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1 Introduction 

In this document w e propose a new mode of operation for symmetric key block 

cipher algorithms. The main feature distinguishing the proposed mode from 

existing modes is that along with providing confdentiality of the message, it 

also provides message integrity. In other words, the new mode is not just a 

mode of operation for encryption, but a mode of operation for authenticated 

encryption. As the title of the document suggests, the new mode achieves the 

additional property with little extra overhead, as will be explained below. 

The new mode is also highly parallelizable. In fact, it has critical path of only 

two block cipher invocations. By one estimate, a hardware implementation of this 

mode on a single board (housing 1000 block cipher units) achieves terabits/sec 

(1012 bits/sec) of authenticated encryption. Moreover, there is no penalty for 

doing a serial implementation of this mode. 

The new mode also comes with proofs of security, assuming that the under-

lying block ciphers are secure. For confdentiality, t h e mode achieves the same 

provable security bound as CBC. For authentication, the mode achieves the same 

provable security bound as CBC-MAC. 

The new parallelizable mode removes chaining from the well known CBC 

mode, and instead does an input whitening (as well an output whitening) with 

a pairwise independent sequence. Thus, it becomes similar to the ECB mode. 

However, with the input whitening with the pairwise independent sequence the 

new mode has provable security similar to CBC (Note: ECB does not have 

security guarantees like CBC). Also, the output whitening with the pairwise 

independent sequence guarantees message integrity. 

The pairwise independent sequence can be generated with little overhead. In 

fact, the input and output whitening sequence need only be pairwise diferentially 

uniform, which i s a w eaker property than pairwise independence, as explained 

in the details below. The weaker pairwise diferentially uniform sequence can be 

generated with even lesser overhead. 

The parallelizable mode comes in two f a vors. These favors refer to how t h e 

pairwise diferentially uniform sequence is generated. In one mode, we just use 

a pairwise independent sequence generated by a subset construction. In another 

mode, the pairwise diferentially uniform sequence is generated by ( a * i) modulo 

a fxed prime number. There will be one standard prime number for each bit-size 



block cipher. Thus, for 64 bit block ciphers the prime could be 264 

; 257. For 

128 bit block ciphers, the prime could be 2128 

; 159. 

The modes are described below in more detail. 

We frst give defnitions of pairwise independence and related concepts. Then 

we describe the parallelizable mode using the algebraic construction a* i modulo 

a fxed prime. Next, we describe the mode using only exclusive-or operations. In 

section 5, the diferent notions of security are defned. In section 6, we p r o ve t h a t 

the IAPM construction is secure for message integrity. W e frst start by p r o ving 

the theorem for the construction in Fig 2 with t=1. In section 6.1 we give a n 

alternative proof of this theorem inspired by Johan Ha we astad. In section 6.2 

extend the proof to arbitrary t. T hen, in section 6.3 we prove the theorem for 

the construction in Fig 1, i.e.the IAPM mode using GFp. Finally, in section 7 

we p r o ve that the IAPM scheme is secure for message secrecy as well. 

2 Defnitions 

Defnition 1 (pair-wise independence) A sequence of uniformly distributed n-

bit random numbers s1 

, s 2 

, :::, s , is called pair-wise independent if for every pair m

i, j, i 6 n bit constants c1 

and y that si 

= c1= j, and every pair of c2 

, probabilit

and sj 

= c2 

is 2;2n . 

Defnition 2 (pair-wise diferentially-uniform) A sequence of uniformly dis-
tributed n-bit random numb e r s s1 

, s 2 

, :::, s , is called pair-wise diferentially-m

uniform if for every pair i, j, i 6= j, and every n bit constant c, probability t h a t 

si 

E sj 

is c is 2;n . 

It is a fact that a pair-wise independent uniformly distributed sequence is 

also pair-wise diferentially uniform. 

Defnition 3 (pair-wise diferentially-uniform in GFp) A sequence of random 

numb ers s1 

, s , :::, s uniformly distributed in GFp, is called pair-wise diferentially-2 m 

uniform in GFp if for every pair i, j, i 6 , a n d e v ery constant = j c in GFp, proba-

bility that ( si 

; sj 

) mod p is c is 1ip. 

A sequence of m pair-wise independent n umbers can be generated from about 

log m independent random numbers by a subset construction. The subset con-

struction only involves exclusive-or operations. 

A pair-wise independent sequence can also b e generated by an algebraic 

construction in GFp, by using two independent random numb e r s a and b in 

GFp. The sequence is given by si 

= ( a + i * b) mod p. 

A pair-wise diferentially uniform in GFp sequence can b e generated from 

only a single random numb e r a in GFp by defning si 

= ( i * a) mod p. 

3 Integrity Aware Parallelizable Mode (IAPM) using a 

prime numb e r 

Let n b e the block size of the underlying block cipher. We will restrict our 

attention to n = 1 2 8 i n this paper. If the block cipher requires keys of length 



k, then this mode requires two independent keys of length k. Let these keys 

b e called K 0 and K 1. From now o n , w e will use fK 

to denote the encryption 

function under key K . 

The message to be encrypted P , is divided into blocks of length n each. Let 

these blocks be P1 

, P 2 

, :::, Pm;1 

. As in CBC, a random initial vector r of length n 

bits is chosen. The vector r need not be chosen randomly, as long as it is unique 

for each message. This random vector is used to generate a new random vector 

a using the block cipher and key K0, which in turn is used to prepare m + 1 new 

pairwise diferentially uniform vectors S0 

, S , :::, S .1 m

Let p = 2 

128 

; 159. The numb e r p is known to be a prime. This prime will 

be fxed for all invocations of this mode using block ciphers of block size 128 bit. 

For 64-bit ciphers p = 2 

64 

; 257 is recommended. 

Now, the sequence S0 

, S 1 

, :::S is generated by the following procedure: 

procedure pairwise dif uniform sequence(in r,m ,K 0; out S ) 

m 

f 

a = fK0 

(r)
 

2 (2128 128
 

if (a ; 159)) a = ( a + 159) m od 2 

S0 

= a 

for j = 1 to m do 

Sj 

= ( Sj;1 

+ a) mod 2 

128 

if (a > S j 

) Sj 

= Sj 

+ 159 

end for 

g 

The condition (a > S ) i s e q u i v alent to 128-bit integer addition overfow i nj 

the previous step. Note that we do not reduce modulo p if (Sj;1 

+ a) < 2128 , but 

we do compensate by 159 if (Sj;1 

+ a) 2 2128 , as in the latter case, (Sj;1 

+ a) 

+ a ; (2128mod p = Sj;1 

; 159) = (Sj;1 

+ a ; 2128 ) + 159.
 

In this mode, the input and output whitening is done by 128-bit integer addition.
 

The ciphertext message C =< C , C , :::, C > is generated as follows (see fg
 0 1 m 

1): 

C0 

= r 

for i = 1 to m ; 1 do 

Mi 

= ( Pi 

+ Si) mod 2 

128 

Ni 

= fK1 

(Mi) 

Ci 

= ( Ni 

+ Si) mod 2 

128 

end for 

checksum = P1 

E P2 

E ::: E Pm;1
 

M = ( c hecksum + S ) mod 2 

128
 

m m

Nm 

= fK1 

(Mm) 

Cm 

= ( Nm 

+ S0 

) mod 2 

128 

Note that for computing the checksum we use xor instead of addition modulo 

2128 . T h e s c heme is secure even if the checksum is computed by a modulo 2128 

sum, but for the standard we prefer that the checksum b e computed by an 

xor-sum. Note that S0 

is used in the last step. 

