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Abstract 

We describe a parallelizable block-cipher mode of operation that simultaneously provides 
∗privacy and authenticity. OCB encrypts-and-authenticates a nonempty string M ∈ {0, 1}

using i|M |/nl + 2 block-cipher invocations, where n is the block length of the underlying block 
cipher. Additional overhead is small. OCB refines a scheme, IAPM, suggested by Jutla [20]. 
Desirable properties of OCB include: the ability to encrypt a bit string of arbitrary length into a 
ciphertext of minimal length; cheap offset calculations; cheap session setup, a single underlying 
cryptographic key; no extended-precision addition; a nearly optimal number of block-cipher calls; 
and no requirement for a random IV. We prove OCB secure, quantifying the adversary’s ability 
to violate privacy or authenticity in terms of the quality of the block cipher as a pseudorandom 
permutation (PRP) or as a strong PRP, respectively. 
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1 Introduction 

Background. An authenticated-encryption scheme is a shared-key encryption scheme whose goal 
is to provide both privacy and authenticity. The encryption algorithm takes a key, a plaintext, and 
a nonce, and it returns a ciphertext. The decryption algorithm takes a key, a ciphertext, and a 
nonce, and it returns either a plaintext or a special symbol, Invalid. In addition to the customary 
privacy goal, an authenticated-encryption scheme aims for authenticity: if an adversary should try 
to create some new ciphertext, the decryption algorithm will almost certainly regard it as Invalid. 

An authenticated-encryption scheme can be constructed by appropriately combining an encryp
tion scheme and a message authentication code (MAC), an approach used pervasively in practice 
and in standards. (Analyses of these methods are provided in [6, 23]). But an extremely attractive 
goal is an authenticated-encryption scheme having computational cost significantly lower than the 
cost to encrypt plus the cost to MAC. The classical approach for trying to do this is to encrypt-with
redundancy, where one appends a noncryptographic checksum to the message before encrypting 
it, typically with CBC mode. Many such schemes have been broken. Recently, however, Jutla 
has proposed two authenticated-encryption schemes supported by a claim of provable security [20]. 
Virgil Gligor and Pompiliu Donescu have described a different authenticated-encryption scheme 
[14]. We continue in this line of work. 

OCB mode. This paper describes a new mode of operation, OCB, which refines one of Jutla’s 
schemes, IAPM [20]. OCB (which stands for “offset codebook”) retains the principal characteristics 
of IAPM: it is fully parallelizable and adds minor overhead compared to conventional, privacy-only 
modes. But OCB combines the following features: 

Arbitrary-length messages + minimal-length ciphertexts. Any string M ∈ {0, 1} ∗ can be 
encrypted; |M | need not be a multiple of the block length n. What is more, plaintexts are 
not padded to strings of length a multiple of n, and thus ciphertexts are as short as possible. 
Nearly optimal number of block-cipher calls: OCB uses i|M |/nl + 2 block-cipher invocations. 
(This count does not include a block-cipher call assumed to be made during session setup.) It 
is possible to make do with i|M |/nl +1, but such alternatives scheme would be more complex 
or would require a random IV. Keeping low the number of block-cipher calls is especially 
important when messages are short. In many domains, short messages dominate. 
Minimal requirements on nonces: Like other encryption modes, OCB requires a nonce. The 
nonce must be non-repeating (the entity that encrypts chooses a new nonce for every message 
with the only restriction that no nonce is used twice) but it does not have to be unpredictable. 
Requiring of a nonce only that it be non-repeating is less error prone, and often more efficient, 
than requiring it to be unpredictable. 
Improved offset calculations: As with [14, 20], we require a sequence of offsets. We generate 
these in a particularly cheap way, each offset requiring just a few machine cycles. We avoid 
the use of extended-precision addition, which would introduce endian dependency and might 
make the scheme less attractive for dedicated hardware. 
Single underlying key : The key used for OCB is a single block-cipher key, and all block-cipher 
invocations are keyed by this one key, saving space and key-setup time. 

Achieving the properties above has required putting together a variety of “tricks” that work together 
in just the right way. Many earlier versions of the algorithm were rejected because attacks were 
found or a proof could not be pushed through. We have found schemes of this sort to be amazingly 
“fragile”—tweak them a little and they break. We have concluded that, if the goals above are ever 
to be sought, they must be carefully addressed from the start. 
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Performance. On a Pentium III processor, experiments show that OCB is about 6.5% slower 
than the privacy-only mode CBC. The cost of OCB is about 54% of the cost of CBC encryption 
combined with the CBC MAC. These figures assume a block cipher of AES128 [33]. 

