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Abstract 

This note describes a parallelizable block-cipher mode of operation that simultaneously provides privacy and 
authenticity. It does this using only IIM I/nl   block cipher invocations. Here M is the plaintext (an arbitrary bit 
string) and n is the block length. The scheme refines one recently suggested by Jutla [Ju00]. 

Introduction 

Background When message privacy is a goal, message authenticity often is, too. The correct approach for achieving 
privacy-plus-authenticity has been to encrypt the plaintext and, separately, compute a message authentication code 
(MAC). Done in this way, the cost for privacy-plus-authenticity is about the cost to encrypt plus the cost to MAC. 

A recent paper by Jutla gives a computationally cheaper alternative [Ju00]. Jutla’s modes of operation, IACBC 
and IAPM, provide privacy-plus-authenticity at a cost lower than the cost to encrypt plus the cost to MAC. In fact, the 
cost of IACBC and IAPM—at least for long messages—isn’t much more than the cost of CBC mode or CTR mode, 
respectively. Jutla’s design is a lovely and timely development. 

A related paper by Gligor and Donescu offers a different privacy-plus-authenticity mode of operation [GD00]. 
Their XCBC mode is CBC-like, like Jutla’s IACBC. As in Jutla’s scheme, blocks are offset after they are enciphered. 
But [GD00] simplifies the way that offsets are computed. 

OCB Mode This note builds on [Ju00]. We describe a new mode of operation, OCB mode (Offset CodeBook), 
which refines Jutla’s IAPM scheme in some significant, though rather low-level, ways. Like Jutla’s IAPM, the new 
mode is parallelizable: the work for computing the different ciphertext blocks can be done at the same time. We 
believe this to be an important attribute in support of good hardware and software speed. Some further properties of 
OCB include: 

•	 Arbitrary domain. Any string M  {  0, 1}
* can be encrypted; in particular, IM I need not be a multiple of the 

block length n. 

• Short ciphertexts. The way we extend the domain to {0, 1}* is not to pad to a multiple of n. That would lead 
to a lengthening of the ciphertexts. Our ciphertexts are, instead, as short as possible. 

•	 Fewer block-cipher calls. Our mode uses only IIM I/nl  block-cipher invocations. Minimizing the number 
of block-cipher calls is especially important when messages are short. In many domains, short messages are 
quite common. 

• Nonces. Our mode requires a nonce (often called an IV in this context). The nonce must be non-repeating, but 
it does not have to be unpredictable. Requiring of a nonce only that it be non-repeating is less error prone for 
the user, and it is often more efficient as well, since constructing an unpredictable value would usually require 
making an additional block-cipher call. 
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• Stride associated to key, not to message. We generate our sequence of offset values in a computationally cheaper 
way than [Ju00]. Namely, the nonce Non
e is mapped to an unpredictable value R by a single application of the 
underlying block cipher. This value R forms the initial offset. The ith additional offset is obtained by adding 
to R an amount iL, where the “stride” L does not depend on Non
e—it depends only on the key. As such, the 
stride L need be computed only once. 

• Refinements to multiplication and addition semantics. For forming the offsets iL R, we describe three 
possible instantiations for addition and multiplication. Each refines those suggested before. 

• Single underlying key. The key K used for the encryption mode is a single block-cipher key, and all block-
cipher invocations are keyed using this one key. (However, it is still convenient to store the stride L, and failing 
to do so will increase the cost by one block-cipher call.) 

Comparisons Neither [Ju00] nor [GD00] worry about type of low-level concerns which drove the work here, 
namely: (1) aggressively minimizing the number of block-cipher calls; (2) what to do when IM I is not a positive 
multiple of n; (3) avoiding multiple encryption keys; and (4) making sure that non-repeating (non-random) nonces 
work fine. We maintain that if such goals are eventually to be sought, they have to be addressed from the beginning. 
The reason is that these are very “fragile” schemes—tweak them a little and they usually break—making it surprisingly 
difficult to achieve the listed goals. Similarly, small algorithmic changes completely invalidate any proofs. 

