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Abstra
t. In this paper, we propose TMAC, Two-Key CBC Message 

Authenti
ation Code. TMAC is a refnement of X CBC (whi
h is a variant 

of CBC MAC) shown by Bla
k and Rogaway.  e use only (k + n)-bit 

key for TMAC while XCBC uses (k + 2 n)-bit key, w he re k is the key 

length of the underlying blo
k 
ipher and n is its blo
k length. The 
ost 

for redu
ing the size of se
ret keys is almost negligible; only one shift 

and one 
onditional XOR. Similarly to XCBC, our algorithm 
orre
tly 

and eÆ
iently handles messages of arbitrary bit length. 

1 Introdu
tion 

Let E : {0, 1}k  {  0, 1}n  {  0, 1}n be a blo
k 
ipher: it uses a k-bit key K E 

{0, 1}k to en
rypt an n-bit blo
k X E { 0, 1}n into an n-bit 
iphertext Y = 

EK(X). 

1.1 CBC MAC 

The CBC MAC [8, 10] is the simplest and most well-known algorithm to make a 

MAC from a blo
k 
ipher. Let M = M1IIM2II   IIMm 

be a message string su
h 

that IM1I = IM2I =   = IMmI = n. Then CBC EK 

(M ), the CBC MAC of M 

under key K, is defned as Cm, where 

C� 

= EK(M� 

�C��1) 

for i = 1 ,  , m  and Co 

= 0 

n. 

Bellare, Kilian, and Rogaway p r o ved the se
urity o f t h e C B C M A C for fxed 

message length mn [3]. lt is well known, however, that the CBC MAC i s not 

se
ure if the message length varies. 

1.2 EMAC 

To deal with variable message length in blo
ks m, En
rypted MAC ( E M A C) 

was developed. EMAC en
rypts CBCEK� 

(M ) using a new blo
k 
ipher key K2. 

That is, 

EMACEK�
 EK� 

(M ) = EK� 

(CBCEK� 

(M ))  
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EMAC w as developed for the RACE proje
t [4]. Petrank and Ra
kof then proved 

the se
urity [12]. 

A problem is that the message length is limited to a positive m ultiple of n, 

that is, the domain is limited to ({0, 1}n)+. The simplest approa
h to deal with 

messages whose lengths are not a multiple of n is to append the minimal 10 to 

M as a padding so that the length is a multiple of n. Note that the padding is 

appended even if the size of the message is already a multiple of n. 

ln this way, E M A C 
an deal with 
ompletely variable message length. ln 

other words, the domain is {0, 1}*.  e 
all this EMAC*. 

1.3 RMAC 

Jaulmes, Joux, and Valette proposed RMAC [11] whi
h is an extension of EMAC. 

RMAC en
rypts CBCEK� 

(M ) with K2 

R, w here R is an n-bit random string 

and it is a part of the tag. That is, 

RMACEK�
 EK� 

(M ) = ( EK� 

��(CBCEK� 

(M )), R ) 

They showed that the se
urity o f R M A C i s b e y ond the birthday paradox 

limit. However, the tag length is n bits longer than the other CBC MAC v ariants. 

1.4 XCBC 

EMAC* and RMAC require 1 + I(IM I + 1) /nl blo
k 
ipher invo
ations. Bla
k 

and Rogaway proposed XCBC [5] whi
h requires only IIM I/nl blo
k 
ip h er 

invo
ations. 

XCBC takes three keys: one blo
k 
 i p h e r k ey K1, and two n-bit keys K2 

and K3. X CBC makes two 
ases to deal with arbitrary length messages: M E 

({0, 1})+ and M  E ({0, 1})+. lf M E ({0, 1})+ then XCBC 
omputes exa
tly the 

same as the CBC MAC, ex
ept XORing an n-bit key K2 

before en
rypting the 

last blo
k. lf M  E ({0, 1})+ then minimal 10 padding (i 2 0) is appended to 

M so that the length is a multiple of n, a n d X CBC 
omputes exa
tly the same 

as the CBC MAC, ex
ept XORing another n-bit key K3 

before en
rypting the 

last blo
k. 

1.5 Our Contribution 

The key length of XCBC is (k + 2 n) bits in total. To redu
e the key length, the 

authors suggested the following solution [6] for n : k : 2n. A se
ret key is a 

single key K of E. Then for some distin
t 
onstants C1a, C1b, C2, and C3, let 

K1 

= the frst k bits of EK 

(C1a)IIEK(C1b), 

K2 

= EK 

(C2), 

K3 

= EK 

(C3) 

This key derivation uses one k-bit key, but it has two problems: 
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1. The number of blo
k 
ipher invo
ations is no longer optimal sin
e it requires 

3 or 4 additional blo
k 
ipher invo
ations. 

2. lt needs two k ey s
hedulings for two b l o 
 k 
ipher keys K and K1. 

