
Related-Key and Key-Collision Attacks Against

RMAC

Tadayoshi Kohno

CSE Department, UC San Diego

9500 Gilman Drive, MC-0114

La Jolla, California 92093-0114, USA

IACR ePrint archive 2002/159, 21 October 2002, revised 2 December 2002.

Abstract. In [JJV02] Jaulmes, Joux, and Valette propose a new ran­
domized message authentication scheme, called RMAC, which NIST is
currently in the process of standardizing [NIS02]. In this work we present
several attacks against RMAC. The attacks are based on a new protocol-
level related-key attack against RMAC and can be considered variants of
Biham’s key-collision attack [Bih02]. These attacks provide insights into
the RMAC design. We believe that the protocol-level related-key attack
is of independent interest.

Keywords: RMAC, key-collision attacks, related-key attacks.

1 Introduction

Jaulmes, Joux, and Valette’s RMAC construction [JJV02] is a new ran­
domized message authentication scheme. Similar to Petrank and Rackoff’s
DMAC construction [PR97] and Black and Rogaway’s ECBC construc­
tion [BR00], the RMAC construction is a CBC-MAC variant in which
an input message is first MACed with standard CBC-MAC and then the
resulting intermediate value is enciphered with one additional block ci­
pher application. Rather than using a fixed key for the last block cipher
application (as DMAC and ECBC do), RMAC enciphers the last block
with a randomly chosen (but related) key. One immediate observation
is that RMAC directly exposes the underlying block cipher to a weak
form of related-key attacks [Bih93]. We are interested in attacks that do
not exploit some related-key weakness of the underlying block cipher, but
rather some property of the RMAC mode itself.

In this work we present observations about, and attacks against, RMAC.
We begin with a protocol-level related-key attack against RMAC. By
protocol-level related-key attack, we mean an attack that works when an

adversary knows or can control the difference between two users’ RMAC
keys.1

While our protocol-level related-key attack may have limited applica­
bility, we feel that the existence of this attack raises concerns about the
RMAC design. In particular, since it is widely believed that block ciphers
should be designed to resist related-key attacks, it seems counter-intuitive
and bad engineering practice to use a block cipher in a mode of operation
that is vulnerable to protocol-level related-key attacks.

The other attacks presented in this paper are based on the above
protocol-level related-key attack against RMAC, but work when an ad­
versary does not (a priori) know the differences between multiple users’
RMAC keys. The attacks can be formulated in multiple ways. In the first
formulation, an adversary takes a message–tag pair from one user and
modifies the tag in such a way that another user (with different keys)
will accept that message. The attack can also be formulated as a vari­
ant of Biham’s key-collision attack [Bih02]. Assuming a block cipher with
128-bit keys and blocks (for a total RMAC key-length of 256 bits), in
one instantiation of these attacks an adversary forces 264 users to each
tag 264 messages, and the adversary exerts on the order of 2129 work. In
another instantiation, an adversary forces one user to tag 264 messages,
but the adversary must now execute approximately 2192 steps. This beats
the level of security claimed in [NIS02].

Related work. The related-key and key-collision attacks in this paper
were published on the IACR ePrint server in October of this year [Koh02].
In November Lloyd and Knudsen announced additional observations about
RMAC [Llo02,Knu02]. And in December Rogaway submitted further com­
ments to NIST about RMAC [Rog02].

Assume an instantiation of RMAC with a block cipher with 128­
bit blocks and 128-bit keys (for a total RMAC key-length of 256 bits).
In [Llo02] Lloyd describes a forgery attack against RMAC that uses ap­
proximately 2128 block cipher decryptions and several chosen-plaintexts.2

In [Knu02] Knudsen describes the same attack as Lloyd, but also presents
a more sophisticated forgery attack that requires less time, but more

1 We use the term protocol-level related-key attacks to distinguish between related-key
attacks that exploit some property of the mode in question and related-key attacks
that exploit some related-key property of the underlying block cipher.

2 The actual presentation in [Llo02] is that of a complete key-recovery attack using
2129 steps; the forgery attack is a simple modification. Knudsen [Knu02] attributes
the same forgery attack to Chris Mitchell.

message–tag pairs. The more sophisticated attack requires approximately
2124 time and 2123 chosen-plaintexts.