As we have indicated, OCB mode resembles Jutla’s IAPM [Ju00]. The main differences are: (1) factoring the 
offset-calculations so that much of the work is done only once; (2) further tricks for faster offset calculations; (3) deal­
ing with “short” messages in a correct and optimal way; and (4) a type of “lazy” key separation; 

No parallelizable encryption scheme is given in [GD00]. But [GD00] includes the idea of offsetting ciphertext 
blocks by multiples of a hidden value L, modulo n. A related idea, offsetting the ith block by (a bi)  o p (where 
a and b are associated to the random value r used to encrypt the message) is mentioned, albeit briefly, in [Ju00]. 

Security The security claims about OCB encryption are semantic security under adaptive chosen-plaintext attack 
(CPA) [BDJR97, GM84], and integrity of ciphertexts, in the sense of [BN00, BR00, KY00]. Proving security is on­
going work, being done jointly with Mihir Bellare and John Black. As the proofs are technical and not yet complete, 
it is possible that some unforeseen issue will arise; the current algorithms should be considered provisional. 

We point out that, by a result of [BN00], semantic security under CPA, coupled with authenticity of ciphertexts, im­
plies semantic security under chosen-ciphertext attack (CCA). This, in turn, implies non-malleability. We believe that 
non-cryptographers implicitly assume properties like non-malleability when designing their higher level-protocols, 
and so a scheme which is CCA-secure is less likely to be misused. 

2 Notation 

Fix a block cipher E which enciphers an n-bit string X using a k-bit key K, obtaining ciphertext block Y = EK 

(X). 
For E =    we have n = 1 8 and k  { 1 8, 19 ,  56}. 

The authentication tag which each ciphertext includes can have any number of bits, tagLen, from 1 to n; one uses 
the tagLen-bit prefix of an n-bit string. A standard should allow such tag-truncation since tags in excess of 80 bits, 
say, utilize extra bits but provide no meaningful increment to security. A default value of tagLen = 6 is probably 
good. 

By 0i and 1i we means strings of i 0’s and 1’s, respectively. For A a string of length less than n, by  pad
n
(A) we 

mean the string 0n-IAI-1 1 A: that is, prepend 0-bits and then a 1-bit so as to get to length n. (Appending a 1-bit and 
then 0-bits would also be fine.) 

If A is a binary string then IAI denotes its length, in bits. If A and B are strings then AB denotes their concatena­
tion. If A and B are strings of equal length then AE B is their bitwise XOR and AV B is their bitwise OR and A1 B is 
their bitwise AND. By A[bit i] we mean the i-th bit of A (regarded, where necessary, as the number 0 or the number 1), 
where characters are numbered left-to-right, starting at 1. By  A[bits £ to r] we mean A[bit £]A[bit £  1]  A[bit r]. 
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3 OCB Encryption (in general, and OCB/add) 
n n nAddition and multiplication We assume two operations: an addition operator  : {0, 1} { 0, 1}  {  0, 1} 

and a multiplication operator denoted : N { 0, 1} 

n

 {  0, 1} 

n , where  N = {1, , 3, }. Henceforth we omit the  

multiplication symbol. For concreteness, we now give these two operators a particular instantiation. Later we will 
revise this meaning to demonstrate a couple of further possibilities. 

nOCB/add For the addition modulo version of OCB, instantiate by computer addition of n-bit words (ignoring 
any carry) and instantiate iL, for  i 2 1, by repeated addition. 

(A more formal definition follows. Let A, B  { 0, 1} 

n. By  str2num(A) we mean the nonnegative integer that is 
represented by A, that  is,  n n-iA[bit i]. If  a is an integer then num2str (a) is the unique n-bit string A such n

�
i�1 

that str2num(A) = a  o 

n. By  A B we denote num2str (str2num(A) str2num(B))  . By  iA, where  i is an n

integer, we mean the string num2str (i str2num(A)). The  symbol in the last expression means multiplication in n

the integers.) 
Given a k-bit key K, derive from it a key L by way of L = EK 

(1n) V 0n-11. This forces L to be odd. 