These problems may be signif
ant if one frequently 
hanges the se
ret key. 

ln this paper, we propose TMAC, Two-Key CBC Message Authenti
ation 

Code. TMAC is a refnem ent of XCBC shown by Bla
k and Rogaway. e use only 

(k+n)-bit key for TMAC while XCBC uses (k+2  n)-bit key. The 
ost for redu
ing 

the size of se
ret keys is almost negligible; only one shift and one 
onditional 

XOR. Similarly to XCBC, the domain is {0, 1}* and it requires IIM I/nl blo
k 


ipher invo
ations. 

e show a 
omparison of CBC MAC and its variants in Table 1, where M 

is the message and E is a blo
k 
ipher. The third 
olumn gives the numbe  r o f 

invo
ations of E, assuming IM I > 0. The fourth 
olumn gives the numbe  r o f 

diferent k eys used for E. 

Table 1. Comparison of CBC MAC and Its Variants. 

Name Domain #E Invo
ations #E Keys Key Length 

CBC MAC [8, 10, 3] ({0, 1}n)m IM I/n 1 k 

EMAC� [4, 12] {0, 1}� 1 + I(IM I+ 1 ) /nl 2 2k 

RMAC [11] {0, 1}� 1 + I(IM I+ 1 ) /nl 2 2k 

XCBC [5, 6] {0, 1}� IIM I/nl 1 k + 2 n 

TMAC (Our proposal) {0, 1}� IIM I/nl 1 k + n 

1.6 Other Related Works 

Re
ently, some resear
hers proposed parallelizable MAC algorithms. Bellare, 

Gueerin, and Rogaway proposed XOR MAC [2]. Gligor, and Dones
u proposed 

XECB-MAC [9]. Bla
k and Rogaway proposed PMAC [7]. 

However, these MAC algorithms have o verhead as follows. XOR MAC r e -
quires mu
h m o r e i n vo
ations of E than the other MAC algorithms. XECB-MAC 

requires modulo 2n arithmeti
 and three more invo
ations of E than XCBC and 

TMAC. PMAC needs to generate a sequen
e of masks. 

Therefore, TMAC and XCBC are better than these algorithms in non-parallelizable 

environment. 

2 Mathemati
al Preliminaries 

2.1 Notation 

lf A is a fnite set then #A denotes the numbe  r of elem ents in A.  or a set A, 

x f A means that x is randomly 
hosen from A. lf a E { 0, 1}* is a string then 

IaI denotes its length in bits. lf a, f E { 0, 1}* are equal-length strings then a f 

is their bitwise XOR. 
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or an n-bit string a = an 1 

a1ao 

E { 0, 1}n , let 

a :: 1 = an 2an 3 

a1ao0 

Similarly, let 

a >> 1 = 0 an 1an 2 

a2a1 

2.2 The Field with 2� Points 

e i n ter
hangeably think of a point a in G (2n) i n a n y of the following ways: 

1.	 as an abstra
t point in a feld; 

2.	 as an n-bit string an 1 

a1ao 

E { 0, 1}n; 

3.	 as a formal polynomial a(u) = an 1u 

n 1 + + a1u + ao 

with binary 
oeÆ-

ients. 

To add two points in G (2n), take their bitwise XOR. e denote this oper-
ation by a b. 

To m ultiply two points, fx some irredu
ible polynomial f(u) h a ving binary 


oeÆ
ients and degree n. T o be 
on
rete, 
hoose the lexi
ographi
ally frst poly-
nomial among the irredu
ible degree n polynomials h a ving a minimum numbe  r 

of 
oeÆ
ients. e list some indi
ated polynomials.  f(u) = u  + u + u 

3 + u + 1 for n = 64, 

128 7 2f(u) = u + u + u + u + 1 for n = 128, and  2  1o  2f(u) = u + u + u + u + 1 for n = 256. 

To	 m ultiply two p o in ts a E G (2n) and b E G (2n), regard a and b as polyno-
nmials a(u) = an 1u 

n 1 + + a1u + ao 

and b(u) = bn 1u 

1 + + b1u + bo, 

form their produ
t 
(u) where one adds and multiplies 
oeÆ
ients in G (2), and 

take the remainder when dividing 
(u) by f(u). 

Note that it is parti
ularly easy to multiply a point a E { 0, 1}n by u. e 

128 7 2show a method for n = 128, where f(u) = u +u +u +u + 1. T hen m ultiplying 

a = a127 

a1ao 

by u yields a produ
t an 1u 

n + an 2u 

n 1 + + a1u 

2 + aou. 

128Thus, if an 1 

= 0, then a u = a :: 1. lf an 1 

= 1, then we m ust add u to 

128 7 2	 128 7 2a :: 1. Sin
e u + u + u + u + 1 = 0 we have u = u + u + u + 1, so adding 

u128 means to xor by 0 

12o10000111. ln summary, when n = 128, 

 
a :: 1	 if a127 

= 0,
a	 u = (1)

(a :: 1) 012o10000111 otherwise, 

where a u = a(u) u mod f(u). 

