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Abstract 

In this paper the newly proposed RMAC system is analysed and a 
generic attack is presented. The attack can be used to find one of the 
two keys in the system faster than by an exhaustive search. Also, a 
serious attack on RMAC used with triple-DES is presented. 

1 Introduction 

RMAC [1] is an authentication system based on a block cipher. The 
block cipher algorithms currently approved to be used in RMAC are 
the AES and triple-DES. 

RMAC is based on a block cipher with b-bit blocks and k-bit keys. 
RMAC takes as inputs: a message M of an arbitrary number of bits, 
two keys K1,K2 each of k bits and a salt R of r bits, where r ≤ k. It 
produces an m-bit MAC value, where m ≤ b. The method is as follows. 
Encrypt M using the block cipher in CBC mode using the key K1. The 
last ciphertext block is then encrypted with the key K3 = K2+R where 
’+’ is addition modulo 2. The resulting ciphertext is then truncated 
to m bits to form the MAC. The two keys K1,K2 may be generated 
from one k-bit key in a standard way [1]. 

There are five parameter sets in [1] for each of two block sizes. 

Parameter Set b = 128 
(r, m) 

b = 64 
(r, m) 

I 
II 
III 
IV 
V 

(0, 32) 
(0, 64) 
(16, 80) 
(64, 96) 

(128, 128) 

(0, 32) 
(64, 64) 

n/a 
n/a 
n/a 

In Appendix A of [1] it is noted that for RMAC with two indepen­
dent keys K1 and K2 an exhaustive search for the keys is expected 
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to require the generation of 22k−1 MACs, where k is the size of one 
key. For RMAC with parameter sets II and V, however, this can be 
done much faster under a chosen message attack with just one known 
message and one chosen message. Independently of how the two keys 
are generated, an exhaustive search for the key K2 requires only an 
expected number of 2k decryptions of the block cipher [2]. Given a 
message M and the MAC using the salt R, request the MAC of M 
again. With a high probability this MAC is computed with a salt R', 
such that R'  = R. For these two MACs, the values just before the final 
encryption will be equal and K2 can be found after about 2k decryp­
tion operations. Subsequently, K1 can be found in roughly the same 
time. 

The rest of this paper is organised as follows. In §2 an attack on 
RMAC used with three-key triple-DES is presented. The attack finds 
all three DES keys in time roughly that of three times an exhaustive 
search for a DES key using only a few MACs. §3 presents an attack 
on RMAC used with any block cipher. The attack finds one of the two 
keys in the system faster than by an exhaustive search. 

2 Attack on RMAC with three-key triple 
DES 

One of the block cipher algorithms approved to be used in RMAC is 
triple-DES with 168-bit keys. Consider RMAC with parameter set 
II, that is with 64-bit MACs and a 64-bit salt. The key for the final 
encryption is then K3 = K2 + (R | 0104). However, it is not specified 
in [1] how the three DES keys are derived from K3. Assume that the 
first DES key is taken as the rightmost 56 bits of K2 + (R | 0104), the 
second DES as the middle 56 bits, and the third DES as the leftmost 
56 bits. Assume an attacker is given two MACs of the same message M 
but using two different values, R and R' of the salt. Assume that the 
rightmost eight bits of both R and R' are zeros. Then the encryption of 
the last same block for the two MACs is done using triple-DES where 
for one MAC the key used is (a, b, c), and where for the other MAC 
the key used is (a, b, c ⊕ d). Since the attacker knows d, he can decrypt 
through a single DES operation, find c in 256 operations and derive 
one of the three DES keys. This attack has a probability of success of 
2−16 . After the third DES key has been found, it is possible to find 
the second DES key with similar complexity. Note that eight bits of 
the salt affect the second DES key. Request the MAC of a message M 
using two different values of the salt. Decrypt through the final DES 
component with the third DES key. With a high probability the two 
second DES keys in the final encryption will be different as a result 
of different salt values. Since the salts are known by the attacker, 
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one finds the second DES in about 256 operations. Subsequently, the 
final DES key can be found in about 256 operations and the scheme is 
broken. 

3 A generic attack 

In this section we present an attack on the RMAC system with param­
eter set II for b = 64 and RMAC with parameter set V for b = 128. 
The attack finds the value of K2 after which RMAC reduces to a sim­
ple CBC-MAC for which it is well-known that simple forgeries can be 
found. In the following, let dK (x) denote the decryption of x using the 
key K for the underlying block cipher. 

The attack is based on multiple collisions. 

Definition 1 A t-collision for a MAC is a set of t messages all pro­
ducing the same MAC value. 

We shall make use of the following lemma which is easily proved. 