The above s c heme is invertible. The inversion process yields blocks P1 

, P , :::, P2 

.m
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Fig. 1. Integrity A w are Parallelizable Mode (IAPM) 

The decrypted plaintext is < P 1 

, P 2 

, :::, P m;1 

>. Message integrity i s v erifed by 

checking 

P = P1 

E P2 

E ::: E Pm m;1 

Here is the pseudo-code for decryption: 

r = C0 

invoke pairwise dif uniform sequence(r,m ,K 0, S ); 

for i = 1 to m ; 1 do 

Ni 

= ( Ci 

; Si) mod 2 

128 

;1 

Mi 

= f (Ni)K1 

Pi 

= ( Mi 

; Si) mod 2 

128 

end for 

checksum = P1 

E P2 

E ::: E Pm;1 

128 

Nm 

= ( Cm 

; S0 

) m o d 2 

Mm 

= f 

;1 

K1 

(Nm) 

Pm 

= ( Mm 

; Sm) m o d 2 

128 

Integrity = (P == checksum) m 

4 IAPM with only xor operations 

The mode described above u s e s i n teger addition. We n o w describe a similar mode 

in which the only operations are block cipher invocations and exclusive-or op-
erations. In particular, the pairwise diferentially uniform sequence is generated 



using a subset construction. Actually, this sequence has the stronger property 

of pairwise independence. The subset construction is also optimized using Gray 

code (http://hissa.nist.gov/dads/HTML/graycode.html). The penalty one has 

to pay in this mode is that instead of generating one extra vector a as described 

in the previous section, one now generates about log m new vectors, where m is 

the numb e r o f b l o c ks in the message to be encrypted. 

As before the message P to be encrypted, is divided into blocks of length n 

each. Let these blocks be P1 

, P , :::, P m;1 

. The initial vector r is used to generate 2 

t = dlog(m + 2) e new vectors, which in turn are used to prepare m + 1 new 

pairwise independent v ectors S0 

, S , :::, S .1 m

The following pseudo-code is the proposed method of generating the sequence 

S .
 

procedure pairwise independent sequence(in r,m ,K 0; out S )
 

f 

W0 

= fK0 

(r);
 

S0 

= W0 

;
 

for i = 1 to m do
 

j = i + 1;
 

k = 0;
 

/* fnd the index of the least signifcant ON bit in (i + 1) */
 

while ((j &1) == 0) do
 

k = k + 1; j = j >> 1; /* increment k and right shift */ 

end while 

if ((j E 1) == 0) /* if (i + 1) is a p ower of 2 */ 

Wk 

= fK0 

(W0 

+ k); 

Si 

= Si;1 

E Wk; 

end for 

g 

Note that Si 

is obtained from Si;1 

in just one XOR. The inner while loop 

condition is checked two times on average. 

The ciphertext message C =< C , C , :::, C > is generated as follows (see0 1 m 

fg 2): 

C0 

= r 

for i = 1 to m ; 1 do
 

Mi 

= ( Pi 

E Si)
 

Ni 

= fK1 

(Mi)
 

Ci 

= ( Ni 

E Si)
 

end for 

checksum = P1 

E P2 

E ::: E Pm;1
 

M = ( c hecksum E S )
m m

N = fK1 

(M )m m

C = ( Nm 

E S0 

)m 

Again, note that S0 

is used in the last step. This pseudo-code is same as the 

one in the previous section except that all integer additions have been replaced 

by exclusive or operations. 

http://hissa.nist.gov/dads/HTML/graycode.html
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Fig. 2. IAPM with only xor operations 

Here is the pseudo-code for decryption: 

r = C0 

invoke pairwise independent sequence(r, m , K 0, S ); 

for i = 1 t o m ; 1 d o 

Ni 

= ( Ci 

E Si) 

Mi 

= f 

;1 

K1 

(Ni) 

Pi 

= ( Mi 

E Si) 

end for 

checksum = P1 

E P2 

E ::: E Pm;1 

Nm 

= ( Cm 

E S0 

) 

Mm 

= f 

;1 

K1 

(Nm) 

Pm 

= ( Mm 

E Sm) 

Integrity = (Pm 

== checksum) 

5 Encryption Schemes: Message Security with Integrity 

Awareness 

We give defnitions of schemes which explicitly defne the notion of secrecy of 

the input message. 

In addition, we also defne the notion of message integrity. Moreover, we a l l o w 

arbitrary length input messages (upto a certain bound). 



Let Coins be the set of infnite binary strings. Let l(n) = 2 

O(n) , and w(n) = 

O(n). Let N be the natural numbers.
 

Defnition A (probabilistic, symmetric, stateless) encryption scheme with mes-
sage integrity consists of the following:
 

{ initialization: All parties exchange information over private lines to estab-
nlish a private key x 2 f 0, 1g . All parties store x in their respective p r i v ate 

memories, and jxj = n is the security parameter. 

{ message sending with integrity: 

l(n) l(n)Let E : f0, 1g 

n 

x Coins x N x f 0, 1g ! f 0, 1g x N 

n l(n) l(n)
D : f0, 1g x N x f 0, 1g ! f 0, 1g x N 

l(n) w(n)MDC : N x f 0, 1g ! f 0, 1g 

b e polynomial-times function ensembles. In E , the third argument is sup-

posed to b e the length of the plain-text, and E produces a pair consisting of 

cipher-text and its length. Similarly, i n D the second argument is the length of 

the cipher-text. We will drop the length arguments when it is clear from con-

text. The functions E and D have the property that for all x 2 f 0, 1g 

n, for all 

P 2 f 0, 1g 

l(n), c 2 Coins 

D (E (c, P )) = P kMDC(P )x x

We will usually drop the random argument t o E as well, and just think of E 

as a probabilistic function ensemble.It is also conceivable that MDC may depend 

on Coins, cipher-text. 

Defnition (Security under Find-then-Guess [8], [2]) 

Let 

l(n) l(n)
A1 : N x Coins x f 0, 1g !f0, 1g 

l(n) l(n) l(n)
A2 : C oins x f 0, 1g !f0, 1g x f 0, 1g 

l(n) l(n) l(n)
A3 : N x Coins x f 0, 1g x f 0, 1g !f0, 1g 

A : C oins x f 0, 1g 

l(n) 

!f0, 1g 

be adversaries. 

The chosen plaintext attack w orks as follows: 

(choose a private key) Randomly choose a private key x. 

(chosen plaintext attack-I) Choose R2 Coins. For j 2 [1::l(n)], phase jU 

works as follows. Let 

1 j;1 

C = ( E (P ), :::, E (P ))x x

b e the concatenation of the encryptions of the frst j ; 1 message blocks (ap-
jpropriately padded with zeroes). Then P = A1(j, R, C ). At the end of at most 

p : l(n) phases, let P = hP 

1 

, :::, P 

p
i be all the message blocks produced by A1, 

and let C = hE (P 

1 ), :::, E (P 

p)i be the encryption of P .x x

00 01(choose a private message block) Let hP , P i = A2(R,C  ) b e the pair 

00 01of message blocks produced by A2. It is required that neither P nor P is 

http:ensemble.It


00 01among the message blocks in P . Also P and P should be of the same length. 