In settings where there is adequate opportunity for parallelism, OCB will be faster than CBC. 
Parallelizability is important for obtaining the highest speeds from special-purpose hardware, and 
it may become useful on commodity processors. For special-purpose hardware, one may want 
to encrypt-and-authenticate at speeds near 10 Gbits/second—an impossible task, with today’s 
technology, for modes like CBC encryption and the CBC MAC. (One could always create a mode 
that interleaves message blocks fed into separate CBC encryption or CBC MAC calculations, but 
that would be a new mode, and one with many drawback.) For commodity processors, there is an 
architectural trend towards highly pipelined machines with multiple instruction pipes and lots of 
registers. Optimally exploiting such features necessitates algorithms with plenty to do in parallel. 

Security properties. We prove OCB secure, in the sense of reduction-based cryptography. 
Specifically, we prove indistinguishability under chosen-plaintext attack [2, 15] and authenticity 
of ciphertexts [6, 7, 21]. As shown in [6, 21], this combination implies indistinguishability un
der the strongest form of chosen-ciphertext attack (CCA) (which, in turn, is equivalent to non-
malleability [9] under CCA [3, 22]). Our proof of privacy assumes that the underlying block cipher 
is good in the sense of a pseudorandom permutation (PRP) [5, 25], while our proof of authenticity 
assumes that the block cipher is a strong PRP [25]. The actual results are quantitative; the security 
analysis is in the concrete-security paradigm. The proofs use standard techniques, but pushed quite 
far. 

We emphasize that OCB has stronger security properties than standard modes. In particular, 
non-malleability and indistinguishability under CCA are not achieved by CBC, or by any other 
standard mode, but these properties are achieved by OCB. We believe that the lack of strong 
security properties has been a problem for the standard modes of operation, because many users 
of encryption implicitly assume these properties when designing their protocols. For example, it is 
common to see protocols which use symmetric encryption in order to “bind together” the parts of 
a plaintext, or which encrypt related messages as a way to do a “handshake.” Standard modes do 
not support such practices. This fact has sometimes led practitioners to invent or select peculiar 
ways to encrypt (a well-known example being the use of PCBC mode [26] in Kerberos v.4 [28]). We 
believe that a mode like OCB is less likely to be misused in applications because the usual abuses 
of privacy-only encryption become correct cryptographic techniques. 

By way of comparison, a chosen-ciphertext attack by Bleichenbacher on the public-key encryp
tion scheme of RSA PKCS #1, v.1, motivated the company that controls this de facto standard 
to promptly upgrade its scheme [8, 27]. In contrast, people seem to accept as a matter of course 
symmetric encryption schemes which are not even non-malleable (a weaker property than chosen-
ciphertext security). There would seem to be no technical reason to account for this difference in 
expectations. 

The future. We believe that most of the time privacy is desired, authenticity is too. As a 
consequence, fast authenticated encryption may quickly catch on. OCB has already appeared in 
one draft standard—the wireless LAN standard IEEE 802.11—and it is also under consideration 
by NIST. 

Preliminaries 

Notation. If a and b are integers, a ≤ b, then [a..b] is the set {a, a + 1, . . . , b}. If i ≥ 1 is an 
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integer then ntz(i) is the number of trailing 0-bits in the binary representation of i (equivalently, 
ntz(i) is the largest integer z such that 2z divides i). So, for example, ntz(7) = 0 and ntz(8) = 3. 

A string is a finite sequence of symbols, each symbol being 0 or 1. The string of length 0 is 
called the empty string and is denoted ε. Let {0, 1} ∗ denote the set of all strings. If A, B ∈ {0, 1} ∗ 

then A B, or A I B, is their concatenation. If A ∈ {0, 1} ∗ and A  ε then firstbit(A) is the = 
first bit of A and lastbit(A) is the last bit of A. Let i, n be nonnegative integers. Then 0i and 1i 

denote the strings of i 0’s and 1’s, respectively. Let {0, 1}n denote the set of all strings of length n. 
If A ∈ {0, 1} ∗ then |A| denotes the length of A, in bits, while IAIn = max{1, i|A|/nl} denotes the 
length of A in n-bit blocks, where the empty string counts as one block. For A ∈ {0, 1} ∗ and |A| ≤ n, 
zpad (A) is the string A 0n−|A|. With n understood we will write A 0∗ for zpad (A). If A ∈ {0, 1} ∗ 

n n

and τ ∈ [0..|A|] then A [first τ bits] and A[last τ bits] denote the first τ bits of A and the last τ bits 
of A, respectively. Both of these values are the empty string if τ = 0. If A, B ∈ {0, 1} ∗ then A ⊕ B 
is the bitwise xor of A [first £ bits] and B [first £ bits], where £ = min{|A|, |B|} (where ε ⊕ ε = ε). 
So, for example, 1001 ⊕ 11 = 01. If A = an−1 · · · a1a0 ∈ {0, 1}n then str2num(A) is the number o n−1 2iai. If a ∈ [0..2n − 1] then num2strn(a) is the n-bit string A such that str2num(A) = a. Let i=0 
lenn(A) = num2strn(|A|). We omit the subscript when n is understood. 