It seems reasonable to conclude that although Knudsen’s attack re­
quires less steps, the basic attack of Lloyd is more practical (albeit still
theoretical) since it requires only a few chosen-plaintexts and signifi­
cantly less memory. Nevertheless, the Knudsen attack is interesting be­
cause it highlights some unexpected properties with RMAC. The general
(non-related-key) attacks presented in this paper require fewer message–
tag pairs per user than Knudsen’s attack, more message–tag pairs than
Lloyd’s attack, and more time than both Lloyd’s and Knudsen’s attacks.
The attacks herein also illustrate some unexpected properties with the
RMAC design.

Outline. The remainder of this paper is organized as follows. In Section 2
we describe the RMAC message authentication scheme in more detail and
in Section 3 we describe our notion of security (unforgeability) for MACs.
We summarize related work, including Lloyd’s and Knudsen’s attacks, in
Section 4. In Section 5 we describe a protocol-level related-key attack
against RMAC and in Section 6 we modify the protocol-level related-
key attack to work when the entire key difference is not known to the
adversary. We present a generic attack against RMAC in Section 7, which
is based on the attacks in Sections 5 and 6, and we present a Biham-style
key-collision [Bih02] generalization of this generic attack in Section 8.

2 RMAC

Terminology and notation. A message authentication scheme con­
sists of three algorithms: a key generation algorithm, a tagging algorithm,
and a verification algorithm. The key generation algorithm generates a
random key. The tagging algorithm, on input a key and a message, out­
puts a tag (or MAC) for that message. The verification algorithm, on
input a key, a message, and a candidate tag, returns accept if the candi­
date tag is a valid tag for the message and returns reject otherwise.

When presenting pseudocode, we use ← to denote assignment from
right to left, we use ⊕ to denote the xor operation, and we use 1 to
denote concatenation.

RMAC. We now describe the RMAC construction in more detail. The
RMAC construction is parameterized by choice of an underlying block
cipher F . Let k denote the block cipher’s key length, let l denote the
block cipher’s block length, and let FK (B) denote the application of block
cipher F on an l-bit block B with a k-bit key K. The RMAC algorithm

F F F

⊕ ⊕

M1 M2 · · · Mn

F

K1 K1 K1

⊕

K2 R

T R

uses a total of α = 2k bits of key and produces a tag of length l + k.
Before using the RMAC algorithm, a user first picks two random k-bit
keys K1 and K2.

Fig. 1. The RMAC tagging algorithm with keys K1, K2 on input M1dM2d · · · dMn.
The underlying block cipher is denoted F . The randomness R is chosen anew on each
invocation. The resulting tag is T dR.

Let RMACK1,K2 (M) denote the application of the RMAC tagging al­
gorithm on a message M using keys K1 and K2. We assume that the
length of M is a multiple of the block size (since we are presenting attacks,
we only describe the variant of RMAC that we attack; the attacks im­
mediately extend to RMAC defined over arbitrary bit-length messages).
Pseudocode for the RMAC tagging algorithm is presented below (see also
Figure 1):

RMACK1,K2 (M)
Parse M into l-bit blocks M11M21 · · · 1Mn

C0 ← 0
For i = 1 to n do

Ci ← FK1 (Mi ⊕ Ci−1)
R ← random k-bit value
T ← FK2 ⊕ R(Cn)
Return (T,R)

The RMAC verification algorithm, RVERK1,K2 (M, (T,R)), returns accept
if (T,R) is a valid tag for M and returns reject otherwise; the verification
algorithm is defined in the natural way.

3 Modeling Attacks

The standard notion of security for message authentication schemes is
that of unforgeability [BKR94]. Consider an adversary A attacking a
message authentication scheme (such as RMAC). We represent the le­
gitimate user of a message authentication scheme with a “tagging oracle”
RMACoracle (·) (where K1,K2 are randomly chosen keys). The tagging K1,K2

oracle is a “black box” that takes a message as input and uses the keys
K1,K2 to compute and return the RMAC tag of the message. We give
adversary A access to this tagging oracle so that it can obtain an RMAC
tag for any message of its choice. (Note that A only has input-output
access to the tagging oracle; it cannot access the keys K1,K2.) A query
to the tagging oracle corresponds to A forcing a user to tag a message of
A’s choice. We also give A access to a verification oracle RVERoracle (·, ·).K1,K2