Nonces Encryption under OCB mode requires a nonce, Non
e. The nonce would typically be a counter (maintained 
by the sender) or a random value. One particular nonce value, Non
e = 1 

n, is prohibited. Security is maintained even 
if the adversary can control the nonce (subject to the constraint that, during the adversary’s chosen-plaintext attack, no 
nonce may be repeating and no nonce may be 1n). 

Definition of OCB We now define OCB. When addition and multiplication are as just given, we are defining 
OCB/add. Let M be the message we wish to encrypt using OCB mode. Let Non
e be the nonce, a string of length n. 
The stride L is defined from K in the manner we have specified. OCB encryption is given by the following algorithm. 
See Figure 1 as well. 

Algorithm OCB-Enc // Encrypt M using (K,L  ) and Non
e, and block cipher E 

R = EK 

(Non
e) 

Let m =  ax{1, IIM I/nl}
 

Let M [1], . . . ,M [m] be strings s.t. M [1] M [m] = M and IM [i]I = n for 1 : i  m 
  

for i = 1 to m - 1 do 
C[i] = EK 

(M [i] (iL R)) (iL R) 

if IM [m]I = n then Mafk = EK 

(mL R) (mL R) 

C[m] = M [m] E Mafk 

PreTag = ( M [1] E E M [m - 1] E M [m]) ((m  1) L R) 

Tag = EK 

(PreTag)
 

else W = pad (M [m])


n

Mafk = EK 

(mL R) (mL R)
 

C[m] = M [m] E Mafk[bits n - I M [m]I  1 to n]
 

PreTag = ( M [1] E E M [m - 1] E W ) ((m  1) L R)
 

Tag = EK 

(PreTag) ((m ) L R)
 

C = C[1] C[m]
 

T = Tag[1..tagLen]
 

return ( Non
e, C,  T )
 

The description above is a functional one; in an implementation, no multiplications would be performed—repeated 
additions would be used instead, as in: 

Offet = R 

for i = 1 to m - 1 do 
Offet = Offet L 

C[i] = EK 

(M [i] Offet) Offet 
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M [1] M [2] M [3] M [4] 

M [1] 

EK 

+

chop 

p a d  

len 

+ +M [2] M [3] + W 

W 

Nonce + 1 L + R + 2 L + R + 3 L + R 4 L + R + 5 L + R 

M [4] 

Nonce 

R 

5 L + R 

EK EK EKEK EK 

R + 1 L + R + 2 L + R + 3 L + R + 4 L + R + 6 L + R 

+ 

EK 

2 L + R 

EK EK 

M [1] + M [2] + M [3] + 

+ + 3 L + R 

+ 1 L + R 2 L + R+ + 3 L + R 

1 L + R 4 L + R 

EK 

+ 

+ 

+ 

4 L + R 

EK EK 

C [1] C [2] C [3] C [4] Tag 

M [1] M [2] M [3] M [4] 

C [1] C [2] C [3] C [4] Tag 

Figure 1: OCB Encryption of a four-block message M = M [1]M [ ]M [3]M [ ]. The top half shows what happens 
when all four blocks are full n-bit blocks. The bottom half shows what happens when the final block has length 
less than n. In either case, Non
e as a non-repeating value. The stride L is determined from the underlying key K. 
Calculate C = C[1]C[ ]C[3]C[ ] and Tag as shown, and transmit Non
e, C, and a prefix T of Tag. Addition and 
mulitplication can be given several different meanings, as discussed in the text. 
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Scheme Meaning of A B Meaning of iL Definition of L 

OCB/add Add 128-bit numbers. 
Ignore any carry 

Repeated addition (as de­
fined in the prior column) 

EK 

(1128) V 1 

OCB/mod Add 128-bit numbers 
mod p. 