Lemma 1 Let A, B, and C be boolean variables. Then 

A ⇒ B ⇔ not(B) ⇒ not(A), 

and 

A ⇒ (B AND C) ⇔ not(B) OR not(C) ⇒ not(A). 

Let D be some message (with an arbitrary no. of blocks). Then 
the MAC of D, MACK1,K2(D, R), is the last block from the CBC-
encryption using K1, encrypted once again using the key K2 + R, 
where R is the salt. The attack goes as follows. Request the MACs of 
D for s different values of the salt R. Assume that the attacker finds 
a t-collision, where the salts are R0, . . . , Rt−1 and denote the common 

'MAC value by M . For simplicity denote K2+ R0 by K, and K2+ Ri 

by K + ai−1 for i = 1, . . . , t − 1. The attacker guesses a key value L 
'and computes the decryptions of the MAC value M using the keys 

L, L + a0, . . . , L + at−1. Then it holds for i = 0, . . . , t − 1, that if 
L = K or L = K + ai then dL(M ') = dL+ai (M '). Using Lemma 1 
one gets that if dL(M ') = dL+ai (M ') then L = K and L = K + ai for 
0 ≤ i < t. Similarly, if dL+ai (M ') = dL+aj (M ') then L = K + ai + aj 

for 0 ≤ i = j < t. In this way an exhaustive search for K2 can be 
made faster than brute-force. 

In some rare cases one gets equal values in the inequality tests. As 
an example, if dL(M ') = dL+ai (M ') for some i, then one needs to check 
if dL(M ') = dL+a0 (M ') = dL+a1 (M ') = ... after which all false alarms 
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are expected to be detected. The expected number of false alarms is ( 
t − 1 

)
t + .2 

Let us show the case of a 3-collision in more details. Assume that 
the random numbers, the salts used, are R0, R1, and R2 (which are 
known to the attacker). Since the messages are the same for all MACs 
and since the MACs are equal, say M ', one knows that the keys K2 + 

' R0,K2 + R1, and K2 + R2 all decrypt M to the same (unknown) 
message z, thus 

dK (M ') = dK+a0 (M ') = dK+a1 (M '), 

where K = K2 + R0, a0 = R0 + R1 and a1 = R0 + R2. 
The following implications are immediate. 

L = K ⇒	 dL(M ') = dL+a0 (M ') AND 
dL+a0 (M ') = dL+a1 (M ') 

L = K + a0 ⇒	 dL+a0 (M ') = dL(M ') AND 
dL(M ') = dL+a0+a1 (M ') 

L = K + a1 ⇒	 dL+a1 (M ') = dL+a0+a1 (M ') AND 
dL+a1 (M ') = dL(M ') 

L = K + a0 + a1 ⇒	 dL+a0+a1 (M ') = dL+a1 (M ') AND 
dL+a1 (M ') = dL+a0 (M ') 

Lemma 1 enables us to rewrite the above implications as follows. 

dL(M ') = dL+a0 (M ') ⇒ L = K 

dL+a0 (M ') = dL(M ') ⇒ L = K + a0 

dL+a1 (M ') = dL(M ') ⇒ L = K + a1 

dL+a1 (M ') = dL+a0 (M ') ⇒ L = K + a0 + a1 

Take (guess) a key value, L and compute dL(M '), dL+a0 (M '), and 
dL+a1 (M '). If dL(M ') = dL+a0 (M '), then L = K and L = K + a0, 
if dL+a0 (M ') = dL+a1 (M '), then L = K + a0 + a1, and if dL(M ') = 
dL+a1 (M '), then L = K + a1. 

Summing up, with a 3-collision (provided a0, a1 are different) one 
can check the values of four keys from three decryption operations. 

Let us next assume that there is a 4-collision. Let the four keys in 
the 4-collision be K, K + a0,K + a1, K + a2. Then from the results 
of dL(M '), dL+a0 (M '), dL+a1 (M '), and dL+a2 (M '), one can check the 
validity of four keys. Moreover, by arguments similar to the case of a 
3-collision, from the four decryptions, one can check the values of all 
keys of the form K + ai + aj , where 0 ≤ i = j ≤ 2. Thus from four ( 

3 
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decryption operations one can check 4 + = 7 keys. 2 
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t u = t + 
2 

) 

u/t 

3 
4 
5 
6 
7 
8 
9 
10 
17 

4 
7 
11 
16 
22 
29 
37 
46 
136 

1.3 
1.8 
2.2 
2.7 
3.1 
3.6 
4.1 
4.6 
8.0 

Table 1: b 
t − 1 

This generalises to the following result. With a t-collision one can ( 
t − 1 

)
check the values of u = t+ keys from t decryption operations. 2 
Table 1 lists values of t, u and u/t. It should be clear that t-collisions 
can be used to reduce a search for the key K2, one question is by how 
much. How many values of L need to be tested before the sets of keys 
{L, L + a0, . . . , L + at−1, L + a0 + a1, . . . , L + at−2 + at−1} cover the 
entire key space? 