0 0bChoose b2 f0, 1g privately, let P = P be the privately chosen message, and U 

0 0let C = E (P 

0) be the encryption of P .x

(chosen plaintext attack-II) the chosen plaintext attack i s continued as in 

part I, resulting in another encrypted sequence D of an adaptively chosen plain-
0 

00 p+2 p+1+ptext sequence P = hP , :::, P i. W e will extend C to denote the complete 

p+2 ) p+1+pencrypted sequence C = hE (P 

1 ), :::, E (P 

p), E (P 

0), E (P , :::, E (P 

0 

)i.x x x x x

(predict the bit) The advantage of the adversary is 

AdvA 

= jPr[A(R,C  ) = b] ; 1i2j 

An encryption scheme is said to be (t, q, {, t)-secure against chosen plaintext 

attack if for any adversary A (including A1, A 2, A 3) which runs in time at most 

t and asks at most q queries of E , these totaling at most { blocks, its advantage x

is at most t. 

The following notion of security is also called integrity of ciphertext ([4]). 

Defnition (Message Integrity): Consider an adversary A running in two stages. 

In the frst stage (fnd) A asks r queries of the oracle E . Let the oracle replies x

rbe C 

1 

, :::C . Subsequently, A produces a cipher-text C 

0 , diferent from each C 

i , 

i 2 [1::r]. Since D has length of the cipher-text as a parameter, the breakup of 

0 0 00 

D (C ) as P kP 

00, where jP j = w(n), is well defned. The adversary's success x

probability i s g i v en by 

def 0 00Succ = Pr [MDC(P ) = P ] 

An encryption scheme is secure for message integrity if for any a d v ersary A, A's 

success probability is negligible. 

6 Message Integrity 

In this section we s h o w that the mode of operation IAPM in Fig 2 guarantees 

message integrity with high probability. W e frst restrict to the case where only 

one W is generated , i.e. W0 

, as that brings out the main idea of the proof. In 

the next subsection we s h o w h o w the proof easily generalizes to arbitrarily many 

W's. Finally, w e s h o w h o w these proofs also generalize to the mod p construction 

of Fig 1 (in which case only one W is generated anyway). 

In the following theorem, we will assume that the block cipher (under a key 

K 1) is a a random permutation F . W e also assume that the t W 's are generated 

using an independent random permutation G (for instance, using a diferent k ey 

K 2 in a block cipher). 

1 2 1zLet the adversary's queries in the frst stage b e p , P , :::P . We write p 

in lower case, as for each adversary p 

1 is fxed. All random variables will b e 

zdenoted by upper case letters. Let the corresponding ciphertexts be C 

1 

, :::, C . 

zWe w ill use C to denote the sequence of ciphertext messages C 

1 

, :::, C . F or all 

random variables corresponding to a block, we will use superscripts to denote 

the message number, and subscripts to denote blocks in a particular message. 

iThus C will b e the random variable representing the j th block in ciphertext 

j 



imessage i. More precisely, this variable should b e written C (F , G ), as it is a 

j 

function of the two permutations. However, we will drop the arguments when it 

is clear from context. 

0Let the adversary's query in the second stage b e cipher-text C , diferent 

from all ciphertexts in the frst stage. We will use primed variables to denote the 

variables in the second stage. 

iWe will use W to denote the set of variables fW : i 2 [1::z], j 2 [1::t]g [
j 

0 i 

fW , j 2 [1::t]g. We will use S (S 

0) to denote masks or \whitening" blocks 

j 

i 0 igenerated using W (W resp). Any method can b e used to generate S from 

i 

W 

i, as long as S are pairwise diferentially uniform. For a particular adversary, 

j 

i 

S is a function of permutation G and the initial vector, and hence should (more 

j 

i i iprecisely) be written as S (G, C (F , G )) (C (F , G ) being the IV used to generate 

j 
0 0
 

i
 

W ). But, we will drop the arguments as it will be clear from context. For any 1 

i iconstant r, w e will denote by S (r) the random variable S (G, r).
j j 

i i iThe variables M and N are as in Fig 2. For example, M = P E S . 

j j j 

We start with some informal observations to aid the reader in the eventual 

0formal proof. Since the new ciphertext C is diferent from all old ciphertexts, 

iit must difer from each old ciphertext C in a least block numb e r , say d(i). 

iFor each C (except at most one C 

k), the block numb e r d(i) = 0, with high 

0probability. I n Lemma 3 we s h o w t h a t with high probability N 

d(k) 

is diferent 

i 0from all old N , and all other new N blocks (except for a special case). Thus, 

j 

0 

M 

d(k) 

is random. Then it follows (Theorem 1) that in either case the checksum 

is unlikely to validate. 

We frst prove t h e theorem for schemes in which the pairwise diferentially 

uniform sequence is generated using only one W , i.e. t = 1. The general case is 

addressed in a later subsection. 

Theorem 1. Let A be an adversary attacking the message integrity of IAPM 

(t = 1 ) with random permutations F and G. Let A make at most z queries in 

the frst stage, totaling at most { blocks. Let u = { + z. Let v be the maximum 

number of bloc k s i n t h e s e cond stage. Then for adversary A, 

2 2 2 2;n 

S ucc < (2 * u + z + ( z + 1) + u + v + 2 + o(1)) * 

Proof: 

In the frst stage the adversary makes queries with a total of at most m plain-

text messages (chosen adaptively). W.l.o.g. assume that the adversary actually 

imakes exactly m total message queries in the frst stage. Let L be the random 

ivariable representing the length of ciphertext C (i.e. the checksum block has 

i 0 0index L ; 1). Similarly, L will denote the length of C . 

We p r o ve that either the adversary forces the following event E0, or the event 

E1 happens with high probability. In either case the checksum validates with low 

probability. 

The frst event E0 is called deletion attempt, as the adversary in this case 

just truncates an original ciphertext, but retains the last block. 



0 iEvent E0 (deletion attempt): There is an i 2 [1::z], such that 2 : L < L , 

and 

0 0 i(i) 8j 2 [0::L ; 2] : C = C 

j j 

0 iand (ii) C = C 

L ;1L0 

;1 

i 

0Event E 1 s a ys that there is a block in the new ciphertext C , su ch that its 

N variable is diferent from all previous N s (i.e. from original ciphertexts from 

the frst stage), and also diferent from all other new N s. 

0Event E1: there is an x 2 [1::L ; 1] such th a t 

s 0 s(i) 8s 2 [1::z]8j 2 [1::L ; 1] : N 6 N= 

x j 

0 0 0and (ii) 8j 2 [1::L ; 1], j 6= x : N 6= N 

x j 

We next show that in both cases (i.e E0 or E1) the checksum validates with 

low probability. 

0 i 0 iFor the case that E0 happens, we h a ve (since S = S and N 0 

= N ),
L ;1 Li 

;1 

L 

0 

;1 X 

0( P = 0) ^ E0 

j 

j#1 

L 

0 

;2 

) 

X 

j#1 

(P 

i 

j 

) + M 

i 

Li 

;1 

+ S 

i 

L0 

;1 

= 0 

= 

L 

0 

;2 X 

j#1 

(P 

i 

j 

) + 

L 

i 

;2 X 

j#1 

(P 

i 

j 

) + S 

i 

Li 

;1 

+ S 

i 

L0 

;1 

= 0 

i i iNote that r c a n b e c hosen after P has been determined (as P is a deterministic 

1 i ifunction of C , : : : , C 

i;1 ), and hence the S s are independent of P . Since the 

i 0 i 

S s are pairwise diferentially uniform and L < L , the above event happens 

with probability at most 2;n . 