Also, note that it is easy to devide a point a E { 0, 1}n by u, meaning that 

one multiplies a by t h e m ultipli
ative i n verse of u in the feld: a u 

1 . e show a 

method for n = 128. Then multiplying a = a127 

a1ao 

by u 

1 yields a produ
t 

n	 2 n 3 1 1an 1u +an 2u + +a2u+a1+aou . T h us, if ao 

= 0, then a u = a >> 1. 

1 128 7 2lf ao 

= 1, then w e m ust add u to a >> 1. Sin
e u + u + u + u + 1 = 0 we 
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127 1 127have u = u + u + 1 + u 

1, so adding u = u + u + u + 1 means to xor 

by 10 

12o1000011. ln summary, whern n = 128, 

a >> 1 if ao 

= 0, 

a u 

1 = (2)
(a >> 1) 1012o1000011 otherwise. 

3 Spe
if
ation 

3.1 Basi
 Spe
if
ation 

To use TMAC, one must spe
ify a blo
k 
ipher E. 

The blo
k 
ipher E is a fun
tion E : KE  { 0, 1}n  { 0, 1}n, where ea
h 

E(K, ) = EK 

( ) is a p erm utation on {0, 1}n , KE 

is the set of possible keys and 

n is the blo
k length. The popular blo
k 
ipher to use with TMAC is likely to 

be AES, but any other blo
k 
ipher is fne. 

TMAC is a fun
tion taking two k eys K1 

E K E 

, K2 

E { 0, 1}n and a message 

M E { 0, 1}*, and returning a string in {0, 1}n . T he key spa
e K of TMAC is 

K = KE  { 0, 1}n. The fun
tion is defned in ig. 1 and illustrated in  ig. 2. 

Algorithm TMACEK� 

.K� 

(M) 

if M E ({0, 1}n)+ 

then K + K2  u and P + M 

else K + K2 

and P + M II10i, where i + n - 1 - I M I mod n 

Let P = P1IIP2II IIPm, w here IP1I = IP2I =   = IPmI = n 

co 

+ 0n 

for i + 1 to m - 1 do 

ci 

+ EK� 

(Pi 

E ci�1 

) 

return T = EK� 

(Pm 

E cm�1 

E K) 

Fig. 1. Defnition of TMAC. 

M1

 
E�K1 

 
 
 
 
�

M2

 
�

 
E�K1 

 
 
 
 
�

M�

 
�

 
E�K1 

 

�K2  u 

M1

 
EK1 

� 

 
 
 
 
�

M2

 
�

 
EK1 

� 

 
 
 
 
�

M� 10i � �� �
 
�

 
EK1 

� 

 

�K2 

T T 

Fig. 2. Illustration of TMAC. 

ln the third line of  ig. 1 and in the last blo
k of left hand side in ig. 2, 

K2 

u is a multipli
ation in G (2n). lt 
an be 
omputed with only one shift and 

one 
onditional XOR as shown in (1). 

5
 



  
 

 
   

 
  

 �

 

 

  

  

� �
 

 

 
 

   
 

�
 

3.2 User Option 

e h a ve t wo options on the 
omputation of K2 

u. The frst option is to keep 

both  K2 

and K2 

in the memory. lt uses a memory of 2n bits.u 

The se
ond option uses a memory of only n bits. e frst keep K2 

in the 

memory. hen K2 

is needed, we 
ompute K2 

u from K2. e then repla
e u 

K2 

with K2 

in the memory. Next when K2 

is needed, we 
ompute K2 

fromu 

K2 

u and repla
e K2 

u with K2 

in the memory. Repeat this pro
ess. 

Note that it is easy to 
ompute K2 

from K2 

u sin
e multipli
ation by u 

1 


an be 
omputed with only one shift and one 
onditional XOR as shown in (2). 

3.3 Comparison with XCBC 

XCBC is obtained by repla
ing K2 

x with K3 

in  ig. 2, where K3 

E { 0, 1}n 

is a random string. ln another way around, TMAC is obtained from XCBC by 

repla
ing K3 

with K2 

x. The size of keys is redu
ed from (k+2 n) bits to (k+ n) 

bits in this way. 

4 Se
urit o  f  M C 

4.1 Se
urity Defnitions 

An adversary A is an algorithm with an ora
le (or ora
les). The ora
le 
omputes 

some fun
tion.  ithout loss of generality, a d v ersaries are assumed to never ask 

a query outside the domain of the ora
le, and to never repeat a query. 

A b l o 
 k 
ipher is a fun
tion E : KE  { 0, 1}n  { 0, 1}n where KE 

is a fnite 

set and ea
h EK 

( ) = E(K, ) is a p erm utation on {0, 1}n. Let Perm(n) denote 

the set of all permutations on {0, 1}n . e sa y that P is a random permutation 

if P is randomly 
hosen from Perm(n). 

Note that {EK 

( ) I K E K E} should look like P erm(n). or an adversary A, 

we defne ���


���
 

i?i 

��� 

: AEK 

( ) A� ( ) = 1) � Pr(P f Perm(n) :(A) Pr(K fK 1)
Adv =
 =
 EE 

The adversary A 
annot distinguish {EK( ) I K E K E 

} from Perm(n) if Adv
i?i(A)E 

is negligible. 