If A = an−1an−2 · · · a1a0 ∈ {0, 1}n then A<<1 is the n-bit string an−2an−3 · · · a1a00 which is 
a left shift of A by one bit (the first bit of A disappearing and a zero coming into the last bit), 
while A>>1 is the n-bit string 0an−1an−2 . . . a2a1 which is a right shift of A by one bit (the last bit 
disappearing and a zero coming into the first bit). 

In pseudocode we write “Partition M into M [1] · · · M [m]” as shorthand for “Let m = IMIn and 
let M [1], . . . ,M [m] be strings such that M [1] · · · M [m] = M and |M [i]| = n for 1 ≤ i < m.” We 
write “Partition C into C[1] · · · C[m]T ” as shorthand for “if |C| < τ then return Invalid. Otherwise, 
let C = C [first |C| − τ bits], let T = C[last τ bits], let m = ICIn, and let C[1], . . . , C[m] be strings 
such that C[1] · · · C[m] = C and |C[i]| = n for 1 ≤ i < m. Recall that IMIn = max{1, i|M |/nl}, 
so the empty string partitions into m = 1 block, that one block being the empty string. 

The field with 2n points. Let GF(2n) denote the field with 2n points. We interchangeably 
think of a point a in GF(2n) in any of the following ways: (1) as an abstract point in a field; (2) as 

n−1 +an n-bit string an−1 . . . a1a0 ∈ {0, 1}n; (3) as a formal polynomial a(x) = an−1x · · · + a1x + a0 

with binary coefficients; (4) as an integer between 0 and 2n − 1, where the string a ∈ {0, 1}n 

corresponds to the number str2num(a). For example, one can regard the string a = 0125101 as a 
128-bit string, as the number 5, as the polynomial x2 + 1, or as an abstract point in GF(2128). We 
write a(x) instead of a if we wish to emphasize that we are thinking of a as a polynomial. 

To add two points in GF(2n), take their bitwise xor. We denote this operation by a ⊕ b. To 
multiply two points in the field, first fix an irreducible polynomial pn(x) having binary coefficients 
and degree n: say the lexicographically first polynomial among the irreducible degree n polynomials 
having a minimum number of coefficients. For n = 128, the indicated polynomial is p128(x) = 

128 + xx 7 + x2 + x + 1. To multiply a, b ∈ GF(2n), which we denote a · b, regard a and b as 
polynomials a(x) = an−1xn−1 + · · · + a1x + a0 and b(x) = bn−1xn−1 + · · · + b1x + b0, form their 
product c(x) over GF(2), and take the remainder one gets when dividing c(x) by pn(x). 

It is computationally simple to multiply a ∈ {0, 1}n by x. We illustrate the method for n = 128, 
in which case multiplying a = an−1 · · · a1a0 by x yields an−1xn + an−2xn−1 + a1x2 + a0x. Thus, if 

128the first bit of a is 0, then a · x = a<<1. If the first bit of a is 1 then we must add x to a<<1. 
128 + x 128 128 Since p128(x) = x 7 + x2 + x + 1 = 0 we know that x = x7 + x2 + x + 1, so adding x

means to xor by 012010000111. In summary, when n = 128,  
a<<1 if firstbit(a) = 0 

a · x =
(a<<1) ⊕ 012010000111 if firstbit(a) = 1 
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It is similarly easy to divide a ∈ {0, 1}128 by x (i.e., to multiply a by the multiplicative inverse 
of x). If the last bit of a is 0, then a · x−1 is a>>1. If the last bit of a is 1 then we must add (xor) to 

−1 128 −1 127 +xa>>1 the value x . Since x = x7 +x2 +x+1 we have that x = x 6 +x+1 = 101201000011. 
In summary, when n = 128, 

a>>1 if lastbit(a) = 0−1 a · x = 
(a>>1) ⊕ 101201000011 if lastbit(a) = 1 

Note that huge = x−1 is a large number (when viewed as such); in particular, it starts with a 1 bit, 
so huge ≥ 2n−1 . 

iIf L ∈ {0, 1}n and i ≥ −1, we write L(i) as shorthand for L · x . Using the equations already 
given, we have an easy way to compute from L the values L(−1), L(0), L(1), . . ., L(µ), where µ is 
small number. 

Gray codes. For £ ≥ 1, a Gray code is an ordering γ£ = (γ£ γ£ . . . γ£ ) of {0, 1}£ such that0 1 −12C

successive points differ (in the Hamming sense) by just one bit. For n a fixed number, OCB makes 
use of the “canonical” Gray code γ = γn constructed by γ1 = (0 1) and, for £ > 0, 

γ£+1 = ( 0γ£ 0γ£ · · · 0γ£ 0γ£ 1γ£ 1γ£ · · · 1γ£ 1γ£ )0 1 2C−2 2C−1 2C−1 2C−2 1 0 

It is easy to see that γ is a Gray code. What is more, for 1 ≤ i ≤ 2n −1, γi = γi−1 ⊕(0n−11<<ntz(i)). 
This makes it easy to compute successive points. 