For the case E1, by Lemma 2, the checksum validates with probability at 

most 1i(2n 

; u ; v) 

Thus the adversary's success probability is upper bounded by 

1 1 

Pr[:(E 0 _ E 1)] + + 

2n ; (u + v) 2n 

which b y Lemma 3 is at most 

2 2 2 22;n 2;n 2;2n(u + z + u + v + 2) * + ( u + ( z + 1) ) * + O(u + v) * 

2 

P 

L 

0 

;1
Lemma 2. Pr[ P 

0 = 0 j E 1] : 

1 

j#1 

j 2n 

;(u+v) 



0 

Proof: F being a random permutation, under E1, F 

;1(N ) can not take v alues 

x

s s 0already assigned to F 

;1(N ), s 2 [1::z], j 2 [1::L ; 1]. Also, F 

;1(N ) can 

j x

0b e chosen after F 

;1(N ) have been assigned values (j 6 x). Thus, under the = 

j

0 0condition that event E1 has happened we have t h a t M = F 

;1(N ) can take 

x x

0any of the other values, i.e. excluding the following (at most) ({ + z) + L ; 2 

0 ivalues, with equal probability (independently of C , C , r , i 2 [1::z], G, and 

hence independently of W , and independent of E1 itself): 

s s{ values already taken by M , :::, M , for each s, and1 Ls 

;1
0 0{ the values to be taken (or already fxed) by M , j 2 [1::L ; 1], j 6= x. 

j

P 

0Now, 

L 

0 

;1 

P = 0 if 

j#1 

j 

L 

0 

;1 X 

;1 0 0 0 0 0 

F (N ) = M = (M E S ) E S 

x x j j x 

j#1,j 6#x 

Given any v alue of the RHS, since the LHS can take (at least) 2n 

; (u + v ; 2) 

values, the probability of LHS being equal to RHS is at most 1i(2n 

; (u + v)). 

2 

Lemma 3. Let events E0,E1 be a s in T h e orem 1. Then, 

2 2 2;n 2 2 2;n 

Prob[:(E0 _ E1)] < (u + z + u + v) * + ( u + ( z + 1) ) * 

Proof: We frst calculate the probability o f e v ent ( E 0 _ E 1) happening under the 

assumption that F and G are random functions (instead of random p e r m uta-
tions). Since F (and G) is in voked only u times ((z + 1) times resp.), a standard 

argument shows that the error introduced in calculating the probability o f e v ent 

2 2;n(E0 _ E1) is at most (u + ( z + 1) 

2) * . 

We n o w consider an event, which s a ys that all the M variables are diferent. 

The goal is to claim independence of the corresponding N variables, and hence 

the C variables. However, the situation is complicated by the fact that the con-
idition that all the M variables for some i are diferent, may cause the variables 

j 

0 

i 0 

C , for i < i , to be no more independent. However, a weaker statement c a n b e 

j 

proved by induction. To this end, consider the event E2(y), for y : z: 

0 0 

0 0 i 0 i 0 0 i i 

6 =8i, i 2 [1::y], 8j, j , j 2 [1::L ; 1], j 2 [1::L ; 1], (i, j ) = ( i , j ) : (M 6 M 0 

)
j j

Event E 2( z) will also be denoted by E2. 

iWe also predicate on the event that all the initial variables C are diferent. 0 

Let E 3 be the event that 

i j
8i, j 2 [1::z], i 6 j : C = C= 60 0 

! 

1 z i !For 

; = , :::, r a l diferent, let E 3(; ) be the event that for all i 2 [1::z],r r , l r r 

i i 

C = r .0 

Let l() be the length of the frst ciphertext (determined by the adversary). We 

iwill use constant c to denote strings of arbitrary block length. We w i l l u s e c to 



 
zdenote the sequence c 

1 

, :::, c . The function j j is used below to represent length 

of a message in blocks. Given a sequence of ciphertext messages c 

1 

, :::, c 

i , i : z, 

let l(c 

1 

, :::, c 

i) be the length of the (i + 1)th ciphertext (which is d eterm in ed b y 

the adversary, and therefore is a deterministic function of c 

1 

, :::c 

i). Recall that 

i i !each ciphertext includes the block C , whic is ju st r rh under E 3(; ). Also, since 0
 

0 1 z
 

C is a deterministic function of C , given c , :::, c let the ciphertext in the second 

0 0stage be c with length l . W e have X X 

!E 1) E 2 j E 3(; =Pr[:(E 0 _ ^ r ) ] :::	 ::: 

1 i i;11 : jc j#l() 

i : jc j#l(c 

1 )c c ,:::,cX	 ^ 

i i ! ::: Pr[:(E 0 _ E 1) ^ C = c ^ E 2 j E 3(; ) ] (1)r 

z m;1 c 

z : jc j#l(c ,:::,c1 ) 

i 

iIn this sum, if for some i, c =6 r 

i, then the inside expression is zero. Also, if 0 

event E0 holds for c (which determines c 

0), then the inside expression above for 

that c is zero. So, from now o n , w e will assume that E0 does not hold for C = c. 

Then, the inside expression above becomes: ^ 

i i !Pr[:(E 0 _ E 1) ^ C = c ^ E 2 j E 3(; )]r 

i � X	 ^ 

0 s i i ! 

0	 r: min x2[1::l ;1]	 

Pr[(N 

x 

= N 

j 

) ^ C = c ^ E 2 j E 3(; )] 

s2[1::z],j2[1::jc 

s 

j;1]	 

i � X	 ^ 

0 0 i i !+ Pr[(N = N ) ^ C = c ^ E 2 j E 3(; )]r 

x j 

j2[1::l0 

;1],j#6 x i 

0 s 0 s 0 s 0 sFor each s, j , we have ( N = N ) if ( S E S ) = ( C E C ), where S , S. .	 
. . x j x j x j 

x j

*are the masks that are used for these ciphertext blocks. That is, j = j if 

s *	 * 0 *
j < jc j ;	 1 and j = 0 otherwise, and similarly x = x if x < l ; 1 and x = 0 

0 0 0 0 0 0otherwise (Similarly for j 6 x e ha e ( N = N ) if ( S E S . 

) = ( C E C )).= w v	 . x j x j x j 

Since each o f th e su m m a n d s in the expression above has a conjunct C = c 

0for some constant string c (and since the forged ciphertext C is a function of 

C ), it follows that each of the summands in the frst sum can b e written as 

0 0 s s 0 s	 ! 

0 0Pr[(S . 

(c ) E S . 

(c ) = c E c ) ^ C = c ^ E 2 j r )]. Note that S . 

(cE 3(;	 ) E 

x 0 j 0 x j 
x 0
 

s s
 

S 

j. 

(c0 

) can in some cases be identically zero. As c is some constant string, then 

0 s 

c E c is also constant, and recall that the variables S (c0 

) depend only on the 

x j
 

0 0 s s
choice of G. T h us, each of these summands (if S . 

(c ) E S . 

(c ) is not identically 

x 0	 j 0 

zero) can be bounded by 

0 0 s s 0 s	 !Pr[S . 

(c ) E S . 

(c ) = c E c ^ C = c ^ E 2 j E 3(; )]r 

x 0 j 0 x j 

0 0 s s 0 s != Pr[C = c ^ E 2 j S . 

(c ) E S ) = c E c ^ r. 

(c E 3(; )]
x 0 j 0 x j 

0 0 s s 0 s !* Pr[S . 

(c ) E S ) = c E c j r. 

(c E 3(; )]
x 0	 j 0 x j 

0 0 s s 0 s ! : (2;n)f 

* Pr[S . 

(c ) E S ) = c E c j r. 