The verification oracle represents the original user’s intended correspon­
dent. Adversary A “wins” if it can find a message-tag pair (M, (T, R))
such that RVERoracle (M, (T, R)) returns accept and A never queried the K1,K2

oracle RMACoracle (·) with input M .K1,K2

The above standard notion of security models an adversary attacking
a single user or session. In the following sections, however, we shall some­
times consider an adversary attacking multiple users or sessions. To model
such a scenario, we give an adversary access to multiple tagging oracles
and their corresponding verification oracles, and say that an adversary
wins if it can force any of the verification oracles to accept a message
that was not tagged by its corresponding tagging oracle. This model cor­
responds nicely to an observation about real-world security requirements
for message authentication schemes: a message authentication scheme (or
any cryptographic scheme) will often be used by many different users si­
multaneously, albeit each user will probably use different keys. Consider,
for example, Internet users who use SSL. Clearly an adversary with ac­
cess to all simultaneous SSL connections should not be able to efficiently
break any user’s SSL connection with high probability.

4 Other Attacks

In recent works Lloyd and Knudsen announce additional observations
about RMAC. In [Llo02] Lloyd observes that, given several tags for some

fixed message M , one can mount an exhaustive search for the key K2. In
more detail, if (T1, R1) and (T2, R2) are both tags for M , then if the key
guess G for K2 is correct, F −1 (T1) = F −1 (T2). If the guess G is in-G ⊕ R1 G ⊕ R2

correct, then F −1 (T1) �= F −1 (T2) with high probability. In [Knu02] G ⊕ R1 G ⊕ R2

Knudsen shows how to reduce the number of keys one needs to try in
order to learn K2. The improvement in [Knu02] comes at the expense of
an increased number of required message–tag pairs — if the underlying
block cipher uses 128-bit keys, then Lloyd’s attack requires approximately
2128 steps (block cipher decryptions) and a few message–tag pairs for a
fixed message M , and Knudsen’s attack requires approximately 2124 steps
and 2123 tags for a fixed message M . Knudsen’s attack also requires sig­
nificantly more memory than Lloyd’s basic attack.

After an adversary learns key K2, RMAC reduces to basic CBC-MAC
and an adversary could exploit the standard forgery attacks against CBC­
MAC. An adversary could also perform an exhaustive key search for
key K1.

We also point out that a “standard” output-collision attack against a
single user exists. In this attack the adversary forces a user to tag approx­
imately 2128 messages of the adversary’s choice (the adversary looks for
a total collision in the output of the RMAC oracle). A modified variant
of this attack, when mounted against 264 users, requires the adversary to
force each user to tag 296 messages. This adversary against multiple users
looks for a collision in the tags of one session, and will succeed in forging
a message for that one session. Later we shall compare our attacks in
Section 7 and Section 8 to this “standard” attack.

5 Known-Difference Related-Key Attack

We begin with a known-difference related-key attack against two users
using the RMAC message authentication scheme. Let U and V denote
the two users and let K1

U ,KU be user U ’s keys and let K1
V ,KV be user 2 2

V’s keys. Assume for this attack that KU = KV . Assume also that the 1 1
adversary knows the difference D between K2

U and KV ; i.e., the adversary 2
knows D = K2

U ⊕ K2
V .

Although some may consider this attack to be somewhat unrealistic
(requiring that the two users share the same first key and that the attacker
knows a priori the difference between the second keys), we present this
attack here because it motivates the attacks in the following subsections.
Another perspective is that, since block cipher designers design block
ciphers to resist related-key attacks, block cipher modes should also be

F

⊕

Mn

F

KU
1

⊕

KU
2 R

T R

F

⊕

Mn

F

KV
1 = KU

1

⊕

KV
2 = KU

2 ⊕D

T D ⊕R

designed to resist related-key attacks. To do otherwise would be counter-
intuitive and would negate much of the effort put into block cipher design.

Fig. 2. The RMAC known-difference related-key attack (Section 5). The figure on the
left shows how user U constructs a tag (T, R) for a message M in response to an
adversary’s query. The figure on the right suggests why user V will accept (T, D ⊕ R)
as a tag for message M .

The adversary begins by having U tag a message M . Let (T, R) be the
U
1

resulting tag; i.e., (T, R) ← RMACoracle
K U

2
(M). Since K
V

2
U= K
 ⊕ D, user

V
2
(M, (T, D ⊕ R))

2

,K

,K

V
1

V will accept (T,D ⊕ R) as a tag for message M ; i.e., RVERoracle
K

V
1

will accept. See Figure 2. The query (M, (T, D ⊕ R)) to the RVERoracle

oracle is considered a valid forgery because the adversary forces the user
V to accept a message that was not tagged by one of the party’s involved

(·)
V
2K ,K

V
1

in V’s session (i.e., not tagged by the RMACoracle
K V

2
(·) oracle).