Similarly, a M A C fun
tion family from {0, 1}* to {0, 1}n is a map F : KF 

{0, 1}*  { 0, 1}n where KF 

is a set with an asso
iated distribution. e w r i t e 

FK( ) for F (K, ). e sa y that AFK 

( ) forges if A outputs (x, FK(x)) where A 

never queried x to its ora
le FK 

( ). Then we defne 

�����
 : AFK 

( )AdvF 

(A) = Pr( K fK F 

forges) 

Let Rand(*, n) denote the set of all fun
tions from {0, 1}* to {0, 1}n. This set is 

given a probability measure by asserting that a random element R of Rand(*, n) 
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asso
iates to ea
h string x E { 0, 1}* a random string R(x) E { 0, 1}n . Then we 

defne 

vii?f : AFK 

( ) ( ) AdvF 

(A) = Pr(K fK F 

= 1) Pr(R f Rand(*, n ) : A = 1) 

Also we w rite 

i?i i?i 

AdvE 

(t, q) = max {AdvE 

(A)} ,
; 

where the maximum is over all adversaries who run in time at most t and make 

at most q queries. urther we write � � 

AdvF 

��
(t, q, p) = m a x 

; 

{AdvF 

��
(A)} and Adv 

vii?f 

F 

(t, q, p) = m a x 

; 

Adv 

vii?f 

F 

(A) , 

where the maximum is over all adversaries who run in time at most t, m ake at 

most q queries, ea
h of whi
h is a t m o st p-bits. 

4.2 Theorem Statements 

e give the following information-theoreti
 bound on the se
urity of TMAC. A 

proof of this lemma is given in the next se
tion. 

e idealize a blo
k 
ipher by a random permutation drawn from Perm(n). 

Lemma 4.1. Let A be an adversary whi
h asks at most q queries, ea
h of whi
h 

is at most nm-bits. Mssume m : 2n/4. Then 

: ATMAC�� 

�K� 

( ) Pr(P1 

f Perm(n); K2 

f { 0, 1}n = 1) 

2 q2(3m + 1)( ) Pr(R f Rand(*, n ) : A = 1) : 

2n 

rom the above theorem, it is standard to pass to the 
omplexity-theoreti
 

result. ( or example, see [3, Se
tion 3.2].) Then we h a ve the following 
orollary. 

Corollary 4.1. Let E : KE  { 0, 1}n  { 0, 1}n be the underlying blo
k 
ipher 

used  i  n  TTM  C. Then 

2 q2 

vii?f 

(3m + 1) i?i 

AdvTMAC(t, q, nm) : + Adv (t1 , q 

1) ,
2n E 

where t1 = t + O(mq) and q1 = mq. 

The se
urity o f M A C is also derived in the usual way. ( or example, see [3, 

Proposition 2.7].) Then we h a ve the following theorem. 

Theorem 4.1. Let E : KE  { 0, 1}n  { 0, 1}n be the underlying blo
k 
ipher 

used  i  n  TTM  C. Then 

2 q2 

��
 

(3m + 1) + 1 

AdvTMAC(t, q, nm) : + Adv 

i?i (t1 , q 

1) ,
2n E 

where t1 = t + O(mq) and q1 = mq. 
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Algorithm FCBCEK� 

.EK� 

.EK� 

(M) 

if M E ({0, 1}n

c

)+ 

then K + K2, and P + M 

else K + K , and P + M II10i , w here i + n - 1 - I M I mod n 

Let P = P1IIP2II II Pm, w here IP1I = IP2I = = IPmI = n 

o 

+ 0n 

for i + 1 to m - 1 do 

ci 

+ EK� 

(Pi 

E ci�1) 

return EK 

(Pm 

E cm�1 

) 

Fig. 3. Defnition of FCBC. 

M1 

EK1 

M2 

EK1 

M 

EK2 

M1 

EK1 

M2 

EK1 

M 10i 

EK 

T T 

Fig. 4. Illustration of FCBC. 

4.3 Proof of Lemma 4.1 

or a random permutation P and a random n-bit string K, let 

Q1(x) = P (K x), 

Q2(x) = P ((K u) x) 

e frst show that P ( ), Q 1( ), Q 2( ) are indistinguishable from three independent 

random permutations P1( ), P 2( ), P 3( ). 

Lemma 4.2. Let A be an adversary whi
h asks at most q queries. Then 

( ) (K ) ((K �) )Pr(P f Perm(n); K f { 0, 1}n : A = 1) 

2q
� 

( ) � 

( ) � 

( ) Pr(P1, P 2, P 3 

f Perm(n) : A = 1) : 

2n 

A proof is given in the appendix. 

Next we re
all CBC whi
h appeared in the analysis of XCBC [5]. CBC 

is a fun
tion taking three keys K1, K 2, K 3 

E K E 

and a message M E { 0, 1}* , 

and returning a string in {0, 1}n, where E is the underlying blo
k 
ipher. The 

fun
tion is defned in  ig. 3 and illustrated in ig. 4. Bla
k and Rogaway s h o wed 

the following result for CBC [5]. 