(c E 3(; )]
x 0 j 0 x j P 

i;1where the last inequality fo llo ws by C la im 5 w ith { = (l(c , : : : , c 

1 ) ;
i2[1::z] 

01). A similar inequality holds for the summands in the second sum (i.e. N = 

x 



0 

N case). Thus, by Claim 4, the inside expression in equation (1) is at most 

j 

2;nf 2;n nf 

* (u + v) * . Since we h a ve 2 summands, it follows that 

! 2;nPr[:(E 0 _ E 1) ^ E 2 j r )] : (u + v) *E 3(;

Finally, w e calculate Pr[:(E 0 _ E 1)] 

Pr[:(E 0 _ E 1)] 

: Pr[:(E 0 _ E 1) ^ E 2 j E 3] + Pr[:E 2 j E 3] + Pr[:E 3] 

: Pr[:E 3] + X 

! ! !((Pr[:(E 0 _ E 1) ^ E 2 jE 3(; )] + Pr[:E 2 jE 3(; )]) * rr r Pr[E 3(; )jE 3]) 

1 z r ,:::,r 

2 2;n 2;n 2;n 

: z * + ( u + v) * + ( u)2 

* 

where the last inequality follows by Claim 6. 2 

Claim 4: For each constant c (and its corresponding c 

0) for which event E 0 does 

! 

0not hold, and constant 

;r with distinct values, there is an x 2 [1::l ; 1] such 

that 

s(i) 8s 2 [1::z]8j 2 [1::jc j ; 1]: 

0 0 s s 0 sif S (c ) E S (c ) is identically zero then c E c 6= 0, otherwise . x 0 j. 0 x j 

0 0 s s 0 s ! 2;nPr[S (c ) E S 

j. 

(c ) = c E c j r )] : ,E 3(;. x 0 0 x j 

0(ii) 8j 2 [1::jl ; 1], j 6= x,: 

0 0 0 s 0 0 ! 2;nPr[S (c ) E S (c ) = c E c j E 3(; )] :r. x 0 j. 0 x j 

s 0 

Proof: These are the diferent cases (we will drop the argument from S and S 

as it will be clear from context): 

0 i(a) (New IV) If for all i 2 [1::z], c 6= r , then we c hoose x = 1 . In that case0 

0 0 0 0 0 0 * 0 

N = N is same as C E C = S E S , where j = j if j =6 (l ; 1), and 1 j 
1 j 

1 j. 

* 0 0 

j = 0 otherwise. Thus, for j 2 [1::l ; 1], j =6 x, since S is pairwise diferentially 

0 0 0 0 ;n !uniform, probability o f ( S E S = c E c ) is 2 r(even under E 3(; )).1 j. 1 j 

0 s 0 s 0 s * sSimilarly, N = N is same as C = S1 

E S , where j = j if j 6 jc j; 1,1 

E C = 1 j j j. 

* ! 

0and j = r ), and the fact that c t fro m0 otherwise. Under event E 3(; is diferen0 

i 0 sall r , w e have that S1 

E S 

j. 

is uniformly distributed. 

0 k 0(b) There exists a k, k 2 [1::z] such that c = r . For all other k 2 [1::z],0 

0 k 0 k 

c0 

6 r . T hus S = S . W e hav several cases: = e 

0 k 0(b1) (truncation attempt) If c is a truncation of c , then w e let x = l ; 1 which 

0is the index of the last block o f c . 

0 k(b2) (extension attempt) If c is an extension of c 

k, then we le t x = jc j; 1 which 

kis the index of the last block o f c . 

0 k(b3) Otherwise, let x be the least index in which c and c are diferent. 

In all the cases (b1), (b2) and (b3), conjunct (ii) is handled as in (a). 



0 s 0 k s s *In case (b1), N = N is same as C E S = C E S , where j = j if 

x j l0 

;1 0 j j. 

s * * 0 s 

j 6 jc j ; 1, and j = 0 otherwise. Now, for s = k, j = 0 (in whic c a s e S0 

E S= h 

j 

0 s 0 kis identically zero), we h a ve c E c = c E c . T h is q u a n tity is not zero, 

x j l0 

;1 jc 

k 

j;1 

0 s k ssince E0 (the deletion attempt) doesn't hold for c. Otherwise, S = S0 

E S 

j. 0 

E S 

j 

is uniformly distributed. 

0 s 0 k s s *In case (b2), N = N is same as C k 

E S k 

= C E S 

j. 

, where j = j
x j jc j;1 jc j;1 

j
 

s * * k
if j 6 jc j ; 1, and j = 0 otherwise. When s = k, j is never jc j ; 1, and hence = 

k s 

S k 

E S 

j. 

is uniformly distributed. 

jc j;1
 

0 s 0 k s s *
In case (b3), N = N is same as C E S = C E S , where j = j if 

x j 
x x 

. j j.
 

s * * 0 *
 

j 6 jc j ; 1, and j = 0 otherwise, and x = x if x = (l ; 1), and x = 0= 6
* * * *otherwise. If s = k, and j = x , then either j = x = 0, or j = x. In the 

0 s 0 k 0latter case, c E c = c E c , which is non-zero as x is the index in which c 

x j 
x x


k k 0
and c difer. In the former case, j = jc j ; 1, and x = (l ; 1). In this case, 

0 s 0 k 0 

c E c = c 0 

E c . If th is q u a n tity is zero, then since x (= (l ; 1)) was the 

x j l ;1 jc 

k 

j;1
 

k 0
least index in which c and c difered, event E 0 w ould hold for c, leading to a 

k scontradiction. In other cases, S 

x 

E S 

j. 

is uniformly distributed. 2. 

! 

i !Recall that E 3(;r ) is the event that all C rare distinct (and set to 

; ).0 

Claim 5: L et l1 

be the length of the frst ciphertext. Let y : z. F or any constant 

i ilengths li 

(i 2 [2::y]) and constant strings c , (i 2 [1::y], jc j = li), and any 

function G independent o f F , 

^ 

i i ! )fPr[ C = c ^ E 2(y) j G ^ E 3(; )] : (2;nr 

i2[1::y] 

iwhere { = 2i2[1::y] 

(l ; 1). 

i 1 

Proof: The above probability is zero unless for all i 2 [2::y], l = l(c , :::, c 

i;1 ). 

iFrom now on, we will assume that the l are indeed such. 

We do induction over y, with base case y = 0. 

The base case is vacuously true, as { = 0 and conditional probability o f T R UE 

is 1. 

Now assume that the lemma is true for y. W e p ro ve the lemma for y + 1. The 

explanation for the inequalities is given below the sequence of inequalities. 

^ 

i i !Pr[ C = c ^ E 2(y + 1) j G ^ rE 3(; )] 

i2[1::y+1] ^ 

y+1 y+1 i i ! : Pr[C = c j C = c ^ E 2(y + 1) ^ G ^ E 3(; )]r 

i2[1::y] ^ 

i i !* Pr[ C = c ^ E 2(y + 1) j G ^ E 3(; )]r 

i2[1::y] 

y+1 

^ 

;1 i i ! : (2;n)l * Pr[ C = c ^ E 2(y) j G ^ E 3(; )]r 

i2[1::y] 

i 

;1)
: (2;n)Ei2[1::y] 

(l 



The second inequality f o l l o ws because under the condition E 2(y + 1), all the 

M 

y+1 

are diferent from the previous M , and hence the sequence of variables, 

j
 

y+1 

y+1 

y+1 

;1)
for all j 2 [1::L ; 1], F (M ) can take all possible (2n)(L values, 

j 

�y
independently of G, and F (M ), and hence also all ciphertext messages till 

j 

y+1 y+1 y+1
index t. Hence, the sequence C = F (M ) E S can take all possible 

j j j 

y+1 1 y y+1values. Moreover, L = l(c , :::, c ) = l . 

The last inequality follows by induction. 2 

!Claim 6: For every fxed 

; with distinct values, r 

! 