,K

6 Partially-Known-Difference Related-Key Attack

Consider again the scenario in which an adversary is attacking the RMAC
VU

1 ,K 1 ,K
tively denote the two users’ pairs of keys. Again assume that K

U Vusage of two users U and V. As before, let K
 and K
 respec­2 2 U
1 = K
V

1 .
Unlike in Section 5, however, assume that the adversary does not know

the difference D between the keys K
U

2 and K
V
2 .

To mount a variant of the attack in Section 5, an adversary must

first learn the difference between the keys K
U

2 and K
V
2 . One way to

learn this difference is shown in the following pseudocode. As discussed

in Section 3, the following adversary is given access to the tagging oracles

RMACoracle

KU
1

(·) and RMACoracle
KV

1
V
2
(·) and the corresponding verification or-
U

2,K ,K

acles RVERoracle
,KU

1
·) and RVERoracle

KV
1

U
2
(·,
 V

2
(·, ·).

K ,K

Adversary
M, M ' ← any two distinct messages
For i = 1 to 2k/2 do // have U , V tag M 2k/2 times

(T U , RU
i i) ← RMACoracle

,KU
1

(M)
U
2K

(T V , RV
i i) ← RMACoracle

KV
1

(M)
V
2,K

For each pair of indices i, j such that Ti
U = Tj

V

(T, R) ← RMACoracle
,KU

1
U
2
(M ')

K

RVERoracle
KV

1
(M ', (T, Ri

U ⊕ Rj
V ⊕ R)) // forgery attempt V

2,K

The above adversary begins by having both U and V repeatedly tag some
message M . After each user generates approximately 2k/2 tags, we expect
at least one collision between the last block cipher key used by U and the
last block cipher key used by V. That is, we expect to find two indices
i, j such that KU ⊕ RU = KV ⊕ RV . The adversary detects this collision 2 i 2 j

by looking for indices i, j such that T U = T V . When a collision T U = i j i

Tj
V occurs due to the above internal key collision, the adversary learns

that the difference between the two keys KU and KV is RU ⊕ RV . The 2 2 i j
adversary can use its knowledge of this difference to mount the attack in
Section 5.

Assuming that the underlying block cipher is a family of independent
random functions, after 2k/2 tagging requests per user we expect approx­
imately 2k−l additional collisions Ti

U = Tj
V at random (not due to the

above internal key collision). Thus we expect that an adversary may have
to perform 2k−l forgery attempts before it successfully forges a message.
Provided that the underlying block cipher’s key size k is not much larger
than its block size l, an adversary will succeed after only a few forgery
attempts.

7 Multi-User Attack

We shall now describe an attack against RMAC in the multi-user setting
in which the attacker does not a priori know any information about the
relationship between different users’ keys. This attack extends the attacks
of Section 5 and Section 6.

Consider the adversary shown in the following pseudocode. For this
attack, we assume the adversary has tagging and verification oracle access

to 2k/2 different users (where each user’s keys are chosen independently at
random). Let RMACoracle

,Ku
1

(·) and RVERoracle
,Ku

1
u
2
(·, ·) represent the uth user’s
 K u

2 K

tagging and verification oracles. As stated in Section 3, the adversary wins
if it can force any of the users to accept a message which that user did
not previously tag. To simplify the exposition, we present the attack in
two phases; it should be clear that, if desired, the two phases can be
interwoven.

Adversary
Phase One:

M ← any message
For u = 1 to 2k/2 do // for each of 2k/2 users

For i = 1 to 2k/2 do // have user u tag M 2k/2 times
) ← RMACoracle

i i K ,K(u uT ,R u
1

()Mu
2

Phase Two:
For each pair of distinct users u, v and for each pair of indices i, j
such that T u = T v

i j
' M ← a message not previously tagged by user v

u
1

(T, R) ← RMACoracle
,Ku

2
(M ')K

v
1

RVERoracle
,K (Mv

2

' , (T,Ru
i ⊕ Rv

j ⊕ R)) // forgery attempt K

The intuition behind the above attack is that if two users u and v collide
on their first keys Ku and Kv, then the adversary will be able to mount 1 1
the attack in Section 6. In more detail: given 2k/2 users, we expect two
users u and v to share the same first key Ku = Kv. After tagging 2k/2

1 1
messages each, we expect to find two indices i and j such that K2

u ⊕ Ru = i
K2

v ⊕ Rv
j . We detect this collision by looking for users u, v and indices i, j

such that Ti
u = Tj

v. For the attack as presented in the above pseudocode,
we expect to find approximately one such collision.