We emphasize the following characteristics of the Gray-code values γ1, γ2, . . . , γ2n−1: that they 
are distinct and different from 0; that γ1 = 1; and that γi < 2i. 

Let L ∈ {0, 1}n and consider the problem of successively forming the strings γ1 · L, γ2 · L, 
γ3 · L, . . ., γm · L. Of course γ1 · L = 1 · L = L. Now, for i ≥ 2, assume one has already produced 
γi−1 · L. Since γi = γi−1 ⊕ (0n−11<<ntz(i)) we know that 

γi · L = (γi−1 ⊕ (0n−11<<ntz(i))) · L 

= (γi−1 · L) ⊕ (0n−11<<ntz(i)) · L 

ntz(i))= (γi−1 · L) ⊕ (L · x 

= (γi−1 · L) ⊕ L(ntz(i)) 

That is, the ith word in the sequence γ1 · L, γ2 · L, γ3 · L, . . . is obtained by xoring the previous word 
with L(ntz(i)). Had the sequence we were considering been γ1 · L ⊕ R, γ2 · L ⊕ R, γ3 · L ⊕ R, . . ., 
the ith word would be formed in the same way for i ≥ 2, but the first word in the sequence would 
have been L ⊕ R instead of L. 

The Scheme 

Parameters. To use OCB one must specify a block cipher and a tag length. The block cipher is a 
function E : K×{0, 1}n → {0, 1}n, for some number n, where each E(K, ·) = EK (·) is a permutation 
on {0, 1}n . Here K is the set of possible keys and n is the block length. Both are arbitrary, though 
we insist that n ≥ 64, and we discourage n < 128. The tag length is an integer τ ∈ [0..n]. By trivial 
means, the adversary will be able to forge a valid ciphertext with probability 2−τ . The popular 
block cipher to use with OCB is likely to be AES [33]. As for the tag length, a suggested default 
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EK 

T 

first τ bits 

Algorithm OCB.EncK (N, M) Algorithm OCB.DecK (N, C) 

Partition M into M [1] · · · M [m] Partition C into C[1] · · · C[m] T 
L ← EK (0n) L ← EK (0n) 
R ← EK (N ⊕ L) R ← EK (N ⊕ L) 
for i ← 1 to m do Z[i] = γi · L ⊕ R for i ← 1 to m do Z[i] = γi · L ⊕ R 
for i ← 1 to m − 1 do for i ← 1 to m − 1 do
 

C[i] ← EK (M [i] ⊕ Z[i]) ⊕ Z[i]
 M [i] ← E−1(C[i] ⊕ Z[i]) ⊕ Z[i]K 
X[m] ← len(M [m]) ⊕ L · x−1 ⊕ Z[m] X[m] ← len(C[m]) ⊕ L · x−1 ⊕ Z[m] 
Y [m] ← EK (X[m]) Y [m] ← EK (X[m]) 
C[m] ← Y [m] ⊕ M [m] M [m] ← Y [m] ⊕ C[m] 
C ← C[1] · · · C[m] M ← M [1] · · · M [m] 
Checksum ← Checksum ←
 

M [1] ⊕ · · · ⊕ M [m − 1] ⊕ C[m] 0∗ ⊕ Y [m]
 M [1] ⊕ · · · ⊕ M [m − 1] ⊕ C[m] 0∗ ⊕ Y [m] 
T ← EK (Checksum ⊕ Z[m]) [first τ bits] T ' ← EK (Checksum ⊕ Z[m]) [first τ bits] 
return C ← C I T if T = T '	 then return M 

else return Invalid 

Figure 1: OCB encryption. The message to encrypt is M and the key is K. Message M is written as 
M = M [1]M [2] · · · M [m − 1]M [m], where m = max{1, i|M |/nl} and |M [1]| = |M [2]| = · · · = |M [m − 1]| = 
n. Nonce N is a non-repeating value selected by the party that encrypts. It is sent along with ciphertext 
C = C[1]C[2]C[3] · · · C[m − 1]C[m] T . The Checksum is M [1] ⊕ · · · ⊕ M [m − 1] ⊕ C[m] 0∗ ⊕ Y [m]. Offset 
Z[1] = L ⊕ R while, for i ≥ 2, Z[i] = Z[i − 1] ⊕ L(ntz(i)). String L is defined by applying EK to a fixed 
string, 0n . For Y [m] ⊕ M [m] and and Y [m] ⊕ C[m], truncate Y [m] if it is longer than the other operand. 
By C[m] 0∗ we mean C[m] padded on the right with 0-bits to get to length n. The function len represents 
the length of its argument as an n-bit string. 
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of τ = 64 is reasonable. Tags of 32 bits are standard in retail banking. Tags of 96 bits are used in 
IPSec. Using a tag of more than 80 bits adds questionable security benefit, though it does lengthen 
each ciphertext. 

We let OCB-E denote the OCB mode of operation using block cipher E and an unspecified 
tag length. We let OCB[E, τ ] denote the OCB mode of operation using block cipher E and tag 
length τ . 