Proposition 4.1 (Bla
k and Rogaway  5  ] .  Let A be an adversary whi
h 

asks at most q queries, ea
h of whi
h is at most nm-bits. Mssume m : 2n/4. 
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Then 

AFCBC 

� 

( ) 

� �Pr(P1, P 2, P 3 

f Perm(n) : = 1) 

(2m2 + 1) q2 

( ) Pr(R f Rand(*, n ) : A = 1) : 

2n 

e fnally give a proof of Lemma 4.1. 

Proof (of Lemma 4.1). By the triangle inequality, 

: ATMAC ( ) 

� 

�K�Pr(P1 

f Perm(n); K2 

f { 0, 1}n = 1) 

(3)
( ) Pr(R f Rand(*, n ) : A = 1) 

is at most 

AFCBC ( ) 

� � �Pr(P1, P 2, P 3 

f Perm(n) : = 1) 

(4)
( ) Pr(R f Rand(*, n ) : A = 1) 

0, 1}n : ATMAC ( ) 

� 

�K�+ Pr(P1 

f Perm(n); K2 

f { = 1) 

(5) 

AFCBC 

� 

( ) 

� �Pr(P1, P 2, P 3 

f Perm(n) : = 1) 

Proposition 4.1 [5] gives us an upper bound on (4). e next bound (5). (5) is at 

most 

( ) (K ) ((K �) )Pr(P f Perm(n); K f { 0, 1}n : A = 1) 

(6) 

� 

( ) � 

( ) � 

( ) Pr(P1, P 2, P 3 

f Perm(n) : A = 1) 

sin
e any adversary whi
h d o e s w ell in the setting (5) 
ould be 
onverted to 

one whi
h d o e s w ell in the setting (6), where we assume that A in (6) makes at 

most mq total queries to her ora
les. By applying Lemma 4.2, (5) is bounded by 

m2q2/2n. Therefore (3) is at most 

2 2 2 2 2 2(2m + 1) q m q (3m + 1) q
+ = 

2n 2n 2n 

D� 

5 Dis
ussion 

5.1 Summary of Properties 

e give a summary of properties of TMAC i n T able 2. 
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Table 2. Summary of Properties. 

Se
urity F un
tion Message Authenti
ation Code. More generally, 

TMAC i s a v ariable input length ({0, 1}�) pseudo-
random fun
tion (VIPRF) with fxed output length  

({0, 1}n ). 

Error Propagation Not appli
able. 

Syn
hronization Not appli
able. 

Parallelizability Sequential. 

Keying Material Two  eys. One blo
k 
ipher key and one n-bit key, 

where n is the blo
k length of the blo
k 
ipher. 

Ctr/IV/Non
e Requirements None. No 
ounter/IV/non
e is used. 

Memory Requirements Very modest. Memory requirements for the CBC 

MAC p l u s n bit for key. 

Pre-pro
essing Capability Limited. Key-setup of the underlying blo
k 
ipher 

and K2 

u 
an be pre-
omputed. Additional pre-

omputation is not possible. 

Message-Length Requirements Arbitrarily length. Any bit string M E { 0, 1}� 
an 

be 
omputed, in
luding the empty string. The length 

of the string need not be known in advan
e. 

Ciphertext Expansion Not appli
able. 

5.2 Advantages 

Short Key. TMAC requires only (k +n)-bit keys while XCBC uses (k +2 n)-bit 

keys. 

Provable Se
urity. e p r o ved that TMAC i s a v ariable input length ({0, 1}*) 

pseudorandom fun
tion (VlPR ) with fxed output length ({0, 1}n) by as-
suming that the underlying blo
k 
ipher is a pseudorandom permutation. 

EÆ
ien
y. TMAC uses max{1, IIM I/nl} blo
k 
ipher 
alls. The overhead be-
yond blo
k 
ipher 
alls is almost negligible. 

Arbitrarily Message Length. Any bit string M E { 0, 1}* 
an be 
omputed, 

in
luding the empty string. The length of the string need not be known in 

advan
e. 

No Re-Keying.  hereas some 
ompeting s
hemes (e.g., in [1, 4, 11]) would 

require invoking E with two or three diferent k eys, TMAC requires only one 

key as XCBC. Therefore any k ey-setup 
osts are minimized. This enhan
es 

eÆ
ien
y in both software and hardware. 

No de
ryption. As for any CBC MAC v ariant, TMAC does not use de
ryption 

of the blo
k 
ipher. 

Ba
kwards Compatibility. TMAC with K2 

= 0 

n is ba
kwards 
ompatible 

with the CBC MAC. 

Simpli
ity. Be
ause TMAC is simple, it is easily implemented in both software 

and hardware. 
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5.3 Limitations 

e note the following limitations. They apply to any C B C M A C v ariants and 

therefore none of them is spe
if
 to TMAC. 

Sequential Blo
k Cipher Calls. The CBC MAC and its variants, in
luding 

TMAC, are not parallelizable. 