Unfortunately, the signal-to-noise ratio of this attack (as compared to
the attack in Section 6) is greatly reduced; we expect up to approximately
22k−l T vcollisions Ti

u = j at random. Since a low signal-to-noise ratio is
handled by brute forcing through the noise, a small signal-to-noise ratio
only mean an inversely proportional large cost for the second phase of
the attack. If we tolerate a cost of approximately 2k oracle queries for
the second phase of the attack (recalling that RMAC uses two keys for a
total key length of 2k), then the above attack works for k up to l. Larger
k can be handled, but only at increased cost.

Concrete example. As a concrete example, if we consider RMAC in­
stantiated with AES with 128-bit keys (and 128-bit blocks), then we ex­
pect this attack to succeed against 264 users if an adversary can force each

user to tag 264 messages and if the adversary can perform approximately
2129 steps (consisting largely of oracle queries). This compares favorably
to the “standard” output-collision attack described in Section 4, but is
certainly less efficient that Lloyd’s attack [Llo02]. From a certain per­
spective, this attack can be considered more practical than Knudsen’s at­
tack [Knu02]. In particular, although this attack requires approximately
25 times as many operation as Knudsen’s, it only requires each user to tag
264 messages instead of 2123. Although both these attacks are still infeasi­
ble in practice, it seems more reasonable to assume that an adversary can
(undetectably) force a large set of users to tag 264 messages than to force
a single user to tag 2123 messages. Of course, it may be more easy for an
adversary to monitor one communication channel than 264 channels.

Additionally, Knudsen’s attack has an advantage in that it works
against a targeted user, whereas this attack works against one of 264

users (and the attacker has no control over which user that will be). Still,
as Biham points out in [Bih02], an attack against one of many users can
still cause significant damage.

8 Key-Collision Attacks

Let us now consider modifying the attack in Section 7 to follow Biham’s
paradigm for key-collision attacks [Bih02]. Let n be the number of users

' 'an adversary is attacking and let n , q, q be additional parameters for the
attack. The adversary works as follows. As before, the attack is separated
into phases for clarity, but the phases could be combined in an actual
attack. The first phase can also be pre-computed and the cost of the first
phase can be amortized over many attacks.

Adversary
' M, M ← any two distinct message

Phase One:

' 'For u = 1 to n do // “simulate” n random users

Lu
1 , L

u
2 ← random RMAC key pair

'For i = 1 to q do // have simulated user tag M q ' times
u(tui , r) ← RMACLi

u
1 ,Lu

2
(M)

Phase Two:
For v = 1 to n do // for each of n users

For j = 1 to q do // use oracle for user v to tag M q times
(Tj

v, Rv
v
1

) ← RMACoracle
,Kv

2
(M)
j K

Phase Three:

For each index u for the simulated users and v for the oracles

and for each pair i, j such that tui = Tj
v

u// proceed assuming that Kv = Lu and Kv = L2
u ⊕ r ⊕ Rv

1 1 2 i j
(T, R) ← RMACLu

1 ,Lu
2
(M
 ')

RVERoracle
,Kv

1

'(M , (T, ri
u ⊕ Rj

v ⊕ R)) // forgery attempt K v
2

' 'If nn ≥ 2k and qq ≥ 2k, then we essentially expect to find indices
uu, v, i, j such that Lu = Kv and L2

u ⊕ r = K2
v ⊕ Rv. When this occurs, 1 1 i j

the forgery attempt in the third phase will succeed (and, moreover, the
' '2−ladversary will learn K1

v and Kv). We expect approximately nn qq 2 'collisions of the form ti
u = Tj

v at random. Assuming nn qq '2−l is not
'significantly more than the sum of nq and n q ', we tolerate this noise

while mounting the above attack. Note that for a basic (total) key-collision
'attack we would require nn ≥ 22k .