Nonces. Encryption under OCB mode requires an n-bit nonce, N . The nonce would typically 
be a counter (maintained by the sender) or a random value (selected by the sender). Security is 
maintained even if the adversary can control the nonce, subject to the constraint that no nonce may 
be repeated within the current session (that is, during the period of use of the current encryption 
key). The nonce need not be random, unpredictable, or secret. 

The nonce N is needed both to encrypt and to decrypt. Typically it would be communicated, 
in the clear, along with the ciphertext. However, it is out-of-scope how the nonce is communicated 
to the party who will decrypt. In particular, we do not regard the nonce as part of the ciphertext. 

Definition of the mode. See Figure 1 for a definition and illustration of OCB. The figure defines 
OCB encryption and decryption. The key space for OCB is the key space K for the underlying 
block cipher E. 

An equivalent description. The following description may clarify what a typical implementa
tion might do. 

RKey generation. Choose a random key K ← K for the block cipher. The key K is provided to both 
the entity that encrypts and the entity that decrypts. 

Session setup. For the party that encrypts, do any key-setup associated to block-cipher enciphering. 
For the party that decrypts, do any key-setup associated to block-cipher enciphering and decipher
ing. Let L ← EK (0n). Let m bound the maximum number of n-bit blocks that any message which 
will be encrypted or decrypted may have. Let µ ← ilog2 ml. Let L(0) ← L and, for i ∈ [1..µ], 
compute L(i) ← L(i − 1) · x using a shift and a conditional xor, as described in Section 2. Compute 

−1L(−1) ← L · x using a shift and a conditional xor, as described in Section 2. Save the values 
L(−1), L(0), L(1), . . ., L(µ) in a table. 

Encryption. To encrypt plaintext M ∈ {0, 1} ∗ using key K nonce N ∈ {0, 1}n, obtaining a cipher
text C, do the following. Let m ← i|M |/nl. If m = 0 then let m ← 1. Let M [1], . . . ,M [m] be 
strings such that M [1] · · · M [m] = M and |M [i]| = n for i ∈ [1..m − 1]. Let Offset ← EK (N ⊕ L). 
Let Checksum ← 0n . For i ← 1 to m − 1, do the following: let Checksum ← Checksum ⊕ M [i]; let 
Offset ← Offset⊕L(ntz(i)); let C[i] ← EK (M [i]⊕Offset)⊕Offset. Let Offset ← Offset⊕L(ntz(m)). 
Let Y [m] ← EK (len(M [m]) ⊕ L(−1) ⊕ Offset). Let C[m] ← M [m] xored with the first |M [m]|
bits of Y [m]. Let Checksum ← Checksum ⊕ Y [m] ⊕ C[m] 0∗ . Let T be the first τ bits of 
EK (Checksum ⊕ Offset). The ciphertext is C = C[1] · · · C[m − 1]C[m] T . It must be commu
nicated along with the nonce N . 

Decryption. To decrypt ciphertext C ∈ {0, 1} ∗ using key K and nonce N ∈ {0, 1}n, obtaining a 
plaintext M ∈ {0, 1} ∗ or an indication Invalid, do the following. If |C| < τ then return Invalid 
(the ciphertext has been rejected). Otherwise let C be the first |C| − τ bits of C and let T be the 
remaining τ bits. Let m ← i|C|/nl. If m = 0 then let m = 1. Let C[1], . . . , C[m] be strings 
such that C[1] · · · C[m] = C and |C[i]| = n for i ∈ [1..m − 1]. Let Offset ← EK (N ⊕ L). Let 
Checksum ← 0n . For i ← 1 to m − 1, do the following: let Offset ← Offset ⊕ L(ntz(i)); let M [i] ← 
E−1(C[i]⊕Offset)⊕Offset; let Checksum ← Checksum⊕M [i]. Let Offset ← Offset⊕L(ntz(m)). Let K 

6
 



 

4 

Y [m] ← EK (len(C[m])⊕L(−1)⊕Offset). Let M [m] ← C[m] xored with the first |C[m]| bits of Y [m]. 
'Let Checksum ← Checksum⊕ Y [m] ⊕ C[m] 0∗ . Let T be the first τ bits of EK (Checksum ⊕ Offset). 

'If T = T then return Invalid (the ciphertext has been rejected). Otherwise, the plaintext is 
M = M [1] · · · M [m − 1]M [m]. 

Discussion 

OCB has been designed to have a variety of desirable properties. These properties are summarized 
in Figure 2. We now expand on some of the points made in that table, and add some further 
comments. 

Arbitrary-length messages and no ciphertext expansion. One of the key characteristics 
of OCB is that any string M ∈ {0, 1} ∗ can be encrypted, and doing this yields a ciphertext C of 
length |M | + τ . That is, the length of the “ciphertext core”—the portion C = C[1] · · · C[m] of the 
ciphertext that excludes the tag—is the same as the length of the message M . This is better, by 
up to n bits, than what one gets with conventional padding. 

