnal output of A as a

fun
tion of v.

Let �one

be a set of all possible view v su
h that A outputs 1. That is,

�one

= {v I C ;(v) = 1 }. e let None

= # �one. Also, let �good

be a set of

(1) (q�

) (1) (q�

) (1) (q�

)
all possible view v su
h that {y , , y , y , , y , y , , y } are1 1 2 2 3 3

(2;)'distin
t. e l e t Ngood

= # �good, then Ngood

= . Therefore we (2; (q�

+q�

+q�

))'

have

#{v I v E (�one �good)} 2 None

(Nall

Ngood) (14)

15

��� � � � �

� � �

� �

� �

� �

� � �

� � �

��� � � � � � � �

� � � � �

�
 �

�
�

 �

�
�

 �

Evaluation of P e frst evaluate rand.

�

() �

() �

() Prand

= Pr(P1, P2, P3

f Perm(n) : A = 1)

e have

�

() �

() �

() #{(P1, P2, P3) I A = 1 }
Prand

=

{(2n)!}3

or ea
h v E �one, the numbe r of (P1, P2, P3) su
h that

() ()

P1(x1

) = y1

for 1 : V i : q1,

() ()

P2(x) = y for 1 : V i : q2, and2 2

() ()

P3(x) = y for 1 : V i : q33 3

is exa
tly (2n q1)! (2n q2)! (2n q3)!. Therefore, we h a ve

 #{(P1, P2, P3) I (P1, P2, P3) satisfying (15)}
Prand

=
{(2n)!}3

vE�one

(2n q1)! (2n q2)! (2n q3)!

= None

{(2n)!}3

=

oneN

Nal l

Evaluation of P e next evaluate real.

1}n () (K) ((K �))P = Pr(P f Perm(n); K f { 0, : A = real

e have

() (K) ((K �))#{(P, K) I A = 1 }
Preal

=

(2n)! 2n

Then from Lemma A.1, we h a ve

P

{(P, K) I (P, K) satisfying (10)}

real

2
(2n)! 2n

vE(�onen�good

) (2n q)! q2

2 1

(2n)! 2 2n

vE(�onen�good

)

rom (14) we h a ve

P

(2n q)! q2

real

2 (None

Nal l

+ Ngood

) 1

(2n)! 2 2n
2None

Ngood

(2n q)! q
= 1 + Nal l

1

2nNal l

Nal l (2n)! 2

(15)

1)

(16)

16

�
�

�

� � � �

� � � � � � � � � � � �

� �

�

�
 �

�

�

�

�

� �

� � �

� �

N

N

Completing the Proof. Now we have

good

q(q 1) (2n q)!
2 1 and Nal l

2 1

al l

2 2n (2n)!

The frst inequality f o l l o ws sin
e

� ��

1Ngood 1� �q 1 2;

= �

� � �

� � �

� �

Nal l

1 1 11� �q�

1 2; 1� �q�

1 2; 1� �q�

1 2; � i

2 1

2n

1� �q 1

1 + 2 + + (q 1)
2 1

P

2n

Then from (16) we h a ve

q(q 1) q2

real

2 Prand

1

2 2n 2 2n

2q
2 Prand

(17)
2n

Applying the same argument t o 1 Preal

and 1 Prand

yields that

2q
1 Preal

2 1 Prand

(18)
2n

�

 inally, (17) and (18) give IPreal

PrandI : 2
q

;

. D

17