Limited Pre-pro
essing Capability. Key-setup of the underlying blo
k 
 i -
pher and K2 

u 
an be pre-
omputed. Additional pre-
omputation is not 

possible without knowing the message. 

5.4 Design Rationale 

TMAC is generalized to TMAC family as follows. Let C1 

and C2 

in {0, 1}n be  

two distin
t 
onstants. Let H : KH  { 0, 1}n  { 0, 1}n be a (universal) hash 

fun
tion as follows, where KH 

is the set of possible keys of H. 

or any y E { 0, 1}n , # {K E K H 

I HK(C1) = y} = 

#
2
f
;
H , (7) 

or any y E { 0, 1}n , # {K E K H 

I HK(C2) = y} = 

#
2
f
;
H , and (8) 

or any y E { 0, 1}n , # {K E K H 

I HK(C1) HK(C2) = y} = 

#
2
f
;
H . (9) 

By using C1, C 2 

and H, T M A C family is spe
ifed in  ig. 5 and  ig. 6. 

Algorithm TMACEK� 

.HK� 

.c� 

.c� 

(M) 

if M E ({0, 1}n

c

)+ 

then K + HK� 

(c1) and P + M 

else K + HK� 

(c2 

) and P + M II10i, where i + n - 1 - I M I mod n 

Let P = P1IIP2II IIPm, w here IP1I = IP2I = = IPmI = n 

o 

+ 0n 

for i + 1 to m - 1 do 

ci 

+ EK� 

(Pi 

E ci�1) 

return EK� 

(Pm 

E cm�1 

E K) 

Fig. 5. Defnition of TMAC family. 

M1 

EK1 

M2 

EK1 

M 

EK1 

HK� 

(c1) 

M1 

EK1 

M2 

EK1 

M 10i 

EK1 

HK� 

(c2) 

T T 

Fig. 6. Illustration of TMAC family. 

e 
an then prove the se
urity o f T M A C family similarly to Lemma 4.1, 

Corollary 4.1 and Theorem 4.1. The se
urity bounds are exa
tly the same as 

Lemma 4.1, Corollary 4.1 and Theorem 4.1. 
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Our 
hoi
e for TMAC 
orresponds to KH 

= {0, 1}n , HK 

(x) = K x, C1 

= u, 

and C2 

= 1, or equivalently HK(C1) = K u and HK(C2) = K, w here K E 

{0, 1}n. lt is easy to see that our 
hoi
e meets the 
onditions (7),(8), and (9). 

Below, we list reasons of this 
hoi
e.

 e adopted multipli
ations in G (2n) sin
e it is simple, easy to understand, 

and easy to im plem ent for appropriate 
onstants.
 e adopted 1 and u as 
onstants, sin
e multipli
ations by 1 and u are both 

easy to implement eÆ
iently as we h a ve seen in (1).
 The reason why w e let HK(C1) = K u and HK 

(C2) = K (not HK(C1) = K 

and HK(C2) = K u) is that, most of the 
ase we h a ve M E ({0, 1}n)+ , 

rather than M E ({0, 1}n)+, if the message is a random string. Therefore we 

have 
 hosen 
omputationally easier way for the 
ase M E ({0, 1}n)+ . 

6 est Ve
tors 

Test ve
tors will be provided in a separate paper. 

7 Performan
e Estimation 

Similarly t o X CBC, TMAC uses IIM I/nl blo
k 
ipher invo
ations for any n o n -
empty message M . (The empty string is an ex
eption; it requires one blo
k 


ipher invo
ation.) Overhead beyond blo
k 
ipher 
alls is almost negligible. 

The size of se
ret keys is n bits smaller than XCBC. The 
ost for this short 

key is to use K2 

u. lt is 
omputed with only one shift and one 
onditional XOR. 

8 Intelle
tual Propert Statement 

The authors of this paper have no patent related to TMAC. As far as we know, 

TMAC i s 
 o vered by no patents. 
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Proof of Lemma 4.2 

(1)	 ( ) Let	 {A , , A 

(q)} be a set of n-bit strings, that is, A E { 0, 1}n for 1 : 

(1)	 ( ) Vi : q. e say {A , , A 

(q)} are distin
t as shorthand for A = A(j) for 

1 : Vi : Vj : q. 

Before proving Lemma 4.2, we need the following lemma. 