Single block-cipher key. OCB makes use of just one block-cipher key, K. While L = EK (0n) 
functions rather like a key and would normally be computed at session-setup time, and while 
standard key-separation techniques can always be used to obtain many keys from one, the point 
is that, in OCB, all block-cipher invocations use the one key K. Thus only one block-cipher key 
needs to be setup, saving on storage space and key-setup time. 

Weak nonce requirements. We believe that modes of operation that requires a random IV 
are error-prone. As an example, consider CBC mode, where C[i] = EK (M [i] ⊕ C[i − 1]) and 
C[0] = IV. Many standards and many books (e.g., Schneier, Applied Cryptography, 2nd edition, 
p. 194]) suggest that the IV may be a fixed value, a counter, a timestamp, or the last block of 
ciphertext from the previous message. But if it is any of these things one certainly will not achieve 
any of the standard definitions of security [2, 15]. 

It is sometimes suggested that a mode which needs a random IV is preferable to one that needs 
a nonce: it is said that state is needed for a nonce, but not for making random bits. We find this 
argument wrong. First, a random value of sufficent length can always be used as a nonce, but a 
nonce can not be used as a random value. Second, the manner in which systems provide “random” 
IVs is invariably stateful anyway: unpredictable bits are too expensive to harvest for each IV, so 
one does this rarely, using state to generate pseudorandom bits from unpredictable bits harvested 
before. Third, the way to generate pseudorandom bits needs to use cryptography, so the prevalence 
of non-cryptographic pseudorandom number generators routinely results in implementation errors. 
Next, nonce-based schemes make it possible for the receiver to implement replay-detection with no 
added cryptography. Finally, nonces can be communicated using fewer bits, without any additional 
cryptography. 

On-line. OCB encryption and decryption are “on line” in the sense that one does not need to 
know the length of the message in advance of encrypting or decrypting it. Instead, messages can be 
processed as one goes along, using constant memory, continuing until there is an indication that the 
message is over. An incremental interface (in the style popular for cryptographic hash functions) 
would be used to support this functionality. 

Significance of being efficient. Shaving off a few block-cipher calls or a few bytes of ciphertext 
may not seem important. But often one is dealing with short messages; for example, roughly a 
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Security Authenticated encryption. Provides both privacy and authenticity, 
Function eliminating the need to compute a separate MAC. Specifically, the scheme 

achieves authenticity of ciphertexts [6, 7, 21] and indistinguishability 
under chosen-plaintext attack [2, 15]. 

Error 
Propagation 

Infinite. If the ciphertext is corrupted in any manner then the received 
ciphertext will almost certainly (probability ≈ 1 − 2−τ ) be rejected. 

Synchronization Optional. If the nonce N is transmitted along with each ciphertext, there 
are no synchronization requirements. If it is not sent (to save transmission 
bits) the receiver must maintain the corresponding value. 

Parallelizability Fully parallelizable. Both encryption and decryption are fully paral
lelizable: all block-cipher invocations (except the first and last) may be 
computed at the same time. 

Keying Material One block-cipher key. One needs a single key, K, which keys all 
invocations of the underlying block cipher. 

Ctr/IV/Nonce Single-use nonce. The encrypting party must supply a new nonce with 
Requirements each message it encrypts. The nonce need not be unpredictable or secret. 

The nonce is n bits long (but it would typically be communicated using 
fewer bits, as determined by the application). 

Memory 
Requirements 

Very modest. About 6n bits beyond the key are sufficient for internal 
calculations. Implementations may choose whether or not to store L(i)
values, allowing some tradeoff between memory and simplicity/speed. 

Pre-processing Limited. During key-setup the string L would typically be precomputed 
Capability (one block cipher call), as would the first few L(i) values, and maybe 

L · x−1 . The block-cipher key K would be converted into its convenient 
representation. Unlike counter mode, additional precomputation prior to 
knowing the string to encrypt/decrypt is not possible. 

Message-Length 
Requirements 

Any bit string allowed. Any string M ∈ {0, 1} ∗ may be encrypted, 
including the empty string and strings which are not an integral number 
of bytes. The length of the string does need not be known in advance. 

Ciphertext Minimal possible (for a scheme meeting the desired privacy notion). 
Expansion Expansion is 0–n bits for the tag plus 0–n bits for the nonce. The former 

depends on a user-specified parameter τ , with 32–80 bits being typical. 
Messages which are not a multiple of the blocksize do not receive addi
tional expansion due to padding. 

Other 
Characteristics 

Efficiency: Uses i|M |/nl + 2 block-cipher calls and very efficient offset-
calculations. Endian neutrality: Can be implemented equally effi
ciently on big-endian and little-endian machines. Provable security: 
The mode provably meets its goals, assuming the underlying block cipher 
meets now-standard cryptographic assumptions. 