2 2;n 

Pr r )] < u *[:E 2 j E 3(;

Proof: Recall that Event E 2 i s 

0 0 

0 0 i 0 i 0 0 i i 

6 =8i, i 2 [1::z], 8j, j , j 2 [1::L ], j 2 [1::L ], (i, j ) = ( i , j ) : (M 6 M 0 

)
j j

!Under E 3(; ), w have r e 

i(a) The set of variables fW1 

g, i 2 [1::z], are uniformly random and independent 

variables. 

0 

i i(b) For each i, the variable W is independent of all ciphertext messages C ,1 

0 

0 i 0 i 

i < i , and hence all plaintext messages P , i : i. This follows because W can1 

0 

i 0b e c hosen after C , i < i have been chosen. 

!Given E 3(; ), the probability that event E2 does not happen is atr most 

i)2 2;n 2;n(2i2[1::z] 

L * , which is at m ost u 

2 

* . This is seen as follows: 

0 0 0 0 0 

i i i i i i i i i iPr[M = M 0 

] = Pr[P E S = P E S 0 

] = Pr[S = S 0 

E P E P ]
j j j j j0 j j j j j0 

0Without loss of generality, l e t i 2 i . Then from (b) above i t follows that this 

probability is at most 2;n (if i = i 

0, then we also use the fact that the sequence 

S is pairwise diferentially uniform). 2 

6.1 Alternate Proof Sketch 

In this section we give an alternate proof of Theorem 1 which w as suggested by 

Johan Haastad. 

We frst expand the notation, and generalize event E 2 t o E 6 a s f o l l o ws. Given 

C = c, and G = g, where c is a constant sequence of ciphertexts and g is 

i i ia constant p e r m utation the M values are fxed, because M = P E S . The 

j j j 

i i ivariable P is completely fxed by c, and S is fxed by g(c )'s. We will write 

j j 
0
 

i i i
 

M (c, g) for this value of M . Similarly, f o r N . So, for any c and g, and y : z,
j j j 

defne E6(y , c, g ) to be 

0 

0 0 i 0 i 0 0
8i, i 2 [1::y], 8j, j , j 2 [1::l ; 1], j 2 [1::l ; 1], (i, j ) =6 ( i , j ) : 

0 0 

i i i i(M (c, g) = M 0 

(c, g)) ^ (N (c, g) 6 N 0 

(c, g))6 = 

j j j j

Note that E 2 as in the previous section, and C = c and G = g implies 

E6(z, c, g) as F is a permutation. 



In the following lemma we assume that F and G are random permutations. 

This is diferent from lemma 3 in the previous section, where we had to frst 

assume F to be a random function, and then add the error probability. 

Lemma 4. For every constant c, and for any permutation g such that E 6(z , c, g ), 

Pr[G = g] 

Pr[G = gjC = c ^ E 6(z, c, G)] = 

Pr[E 6(z , c, G )] 

Proof: Let U be the universe of G. Under the condition C = c and E6(z, c, G) 

we s h o w that every g such that E6(z, c, g) holds, is equally likely to be G. Since 

c is fxed, fxing G to g, fxes the N variables to a single value (with all N 's 

diferent, for otherwise E6(z, c, g) w ouldn't hold). This value of the N variables 

is not ruled out as all the M variables are diferent ( b y E6(z , c, G )), and F is a 

random permutation. Thus, 

Pr[G = gjC = c ^ E 6(z , c, G )] 

1 

= 

#g : E 6(z , c, g ) 

1 

= 

jU j * Pr[E 6(z , c, G )] 

Pr[G = g] 

= 

Pr[E 6(z, c, G)] 

2 

The proof of lemma 3 in the previous section now c hanges where we bound 

the value of 

0 0 s s 0 s !Pr[S (c ) E S (c ) = c E c ^ C = c ^ E 6 j E 3(; )]r. x 0 j. 0 x j 

This can now be written as 

0 0 s s 0 s !Pr[S (c ) E S (c ) = c E c j C = c ^ E 6(z , c, G ) ^ rE 3(; )]. x 0 j. 0 x j 

!* Pr[C = c ^ E 6(z, c, G) j E 3(; )]r 

;nThe frst factor is upper bounded by 2 i Pr[E 6(z , c, G )] by using the above 

lemma (all the diferent cases are handled as in claim 4). From equation (1), we 

then get 

! 2;nPr[:(E 0 _ E 1) ^ E 6 j r )] : (u + v) *E 3(;

! 

2 

* 2;nLemma 3 then follows by p r o ving that Pr[:E 6j E 3(; )] < ur as in claim 6. 

Rest of theorem 1 is as before, with a slightly better bound as there is no error 

term corresponding to assuming F and G to be random functions. 



6.2 General Case 

We now prove t h e scheme IAPM (t 2 1) secure for message integrity. Here F 

and G are independent random permutations. 

Theorem 5. Let A be an adversary attacking the message integrity of IAPM 

(t 2 1) with random permutations F and G. Let A make at most z queries in 

the frst stage, totaling at most { blocks. Let u = { + z. Let v be the maximum 

number of bloc k s i n t h e s e cond stage. Then for adversary A, 

2 2 2 2	 2;n 

Succ < (2 * u + 2 tz + tm + t (z + 1) + 3 t(2z + 1)( u + v) + 2 + o(1)) * 

Proof Sketch: We frst calculate the adversary's success probability assuming 

that G is a random function. Then, the error introduced in the probability 

because of this approximation is at most ((t(z + 1))2 

* 2;n). 

The diferences in the proof from that of Theorem 1 are (i) we can not assume 

i	 !a priori, that the sequence is pairwise diferentially uniform, (ii) E3(; ) asS	 r 

defned in Lemma 3 does not imply that S is independen o f S 

j , for i 6 j , ( iii) ini t = 

iproof of Theorem 1, the case of event E0 requires S to be pairwise diferentially 

0uniform, and (iv) in claim 4 case (a), S 

0(c ) is not necessarily independent o f a l l0 

S 

i(r 

i). 

To this end, Event E 3 i s n o w defned to be the event that all entries in the 

following (multi-) set are diferent: 

i	 i 

fC , i 2 [1::z]g [ f G(C ) + j ; 1, i 2 [1::z], j 2 [1::t ; 1]g0	 0 

! 

1 z i	 !For 

;r = r , :::, r , all r diferent, let E3(; )	 ber the event E3 and that for all 

i i 

i 2 [1::z], C = r .0 

! 

1 i ! 

2 2;nFor 

; =r , :::, r 

z , all r diferent, Pr[: r )] : (2tz + tm) *r	 E3(;

iUnder event E3, for all i 2 [1::z], the sequence S is pairwise diferentially 

juniform, and is independent of S (j 2 [1::z], j 6 i). No ( in Theorem 1) the = w 

!case of event E0 is also handled under the condition E 3(; ).r 

0 0In Claim 4, case (a) (i.e. New IV) now requires showing that S 

0(c ) (with c0 0 

idiferent from all r 

i) is independent o f a l l S 

i(r	 ) ( i 2 [1::z]). 

iConsider the following events (note that W = G(r 

i)):1 

0 iEventE 4 : 8i 2 [1::z], 8j 2 [1::t ; 1] : c =6 W + j ; 10 1 

0 i 0 i 0 0Event E5:8i 2 [1::z] : jG(c ) ; W1 

j > t ^ jG(c ) ; r j > t ^ jG(c ) ; c0 

j > t0	 0 0 

0Now given that, for all k 2 [1::z], c =6 r 

k , and under event E4, it is the case 0 

0	 !that c has never been an oracle query to G,	 a n d thus Pr[:E5 j E4 ^ rE3(; )]0 

2;n	 ! 2;n 

< 2t(2z + 1) * . Also, Pr[: E4 j E3(; )] : zt *r . 