Lemma A.1. Let q, q1, q2, q3 

be p ositive integers su
h that q = q1 

+ q2 

+ q3. Let 

(1) (q� 

) (1) (q� 

) (1) (q� 

)
x , , x , x , , x , x , , x1 1 2 2 3 3 

(1) (q�)	 (1) (q� 

)be fied n-bit strings su
h that {x , , x } are distin
t, {x , , x } are 1 1	 2 2 

(1) (q� 

)
distin
t, and {x3 

, , x3 

} are distin
t. Similarly, Let 

(1) (q� 

) (1) (q� 

) (1) (q� 

)
y , , y , y , , y , y , , y1 1 2 2 3 3 

(1) (q� 

) (1) (q� 

) (1) (q� 

)
be 	  fi  ed n-bit strings su
h that {y , , y , y2 

, , y2 

, y3 

, , y } are 1 1	 3 

distin
t. Let P E Perm(n) and K E { 0, 1}n. Then the number of (P, K  ) whi
h 

satisfes
( ) ( )  P (x1 

) = y1 

for 1 : Vi : q1, 

( ) ( ) 

P (K x2 

) = y2 

for 1 : Vi : q2, and 

(10)  ( ) ( ) 

P ((K u) x3 

) = y3 

for 1 : Vi : q3 
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is at least (2n (q1 

+ q2 

+ q3))! (2n (q1q2 

+ q1q3 

+ q2q3)). 

ne note that (2 (q1 

+ q2 

+ q3))! (2n (q1q2 

+ q1q3 

+ q2q3)) 2 (2n q)!  
� 

� � � � 

q 

q q q q
� � �2n 

2 sin
e q1q2 

+ q1q3 

+ q2q3 

= 2 

. 

Proof (of Lemma M.1). e frst 
ount the numbe  r of K. 

Number of K.  irst, for any fxed i and j su
h that 1 : i : q1 

and 1 : j : q2, 

( ) (j)we h a ve exa
tly one K su
h that x1 

= K x2 

. Sin
e there are q1q2 


hoi
e of 

(i, j), we have 

( ) (j)
#{K I x1 

= K x2 

for 1 : � i : q1 

and 1 : � j : q2} : q1q2 

(11) 

Next, for any fxed i and j su
h that 1 : i : q1 

and 1 : j : q3, w e have 

( ) (j)exa
tly one K su
h that x1 

= ( K u) x3 

. Sin
e there are q1q3 


hoi
e of (i, j), 

we have 

( ) (j)#{K I x1 

= ( K u) x3 

for 1 : � i : q1 

and 1 : � j : q3} : q1q3 

(12) 

Next, for any fxed i and j su
h that 1 : i : q2 

and 1 : j : q3, w e have 

( ) (j)
exa
tly one K su
h that K x2 

= ( K u) x3 

. Sin
e there are q1q3 


hoi
e of 

(i, j), we have 

( ) (j)#{K I K x2 

= ( K u) x3 

for 1 : � i : q2 

and 1 : � j : q3} : q2q3 

(13) 

Then from (11), (12) and (13), we h a ve at least 2n (q1q2 

+ q1q3 

+ q2q3) 


hoi
e of K E { 0, 1}n whi
h satisfes the following three 
onditions: 

x
( ) 

1 

= K x
(j) 

2 

for 1 : V i : q1 

and 1 : V j : q2, 

x
( ) 

1 

= ( K u) x
(j) 

3 

for 1 : V i : q1 

and 1 : V j : q3, a n d 

K x
( ) 

2 

= ( K u) x
(j) 

3 

for 1 : V i : q2 

and 1 : V j : q3. 

e now fx any K whi
h satisfes these three 
onditions. 

Number of P . Now K is fxed in su
h a w ay th a t 

(1) (q� 

) (1) (q� 

) (1) (q� 

){x , , x , K x , , K x , (K u) x , , (K u) x }1 1 2 2 3 3 

(whi
h are inputs to P ) are distin
t. Also, the 
orresponding outputs 

(1) (q� 

) (1) (q� 

) (1) (q� 

){y , , y , y , , y , y , , y }1 1 2 2 3 3 

are distin
t. ln other words, for P , the above q1 

+ q2 

+ q3 

input-output pairs are 

determined. The remaining 2n (q1 

+ q2 

+ q3) input-output pairs are undeter-
nmined. Therefore we h a ve ( 2 (q1 

+ q2 

+ q3))! possible 
hoi
e of P for any su 
h 

fxed K. 
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Completing the Proof. To summarize, we h a ve: 

at least 2n (q1q2 

+ q1q3 

+ q2q3) 
 hoi
e of K, and 

(2n (q1 

+ q2 

+ q3))! 
hoi
e of P when K is fxed. 

This 
on
ludes the proof of the lemma. D 

e n o w prove Lemma 4.2. 

Proof (of Lemma 4.2). Let 01, 02, 03 

be either P ( ), P (K ), P ((K u) ) 

or P1( ), P2( ), P3( ). The adversary A has ora
le a

ess to 01, 02 

and 03. 

There are three types of queries A 
an make: either (1, x ) w h i
h denotes the 

query "what is 01(x)?," (2, x ) whi
h denotes the query "what is 02(x)?," or 

(3, x ) w h i 
 h denotes the query "what is 03(x)?." or the i-th query A makes to 

( ) ( ) 

0j, defne the query-answer pair (xj 

, y j 

) E { 0, 1}n  { 0, 1}n , w here A's query 

( ) ( ) 

was (j, xj 

) and the answer it got was yj 

.
 ithout loss of generality, w e assume that A makes q1 

queries to 01(x), q2 

queries to 02(x), and q3 

queries to 03(x), where q1 

+ q2 

+ q3 

= q. urther, we 

assume that A is deterministi
 (otherwise we 
onsider arbitrarily fxed random 

tape). 