Figure 2: Summary properties of OCB. 
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third of the messages on the Internet backbone are 43 bytes. If one is encrypting messages of such 
short lengths, one should be careful about message expansion and extra computational work since, 
by percentage, the inefficiencies can be large. 

The argument has been made that making a major effort to save a factor of two in computational 
efficiency is marginal in the first place: “Moore’s law” will soon deliver such an improvement 
anyway, by way of faster hardware. We are not persuaded. Concommitent with processors getting 
faster has been security becoming increasingly at issue, and low-power processors becoming all the 
more prevalent. The result is a need to cryptographically process more and more data, and often 
by “dumb” execution vehicles that have plenty of other things to do. Hardware advances have 
changed our understanding of what efficiency entails but, to date, hardware advances have not 
made cryptographic efficiency any less important. 

Endian neutrality. In contrast to a scheme based on mod p arithmetic (for p a prime just less 
than 2n) or mod 2n arithmetic, there is almost no endian-favoritism implicit in the definition of 
OCB. (The exception is that, because of our use of standard mathematical conventions, the left 
shift used for forming L(i + 1) from L(i) is more convenient under a big-endian convention, as is 
the right shift used for forming L(−1) = L · x−1 from L.) 

Optional pre-processing. Implementations can choose how many L(i) values to precompute. 
As only one block-cipher call is involved, plus some shifts and conditional xors, it is feasible to do 
no preprocessing; OCB-AES is appropriate even when each session is a single, short message. 

Provable security. Provable security has become a popular goal for practical protocols. This 
is because it provides the best way to gain assurance that a cryptographic scheme does what it 
should. For a scheme which enjoys provable security one does not need to consider attacks, since 
successful ones imply successful attacks on some simpler object. 

When we say that “OCB is provably secure” we are asserting the existence of two theorems. One 
says that if an adversary A could do a good job at forging ciphertexts with OCB[E, τ ] (the adversary 
does this much more than a 2−τ fraction of the time) then there would be another adversary B 
that does a good job at distinguishing (EK (·), E−1(·)), for a random key K, from (π(·), π−1(·)),K 
for a random permutation π ∈ Perm(n). The other theorem says that if an adversary A could 
do a good job at distinguishing OCB[E, τ ]-encrypted messages from random strings, then there 
would be another adversary B that does a good job at distinguishing EK (·), for a random key K, 
from π(·), for a random permutation π ∈ Perm(n). Theorems of this sort are called reductions. In 
cryptography, provable security means giving reductions (along with the associated definitions). 

Provable security begins with Goldwasser and Micali [15], though the style of provable security 
which we use here—where the primitive is a block cipher, the scheme is a usage mode, and the 
analysis is concrete (no asymptotics)—is the approach of Bellare and Rogaway [2, 4, 5]. 

It is not enough to know that there is some sort of provable-security result; one should also 
understand the definitions and the bounds. We have already sketched the definitions. When we 
speak of the bounds we are addressing “how effective is the adversary B in terms of the efficacy of 
adversary A” (where A and B are as above). For OCB, the bounds can be roughly summarized 
as follows. An adversary can always forge with probability 1/2τ . Beyond this, the maximal added 
advantage is at most σ2/2n, where σ is the total number of blocks the adversary sees. The privacy 
bound likewise degrades as σ2/2n . The conclusion is that one is safe using OCB as long as the 
underlying block cipher is secure and σ is small compared to 2n/2 . This is the same security 
degradation one observes for CBC encryption and in the bound for the CBC MAC [2, 5]. This kind 
of security loss was the main motivation for choosing a block length for AES of n = 128 bits. 
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Comparison with Jutla’s bound. More precisely, but still ignoring lower-order terms, our pri
vacy and authenticity bounds are 1.5 σ2/2n, while Jutla’s authenticity bound [19] is insignificantly 
worse at 2 σ2/2n and his privacy bound, rescaled to [0, 1], looks insignificantly worse at 3 σ2/2n . 
Magnifying the latter difference is that the privacy results assume different defintions. Jutla adopts 
the find-then-guess definition of privacy [2, 15], while we use an indistinguishability-from-random
bits definition. The former captures an adversary’s inability to distinguish ciphertexts correspond
ing to a pair adversarilly-selected, equal-length messages. The latter captures an adversary’s inabil
ity to distinguish a ciphertext from a random string of the same length. Indistinguishability-from
random-bits implies find-then-guess security, and by a tight reduction, but find-then-guess secure 
does not imply indistinguishability-from-random-bits. Still, Jutla’s scheme probably satisfies the 
stronger definition. 

Simplicity. Simplicity has been a central design goal. Some of OCB’s characteristics that con
tribute to simplicity are: 

Short and full final-message-blocks are handled without making a special case: the treatment 
of all messages is uniform, regardless of their length. 
Only the simplest form of padding is used: append a minimal number of 0-bits to make a 
string whose length is a multiple of n. This method is computationally fastest and helps avoid 
a proliferation of cases in the analysis. 
Only one algebraic structure is used throughout the algorithm: the finite field GF(2n). 
In forming the sequence of offsets, Gray-code coefficients are taken monotonically, starting 
at 1 and stopping at m. One never goes back to some earlier offset, uses a peculiar starting 
point, or forms more offsets than there are blocks. 