Repeated addition (as de­
fined in the prior column) 

EK 

(1128) 

OCB/xor XOR Multiply r(i) by L in 
GF( 128), where  r(i) is 
the ith word in canonical 
Gray-code ordering 

EK 

(1128) 1 Const 

128 and iFigure 2: Three instantiation possiblities for OCB. Here A, B  { 0, 1}  { 1, , 3, . . . }. The underlying key 
is K and L is derived from K as specified in the rightmost column. 

Because of the chain of additions used to make the Offet-values, the description above might seem to imply that OCB 
(without multiplies) is sequential. This is not correct. To illustrate what goes on in a parallel implementation, suppose 
one has two processors, P and P2 

, and one wants to OCB-encrypt M = M [1] M [m]. Start processor P with1 1 

Offet = Non
e, and start processor P2 

with Offet = Non
e L. Processor P1 

will be responsible for odd-indexed 
words while P2 

will handle even-indexed ones. Each increments its own Offet by L, not by L. While enciphering 
its blocks processor P computes its contribution to the authentication tag, as does P2 

. One of the processors will 1 

compute the final tag. 
Decryption (with authentication check) of a ciphertext (Non
e, C[1] C[m], T ) is the obvious algorithm: 

compute M [1] M [m] from C[1] C[M ] and Non
e, recompute the T , and see if it matches the tag received. If 
the full tag is available then process can be defined by a “depth 1” circuit in E: compute E 

-1 for the tag. 
K 

4 OCB/mod: Trading the Ring �/2n� for the Field �p 

In this section we expand upon a suggestion made by [Ju00] and compute the offsets modulo a prime p. We are not 
suggesting that multiple authenticated encryption schemes should be standardized—rather, we are admitting that a bit 
more work (experimental and theoretical) is needed in order to make a well-informed choice. 

n nFix a prime p = -Æ just smaller than (e.g., choose the largest prime less than n). Jutla suggests [Ju00, p. 4] 
that, when it is time to encrypt a message, a random value r is selected and r is then mapped, using the underlying 

nblock cipher, into IV 1 

and IV 2. One presumes these to be numbers in [0..p - 1] or [0.. - 1]. The  ith offset is then 
calculated as (IV 1 

iIV 2) o p. This can be implemented with repeated additions, each modulo p. 
As an optimization, the value IV 2 

need not vary with each message. It plays the same role as the stride L, and can 
be computed in a way that depends only on the underlying key K. Doing this saves one block-cipher invocation with 
every message encrypted. The stride L should no longer be chosen to be an odd number; set L = EK 

(1n) instead. 
See Figure 2. 

This OCB/mod approach approach is still efficient, but it is less efficient and more involved than OCB/add. What 
has been gained? The security bound will be a little better, nothing more. Details will be in the full paper. 

A second trick can be used, but at some small cost, it would appear, to the security bound. Instead of reducing all 
sums modulo p, redefine the semantics of addition by saying that A B is the n-bit sum where, whenever you generate 

na carry, you must increment the sum by Æ, where  p = - Æ. A few points in the field now have two representations. 

5 OCB/xor: A Gray-Code Trick and the Field GF(2n) 

In this section we describe yet another method of offsetting the blocks M [1],M [ ], . . . ,M [m - 1]: we will change 
the semantics of to be XOR (that is, addition in GF( n)) and we will change the semantics of iL as well. When
 o 

128 additions are inconvenient, this approach may be preferred. We assume in this section that n = 1 8 . 
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Notation If i is a positive integer then ntz(i) is the number of trailing 0’s in the binary representation of i. So,  for  
example, ntz(1) = ntz(3) = 0, ntz( ) = 1 , and  ntz( ) = 3 . If  L is an n-bit string, then L 1 means a left shift of L 

by one bit (msb disappearing, and a zero coming into the lsb). Similarly, L  1 means a right shift of L by one bit (lsb 
disappearing, and a zero coming into the msb). 