! 

0	 i 0Under events E4, E5 and E3(;r ), and c diferent fr o m a ll r , S 

0(c ) is indeed 0	 0 

independent of previous S 

i(r 

i), and is also pairwise diferentially uniform. 2 



6.3 Modes using GFp 

We n o w p r o ve theorem 1 for the IAPM scheme as in Fig 1, i.e using the mod p 

construction. 

i i 0Note that a = fK0 

(r) translates to a = G(C ) for all i 2 [1::z], and a = 0 

0 

G(C ), under the assumption that fK0 

is modeled as a random function (the 0 

error introduced by considering G as a random function instead of a random 

permutation is as before). We n o w predicate our whole analysis on the condition 

i 0that for all i 2 [1::z], G(C ) < p , and G(C ) < p . The probability o f this not 0 0 

happening is at most (z + 1) * (2n 

; p)ip. 

i 0Given this condition, it follows that for all i, a , and also a are uniformly 

distributed in GFp (as G is a random function). 

iWe next show that for each i, j , S is uniformly distributed in GFp. 

j 

*From now on w e w ill drop i from the superscript. We will denote by S the 

j 

*intermediate value after execution of the frst step in the for-loop, i.e. S = 

j 

* * n *(Sj;1 

+ a) mod 2n . T h us, if a > S then Sj 

= S + (2 ; p), else Sj 

= S . 

j j j 

*First we prove that there is no overfow in the last step of the for-loop (S = 

j 

Sj 

+ 159), i.e. while adding (2n 

; p). 

If (S0 

=)a < (2n 

; p), then let t b e the least j such that Sj 

2 (2n 

; p), 

*other-wise t = 0. Clearly, f o r j : t, the condition (a > S ) could not have been 

j 

satisfed, as (2n 

; p) i s m uch smaller than 2n;1 . 

We next show b y induction that for j 2 t, Sj 

2 (2n 

; p). Clearly, for j = t it 

*is true by defnition of t. If for some j > t , ( a : S ), then Sj 

= Sj;1 

+ a, hence 

j 

* *by induction Sj 

2 (2n 

; p). If for some j > t , ( a > S ), then S = Sj;1 

+ a ; 2n ,
j j 

which is less than p, as a < p by design. Thus, there is no overfow while adding 

(2n 

; p), and hence Sj 

> (2n 

; p). 

iClaim 7: For every i, j , S is uniformly distributed in GFp. 

j
 

i i
 

Proof: Indeed, S = a * (j + 1) mod p. Clearly, this is true for j = 0. Suppose 

j 

i iit is true for j ; 1, then we sh o w that S = a * (j + 1) mod p. N ow, (a > S )j 

i i i i i 

j 

holds if (S + a 

i) 2 2n . So, suppose (S + a 

i) < 2n , th en S = S + a ,
j;1 j;1 j j;1 

i i iand hence S = a * (j + 1) mod p, by induction. If (S + a 

i) 2 2n then,
j j;1
 

i i n
 

S = ( S + a 

i) ; 2n + (2 ; p), since there is no overfow while adding (2n 

; p),
j j;1 

and the claim follows. 2 

iClaim 8: For each i, the sequence S is pairwise-diferentially uniform in GFp. 

j 

i i i i 0 i i 

Proof: Since, S = a * (j + 1) mod p, and S = a * (j + 1) mod p, S ; S 0 

= 

j j0 j j


i
 

a * (j ; j 

0 ) mod p, and hence the claim follows. 2 

Claim 9: F or any constant c 2 [0::2n 

; 1], Pr[Si 

; Sj 

= c m od 2n] : 2ip. 

Proof: 

Note that Si 

; Sj 

= c mod 2n and Si 

2 Sj 

implies Si 

; Sj 

= cm od p . On the 

other hand, Si 

; Sj 

= cm od 2n and Si 

< S implies Si 

; Sj 

= c ; 2n, and hence j 

Si 

; Sj 

= c ; 2n 

mod p. 

Thus, 

Pr[Si 

; Sj 

= c m od 2n] 



= P r[Si 

; Sj 

= c m od 2n 

^ Si 

2 Sj 

] + P r[Si 

; Sj 

= c m od 2n 

^ Si 

< S j 

] 

: Pr[Si 

; Sj 

= c m od p ] + P r[Si 

; Sj 

= c ; 2n 

mod p] 

: 2ip 

where the last inequality follows by the previous claim. 2 

For modes of practical interest, the term (z+1)  *O(n) in the following theorem 

is really (z + 1) * 2n. F or example, for 128 bit block ciphers, since p = 2 

128 

; 159, 

this term is (z + 1) * 159. 

Theorem 6. Let A be an adversary attacking the message integrity of IAPM 

(t = 1 ) with the GFp construction (fg 1), with random permutations F and G. 

Let A make at most z queries in the frst stage, totaling at most { blocks. Let 

u = { + z. Let v be the maximum number of blocks in the second stage. Then for 

adversary A, 

2 2 2 2;n 

S ucc < (2 * u + z + ( z + 1) + u + v + 2 + o(1) + (z + 1) * O(n)) * 

Proof: The proof is the same as the proof of theorem 1 except for a few difer-
ences. Firstly, a s s a i d e a r l i e r w e predicate on the condition that for all i 2 [1::z], 

i 0 

G(C ) 2 p, and G(C ) 2 p. The probability o f this not happening is at most 0 0 

(z + 1) * (2n 

; p)ip, and that is an extra additive factor in the adversary's success 

probability. 

We will use the following notation: (X ) will stand for X reduced modulo y,y 

i.e. (X ) is the unique numb e r in [0::y ; 1] such that X = (X )y 

mod y. Nexty 

in the proof of theorem 1, the case where E0 happens, now becomes (the big 

summations are xor-sums) 

L 

0 

;1 X 

0( P = 0) ^ E0 

j
 

j#1
 

0 

L ;2 X 

i i i 

) (P ) E (M ; S 0 

)2n = 0 

j Li 

;1 

L ;1 

j#1 

L 

0 

;2 L 

i 

;2 X X 

i i i i 

= (P ) E ( (P ) + S i 

; S )2n = 0 

j j L ;1 

L0 

;1 

j#1 j#1 

L 

0 

;2 L 

i 

;2 X X 

i i i i 

= (S ; S = (P ) ; (P )) mod 2n 

Li 

;1 

L0 

;1 j j 

j#1 j#1 

This event happens with probability at most 2ip by claim 9. P 

L 

0 

;1 0Similarly lemma 2 now modifes as follows: P = 0 if 

j#1 

j 

L 

0 

;1 X 

0 0 0 0(M ; S )2n = (M ; S )2n 

x x j j 

j#1,j 6#x 



 

 

or 

L 

0 

;1 X 

0 0 0 0(M = S + (M ; S )2n ) mod 2n 

x x j j 

j#1,j 6#x 

The probability in lemma 2 remains as before. 

0 s 0 s 0In lemma 3, for each s, j , we now have ( N = N ) if ( S ; S ) = ( C ;
x j 

x 

. j. x 

s 

C ) mod 2n, and thus by Claim 9 the probability bounds in claim 4 are in terms 

j 

of 2ip instead of 2;n . Similarly, the bound in claim 6 is now u 

2 

* 2ip. 

Thus, 

2 2 2 2 

Succ < (u +z +( z +1) +1+ o(1))*2;n +( u +u+v + 1) *2ip+( z + 1) *(2n 

;p)ip 

nHowever, since 2n 

; p � n, or 2 ; p = O(n), we h a ve that 1ip < 2;n +2 n * 2;2n . 