Defne view v of A as 

(1) (1) (q� 

) (q� 

)
v = ((x , y ), , (x , y ),1 1 1 1 

(1) (1) (q� 

) (q� 

)
(x , y ), , (x , y ),2 2 2 2 

(1) (1) (q� 

) (q� 

)(x3 

, y 3 

), , (x3 

, y 3 

)) 

e sa y that v is a possible view if the following three 
onditions are satisfed: 

(1) (q� 

)
{y1 

, , y 1 

} are distin
t, 

(1) (q� 

){y2 

, , y 2 

} are distin
t, and 

(1) (q� 

){y3 

, , y 3 

} are distin
t. 

e note that sin
e A never repeats a query, w e h a ve 

(1) (q� 

){x1 

, , x 1 

} are distin
t, 

(1) (q� 

)
{x2 

, , x 2 

} are distin
t, and 

(1) (q� 

)
{x3 

, , x 3 

} are distin
t. 

e also note that sin
e A is deterministi
, the i-th query A makes is fully 

determined by the frst i 1 query-answer pairs. Then the number of all possible 

(2;)' (2;)' (2;)'view Nall 

is Nall 

= . Similarly, the fnal output of A(2; q� 

)' (2; q� 

)' (2; q� 

)' 

(0 or 1) depends only on v. Hen
e denote by C;(v) the fnal output of A as a 

fun
tion of v. 

Let �one 

be a set of all possible view v su
h that A outputs 1. That is, 

�one 

= {v I C ;(v) = 1 }. e let None 

= # �one. Also, let �good 

be a  set of  

(1) (q� 

) (1) (q� 

) (1) (q� 

)
all possible view v su
h that {y , , y , y , , y , y , , y } are1 1 2 2 3 3 

(2;)'distin
t. e l e t Ngood 

= # �good, then Ngood 

= . Therefore we (2; (q� 

+q� 

+q� 

))' 

have 

#{v I v E (�one  �good)} 2 None 

(Nall 

Ngood) (14) 
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Evaluation of P e frst evaluate rand. 

� 

( ) � 

( ) � 

( ) Prand 

= Pr(P1, P2, P3 

f Perm(n) : A = 1) 

e have 

� 

( ) � 

( ) � 

( ) #{(P1, P2, P3) I A = 1 }
Prand 

= 

{(2n)!}3
 

or ea
h v E �one, the numbe  r of ( P1, P2, P3) su 
h that
 

( ) ( )
 

P1(x1 

) = y1 

for 1 : V i : q1, 

( ) ( ) 

P2(x ) = y for 1 : V i : q2, and2 2 

( ) ( ) 

P3(x ) = y for 1 : V i : q33 3 

is exa
tly (2n q1)! (2n q2)! (2n q3)!. Therefore, we h a ve 

 #{(P1, P2, P3) I (P1, P2, P3) satisfying (15)}
Prand 

=
{(2n)!}3 

vE�one 

(2n q1)! (2n q2)! (2n q3)! 

= None 

{(2n)!}3 

= 

oneN

Nal l 

Evaluation of P e next evaluate real. 

1}n ( ) (K ) ((K �) )P = Pr( P f Perm(n); K f { 0, : A = real 

e have 

( ) (K ) ((K �) )#{(P, K  ) I A = 1 }
Preal 

= 

(2n)! 2n
 

Then from Lemma A.1, we h a ve
 

 
P

# {(P, K  ) I (P, K  ) satisfying (10)} 

real 

2
(2n)! 2n 

vE(�onen�good 

)    (2n q)! q2 

2 1 

(2n)! 2 2n

vE(�onen�good 

) 

rom (14) we h a ve 

  
P

(2n q)! q2 

real 

2 (None 

Nal l 

+ Ngood 

) 1 

(2n)! 2 2n    
2None 

Ngood 

(2n q)! q
= 1 + Nal l 

1 

2nNal l 

Nal l (2n)! 2 

(15) 

1) 

(16) 
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Completing the Proof. Now we have 

good 

q(q 1) (2n q)!
2 1 and Nal l 

2 1 

al l 

2 2n (2n)! 

The frst inequality f o l l o ws sin
e 

� �� 

1Ngood 1� �q 1 2; 

= � 

� � � 

� � � 

� � 

Nal l 

1 1 11� �q� 

1 2; 1� �q� 

1 2; 1� �q� 

1 2; � i 

2 1 

2n
 

1� �q 1
 

1 + 2 + + ( q 1)
2 1 

P

2n
 

Then from (16) we h a ve
 

q(q 1) q2
 

real 

2 Prand 

1
 

2 2n 2 2n 

2q
2 Prand 

(17)
2n 

Applying the same argument t o 1 Preal 

and 1 Prand 

yields that 

2q
1 Preal 

2 1 Prand 

(18)
2n 

� 

 inally, (17) and (18) give IPreal 

PrandI : 2
q 

; 

. D 
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