Algorithm Given a key K for E derive from it an n-bit key L by way of L = EK 

(1n) 1 02 130 02 130 02 130 02 130 . This  
ensures that the top two bits of every 32-bit word are zero, allowing for some pleasant implementation optimizations. 
Now define L(0) = L and, for i 2 0, define 

� 

L(i) 1 if msb(L(i)) = 0 

L(i  1) = 

1) E 0120 10 13(L(i) if msb(L(i)) = 1 

Now given a string M , the OCB algorithm proceeds as we have defined already, but with addition being defined as 
bitwise XOR, and iL being defined by 

� 

0n if i = 0 

iL =
(i - 1)L E L(ntz(i)) if i 2 1 

Note that each offset is obtained from the previous one by XORing it with the appropriate L(i). The  L(i) values can 
be computed once, in advance, or they can be computed on the fly with the specified bit twiddling. 

Explanation The following explanation assumes more mathematical background than the rest of this document. 
Understanding this explanation is not needed for understanding the algorithm’s definition. 

The algorithm just given is identical to the earlier ones except that (1) addition is done in the field GF( 128 ); and  
n(2) the ith offset is r(i) L, where  r is a particular (convenient) permutation on {1, , 3, . . . , - 1} and j L is 

the number j, treated as a field element, multiplied (in this field) by L. Let us elaborate. 
i iWe have constructed the L(i) values in such a manner that L(i) is the string that represents L, where  and 

L are regarded as points in the field GF( 128 ) and refers to multiplication in the field. Here we are are representing 
x128 x7 x2points using the irreducible polynomial p(x) = x  1 . A  string  a127 

a1 

a0 

corresponds to the 
formal polynomial a127 

x127 a1 

x a0 

. 
A Gray code on {0, 1} 

n is a permutation of {0, 1} 

n , say  (g0 

, g1 

, . . . , g2� -1 

), such that gi 

and gii1 

differ (in 
the Hamming sense) by just one bit. Also, g0 

and g2� differ in just one bit. We implicitly make use of the 
Gray code Q(n) constructed as follows: Q(1) = (0, 1), and, for i 0, if  Q(i) = (g0 

, . . . , g2� -1 

) then Qii1 

= 

-1 

2 

(0g0 

, 0g1 

, . . . , 0g2� -2 

, 0g2� -1 

, 1g2� -1 

, 1g2� , . . . , 1g1 

, 1g0 

). This is easily seen to be a Gray code, and it is not hard -2 

to prove that, in this code, gii1 

= gi 

E 1 ntz(i). Thus it is easy to compute the successive words of this code. 
Moving from strings to numbers, the Gray code that we are using is r(1) = 1, r( ) = 3, r(3) = , r( ) = 6, 

r(5) = 7, r(6) = 5, r(7) = , r(8) = 1 , and so forth. The ith offset has been defined as iL = r(i) L. 

Comments The Gray-code trick can also be used, all by itself, in Jutla’s construction, where one wants to XOR 
different subsets of vectors L(1), L ( ), . . . , L (t). In [Ju00] the L(i)-values would be obtained afresh with each mes­
sage encrypted. What we have suggested is better in two ways. First, the L(i)-values are fixed—they don’t have to  
be recomputed with each message. And second, they don’t have to be computed by using the block cipher lots of 
different times: they can be computed by applying the block cipher once, and then doing some shifting and XORing 
to get successive values. The shifting and XORing is minimal; the key-setup cost would be much lower than invoking 
the block cipher for each L(i). 

One further trick was built into the definition of L. We  defined L in a way that ensures that the top two bits of 
every 32-bit word are 0-bits. This means that one can change L to L, or change L to L, or change L to L, and  
so forth, using either two or four shift operations (on a 64-bit machine or a 32-bit machine, respectively). This means 
that only one time in eight does one have to obtain a new L(i) value by going to memory or doing bit twiddling; the 
rest of the time one shifts the current aL-value to get the a' L value that you want. The more zero-bits one sets aside 
at the beginning of each word the fewer times one has to go to memory or do bit-twiddling. But one quickly gets a 
diminishing return, and the security bound degrades with the number of forced zero-bits. So two or three 0-bits on the 
top of each word is probably a good choice. 
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