Thus replacing 2;n by 1 ip only adds a second order term to adversary's success 

probability. 

2 

7 Message Secrecy 

We now prove security in the fnd-then-guess model, which implies that the 

IAPM scheme (both for fg 1 and fg 2) is secure for message secrecy. 

Theorem 7. Let A be a chosen plaintext attack adversary of the encryption 

scheme IAPM with random permutations F and G, making at most z queries, 

these totaling at most u blocks. Then 

AdvA 

: (3u 

2 

i2 + z 

2 ) 

1 

2n 

Proof: 

We will calculate the probability of the adversary's success under the as-

sumption that F and G are random functions. A standard argument s h o ws that 

the error introduced in calculating the probability is at most (u 

2 + z 

2 ) * 2;n;1 . 

As in the previous theorem, we will use subscripts to denote particular blocks 

i 0 iin a message. We will use constants c , c , d to denote strings of arbitrary block 

length. Let the z queries be divided into p queries in the frst phase, one query 

0 0in the \choose" phase, and p queries in the second phase. Thus z = p + 1 + p . 

zWe will use c to denote the sequence c 

1 

, :::, c . 

Let l() be the length of the frst ciphertext (determined by t h e adversary). 

The function j j is used below to represent length of a message in blocks. Given 

1 i 1a sequence of ciphertext messages c , :::, c , i : z, let l(c , :::, c 

i) be the length of 

the (i + 1)th ciphertext (which is determined by the adversary, and therefore is 

a deterministic function of c 

1 

, :::c 

i). 

As in lemma 3, we consider the event E2, under which a l l t h e M variables are 

diferent. Similarly, w e also predicate on the event that all the initial variables 

are diferent (event E3). Recall that the event E 2 ( y) is that all the variables in 

the following multi-set are diferent: 

i i 

fM , i 2 [1::y], j 2 [1::L ; 1]g
j 



Event E 2( z) is also written as just E2. The event E 3 n o w requires that all initial 

variables are diferent: 

i 0 i 0
fC , i 2 [1::p]g [ f C g [ f C , i 2 [p + 2 ::p + 1 + p ]g0 0 0 

p+1 0Note that C is another name for C . 

We have, 

X X 

!Pr[A(R,C  ) = b ^ r ) ] = :::E 2 j E 3(; ::: 

1 : jc 

1 i : jc 

i i;1 1 )c j#l() c j#l(c ,:::,cX 

! ::: Pr[A(R,C  ) = b ^ C = c ^ E 2 j E 3(; )r ] 

z m;1 c 

z : jc j#l(c ,:::,c1 ) 

iIf for some i, c =6 r 

i, then the inside expression is zero. 0 

The inside expression can be written as 

!Pr[A(R,C  ) = b ^ C = c ^ E 2 j E 3(; )r ] ^ 

i i != P r[A(R, c  ) = 0 ^ C = c : ^b = 0 ^ E 2 j E 3(; ) ] +r 

i2[1::z] ^ 

i i !Pr[A(R, c  ) = 1 ^ C = c : ^b = 1 ^ E 2 j E 3(; )r ] 

i2[1::z] 

p+1 0where when b = 0, C = C is the encryption of P 

00 , and when b = 1 it is the 

01encryption of P . Let's concentrate on the frst summand. 

^ 

i i !Pr[A(R, c  ) = 0 ^ C = c ^ b = 0 ^ r ) ]E 2 j E 3(;

i2[1::z] ^ 

i i != P r[A(R, c  ) = 0 j C = c ^ b = 0 ^ E 2 ^ r ) ]E 3(; * 

i2[1::z] ^ 

i i !Pr[ C = c ^ E 2 j b = 0 ^ E 3(; ) ] * Pr [b = 0]r 

i2[1::z] ^ 

i i != P r[A(R, c  ) = 0] * Pr[ C = c ^ E 2 j b = 0 ^ r ) ] * Pr [b = 0E 3(; ] 

i2[1::z] 

This quantity is upper bounded by 

1 

* (2;n)f 

* Pr[A(R, c  ) = 0]
2 

by Claim 5, and lower bounded by 

1 

2;n )f 

* (1 ; {({ ; 1)i2 * ) * (2;n * Pr[A(R, c  ) = 0]
2 

iby Claim 10 b e lo w, where { = 2i2[1::z] 

(l ; 1). Note that, both Claim 5 and 

Claim 10 hold regardless of whether b = 0 or b = 1. 



Thus, 

1 1 

)f ! )f 

*(1;{({;1)i2*2;n)*(2;n : Pr[A(R,C  ) = b^C = c^E 2 j E 3(; )] :r *(2;n
2 2 

and hence, 

1 1 

2;n !* (1 ; {({ ; 1)i2 * ) : Pr[A(R,C  ) = b ^ rE 2 j E 3(; )] : 

2 2 

2;n;1Thus by Claim 6, and Pr[: E3] : z 

2 

* , w e have 

1 2 2 2;n 

jPr[A(R,C  ) = b] ; j : (u + z i2) * 

2 

2 

Claim 10: L et l1 

be the length of the frst ciphertext. Let y : z, and j 2 [0, 1]. 

i iFor any constant lengths li 

(i 2 [2::y]) and constant strings c , ( i 2 [1::y], jc j = 

i 1 

li), such that for all i 2 [2::y], l = l(c , :::, c 

i;1 ), 

^ 

i i ! 2;n )fPr[ C = c ^ E 2(y) jb = j ^ E 3(; )] 2 (1 ; {({ ; 1)i2 * ) *r (2;n

i2[1::y] 

iwhere { = 2i2[1::y] 

(l ; 1). 

Proof: 

We do induction over y, with base case y = 0. 

The base case is vacuously true, as { = 0 and conditional probability o f T R UE 

is 1. 

Now assume that the lemma is true for y. W e p ro ve the lemma for y + 1. The 

explanation for the inequalities is given below the sequence of inequalities. 

^ 

i i !Pr[ C = c ^ E 2(y + 1) j b = j ^ E 3(; )]r 

i2[1::y+1] ^ 

y+1 y+1 !i i = P r[C = c j C = c ^ E 2(y + 1) ^ b = j ^ E 3(; )]r 

i2[1::y] ^ 

i i !* Pr[ C = c ^ E 2(y + 1) j b = j ^ rE 3(; )] 

i2[1::y] 

y+1 

^ 

;n ;1 i i != (2 )l * Pr[ C = c ^ E 2(y) j b = j ^ E 3(; )]r 

i2[1::y] ^ 

i i !* Pr[E 2(y + 1) j C = c ^ E 2(y) ^ b = j ^ E 3(; )]r 

i2[1::y] ^ 

y+1 

)l ;1 i i !2 (2;n * Pr[ C = c ^ E 2(y) j b = j ^ E 3(; )]r 

i2[1::y] 

y+1 y+1 y+1 2;ni 

* (1 ; [(l ; 1)(l ; 2)i2 + ( l ; 1) * (2i2[1::y] 

(l ; 1))] * ) 

and the claim follows by induction. The last inequality is seen as follows. Given 

the ciphertexts upto C 

y, the plaintexts upto P 

y+1 are fxed. Also, given E2(y), 



2 

E2(y +1) is just the M values in message y +1 being diferent from each other and 

also diferent from all earlier M values. Given that S are pair-wise diferentially 

uniform, the bound then follows by upper-bounding :E2(y + 1). 

y+1 y+1The probability o f C = c is calculated as in Claim 5. 
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