Consider the case t = 3. One can assume a0 = a1 (otherwise there 
is no collision), and that with a high probability there are two bit 
positions where a0 = a1. Without loss of generality assume that these 
are the two most significant bits and that these bits are “01” for a0 

and “10” for a1. Then a strategy is the following: Let L run through 
all keys where the most significant two bits are “00”. Then clearly the 
sets 

{L, L + a0, L + a1, L + a0 + a1} 

cover the entire key space and an exhaustive search for K2 is reduced 
4by a factor of , since in the attack one can check the value of four 3 

keys at the cost of three decryptions. 
Consider the case t = 4. With a high probability the b-bit vectors 

a0, a1, and a2 are pairwise different. Also, with a high probability there 
are three bit positions where a0, a1, and a2 are linearly independent 
(viewed as three-bit vectors). Without loss of generality assume that 
the bits are the three most significant bits and that these are “001” 
for a0, “010” for a1 and “100” for a2. Then a strategy is the following: 
Let L run through all keys where the most significant three bits are 
“000”. Then clearly the sets 

{L, L + a0, L + a1, L + a2, L + a0 + a1, L + a0 + a2, L + a1 + a2} 
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cover 7/8 of the key space. Next fix the most significant three bits of L 
to “111”, find other bit positions where a0, a1, and a2 are different and 
repeat the strategy. Thus, in the first phase of the attack one chooses 
2b−3 values of L, does 4 × 2b−3 = 2b−1 encryptions, and one can check 
7 × 2b−3 keys. In the next phase of the attack one chooses 2b−6 values 

2b−4of L, does 4 × 2b−6 = encryptions, and one can check 7 × 2b−6 

keys. At this point, a total of 7 × 2b−3 + 7 × 2b−6 = 2b − 2b−3 − 2b−6 

keys have been checked at the cost of about 2b−1 + 2b−4 encryptions. 
In total, an exhaustive search for K2 is reduced by a factor of almost 
two. 

For higher values of t the attacker’s strategy becomes more complex. 
We claim that with a high probability (“good” values of ai) the factor 
saved in an exhaustive search for the key is close to the value of u/t 
(see Table 1). 

The following result shows the complexity of finding t-collisions [3]. 

Lemma 2 Consider a set of s randomly chosen b-bit values. With 
s = c2(t−1)b/t one expects to get one t-collision, where c ≈ (t!)1/t. 

If it is assumed for a fixed message D and a (randomly chosen) salt 
R that the resulting MAC is a random m-bit value, one can apply the 
Lemma to estimate the number of texts needed to find a t-collision. 

Consider a few examples. With s = 2(b+1)/2 one expects to get one 
pair of colliding MACs, that is, one (2-)collision. With s = (1.8)22b/3 

one expects to get a 3-collision, that is, three MACs with equal values 
(61/3 ≈ 1.8). With s = (2.2)23b/4 one expects to get one 4-collision 
(241/4 ≈ 2.2). √ 

From Stirling’s formula n! = 2πn(n/e)n(1 + Θ( 1 )), one gets that n 

(t!)1/t ≈ t/e for large t. Thus, with s = (t/e)2(t−1)b/t one expects to 
get a t-collision. Table 2 lists the complexities of finding t-collisions 
depending on the block size b. 

There are many variants of this attack depending on how many 
chosen texts the attacker has access to. Table 3 lists the complexities 
of some instantiations of the attacks, where for triple-DES the number 
of chosen texts has been chosen to be less than 264 (since the salt can 
be a maximum of 64 bits) and for AES the time complexity and the 
number of chosen texts needed have been made comparable. In both 
cases an exhaustive search for the key has been reduced by a factor of 
eight, so the correct value of the key can be expected trying half of that 
number of values. As a final remark, note that the message D in the 
attack need not be chosen nor known by the attacker. Therefore one 
can argue that this attack is stronger than a traditional “chosen-text” 
attack. 
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Table 2: The estimated number of texts needed to find a t-collision.
 
t #texts needed 

b = 64 b = 128 
3 
4 
5 
6 
7 
8 
9 
10 
17 

244 286 

249 297 

253 2104 

255 2108 

257 2112 

258 2114 

259 2116 

260 2118 

263 2123 

Table 3: Expected running times and chosen texts of attacks finding K2 of 
RMAC. 

Algorithm k b Parameter 
sets 

t Expected 
running time 

# chosen 
texts 

3-DES 112 64 II 12 2108 263 

AES 128 128 V 20 2124 2123 
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