'By modifying the parameters n, n , q, q ', we can instantiate the key­
' 'collision attack in different ways. If n = n = q = q = 2k/2 and if k = l,

then we get a key recovery and forgery attack with resources similar to
' 'that of Section 7. If n = 1, n = 2k , q = q = 2k/2, then we get an attack

against a single user that uses 2k/2 oracle queries and approximately 23k/2

steps. As a concrete example, if we consider AES with 128-bit blocks and
128-bit keys, then the first instantiation attacks 264 users using 264 ora­
cle queries per user and approximately 2130 steps (broken down into 2129

computations of RMAC and 2129 tagging and verification oracle queries;
the first 2128 RMAC computations are themselves broken down into 264

standard CBC-MAC computations and 2128 final RMAC block cipher ap­
plications). The latter instantiation attacks 1 user using 264 oracle queries
and approximately 2192 steps (consisting mostly of RMAC computations).
Another concrete example might be an adversary who forces each of 232

users to tag 264 messages and who executes approximately 2160 steps
(consisting mostly of RMAC computations).

We again stress that the most interesting aspect of these attacks are
not their resource requirements. Indeed, although these attacks beat the
claimed security in [NIS02], they are still slower than the attack in [Llo02]
and only arguably more practical than the attack in [Knu02] (depending
on the definition of practical). Rather, we feel that these attacks are inter­
esting because they expose additional, unusual properties of the RMAC
construction and because they illustrate the use of Biham’s key-collision
attack on modes of operation that use a large number of keys.

Acknowledgments

The author is supported by a National Defense Science and Engineer­
ing Graduate Fellowship. Mihir Bellare, Alexandra Boldyreva, Chanathip
Namprempre, Gregory Neven, Adriana Palacio, and David Wagner pro­
vided useful comments on an earlier version of this paper.

References

[Bih93] E. Biham. New types of cryptanalytic attacks using related keys. In T. Helle­
seth, editor, Advances in Cryptology – Eurocrypt ’93. Springer-Verlag, 1993.

[Bih02]	 E. Biham. How to decrypt or even substitute DES-encrypted messages in 228

steps. Information Processing Letters, 84, 2002.
[BKR94] M. Bellare, J. Kilian, and P. Rogaway. The security of cipher block chaining.

In Y. Desmedt, editor, Advances in Cryptology – Crypto ’94. Springer-Verlag,
1994.

[BR00]	 J. Black and P. Rogaway. CBC MACs for arbitrary-length messages: The three-
key constructions. In M. Bellare, editor, Advances in Cryptology – Crypto 2000.
Springer-Verlag, 2000.
´ [JJV02] E. Jaulmes, A. Joux, and F. Valette. On the security of randomized CBC­

MAC beyond the birthday paradox limit: A new construction. In J. Daemen
and V. Rijmen, editors, Fast Software Encryption 2002. Springer-Verlag, 2002.

[Knu02] L.R. Knudsen. Analysis of RMAC. NIST Modes of Operation for Symmetric
Key Block Ciphers, Comments on Draft SP 800-38B, November 2002. http:
//csrc.nist.gov/encryption/modes/comments/.

[Koh02] T. Kohno. Related-key and key-collision attacks against RMAC. Cryptology
ePrint Archive, Report 2002/159, October 2002. http://eprint.iacr.org/
2002/159/.

[Llo02]	 J. Lloyd. An analysis of RMAC. Cryptology ePrint Archive, Report 2002/170,
November 2002. http://eprint.iacr.org/2002/170/.

[NIS02] NIST. Draft recommendation for block cipher modes of operation: The RMAC
authentication mode. NIST Special Publication 800-38B, 2002. http://csrc.
nist.gov/publications/drafts.html.

[PR97]	 E. Petrank and C. Rackoff. CBC MAC for real-time data sources, 1997. DI­
MACS Technical Report 97-26. Available at http://dimacs.rutgers.edu/
TechnicalReports/abstracts/1997/.

[Rog02] P. Rogaway. Comments on NIST’s RMAC proposal. NIST Modes of Operation
for Symmetric Key Block Ciphers, Comments on Draft SP 800-38B, December
2002. http://csrc.nist.gov/encryption/modes/comments/.

http://csrc.nist.gov/encryption/modes/comments
http:http://dimacs.rutgers.edu
http://csrc
http://eprint.iacr.org/2002/170
http:http://eprint.iacr.org