Not fixing how the nonce is communicated. We do not specify how the nonce is chosen or 
communicated. Formally, it is not part of the ciphertext (though the receiving party needs it to 
decrypt). In many contexts, there is already a natural value to use as a nonce (e.g., a sequence 
number already present in a protocol flow, or implicit because the parties are communicating over 
a reliable channel). Even when a protocol is designed from scratch, the number of bits needed 
to communicate the nonce will vary. In some applications, 32 or 8 bits is enough. For example, 
one might have reason to believe that there are at most 232 messages that will flow during the 
connection, or one may communicate only the lowest 8 bits of a sequence number, counting on the 
Receiver to anticipate the high-order bits. 

Not fixing the tag length. The number of bits necessary for the tag vary according to the 
application. In a context where the adversary obtains something quite valuable from a successful 
forgery, one may wish to choose a tag length of 80 bits or more. In contexts such as authenticating 
a video stream, where an adversary would have to forge a significant fraction of the frames even to 
have a noticeable effect on the image, an 8-bit tag may be appropriate. With no universally correct 
value to choose, it is best to leave this parameter unspecified. 

Short tags seem to be more appropriate for OCB than for some other MACs, particularly Carter-
Wegman MACs. Many Carter-Wegman MACs have the property that if you can forge one message 
with probability δ then you can forge an arbitrary set of (all correct) messages with probability δ. 
This does not appear to be true for OCB (though we have not investigated formalizing or proving 
such properties). 

Forming R using a block-cipher call. During our work we discovered that there are methods 
for authenticated-encryption which encrypt M using i|M |/nl + 1 block-cipher calls, as opposed to 
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our i|M |/nl + 2 calls. Shai Halevi has also made this finding [16]. However, the methods we know 
to shave off a block-cipher call either require an unpredictable IV instead of a nonce, or they add 
conceptual and computational complexity to compute the initial offset R by non-cryptographic 
means (e.g., using a finite-field multiplication of the nonce and a key variant). 

Avoiding mod 2n addition. Our earlier designs included a scheme based on modular 2n addition 
(“addition” for the remainder of this paragraph). Basing an authenticated-encryption scheme on 
addition is an interesting idea due to Gligor and Donescu [14]. Compared to our GF(2n)-based 
approach (“xor” for the remainder of this paragraph), an addition-based scheme is quicker to 
understand a specification for, and may be easier to implement. But the use of addition (where 
n ≥ 128) has several disadvantages: 

The bit-asymmetry of the addition operator implies that the resulting scheme will have a bias 
towards big-endian architectures or little-endian architectures; there will be no way to achieve 
an endian-neutral scheme. The AES algorithm was constructed to be endian-neutral and we 
wanted OCB-AES to share this attribute. 
Modular addition of n-bit words is unpleasant for implementations using high-level languages, 
where one normally has no access to any add-with-carry instruction. 
Modular addition of n-bit words is not parallelizable. As a consequence, dedicated hardware 
will perform this operation more slowly than xor, and, correspondingly, modern processors 
can xor two n-bit quantities faster than they can add them. 
The concrete security bound appears to be worse (though still not bad) with an addition-based 
scheme: the degradation would seem to be Θ(lg m̄), where m̄ is the maximal message length. 

We eventually came to feel that the simplicity benefit of addition-based schemes was not quite real: 
these schemes seem harder to understand, to prove correct, and to implement well. 

Lazy mod p addition. Let p be the largest prime less than 2n . An earlier design [30] allowed one 
to produce offset Z[i] from Z[i − 1] by adding L to Z[i − 1], mod 2n, and then adding δ = 2n − p 
whenever the first addition generated a carry. Now X[m] would be defined by len(M [m]) ⊕ Z[m], 
say, where Z[m] is the bitwise complement of Z[m]. It appears that, unlike a mod 2n scheme, xors 
can still be used to combine offsets with message blocks and enciphered message blocks. This might 
make an xor-based lazy-mod-p approach more attractive than a mod-2n approach. But in order 
to propagate a single scheme, avoid endian favoritism, and avoid complicating an already complex 
proof, and we chose not to propagate lazy-mod-p-addition. 

Definition of the Checksum. An initially odd-looking aspect of OCB’s definition is the defini
tion of Checksum = M [1] ⊕ · · · M [m − 1] ⊕ C[m] 0∗ ⊕ Y [m]. In Jutla’s scheme, where one assumes 
that all messages are a positive multiple of the block length, the checksum is the simpler-looking 
M [1] ⊕ · · · M [m − 1] ⊕ M [m]. We comment that these two definitions are identical in the case that 
|M [m]| = n. What is more, the definition Checksum = M [1] ⊕· · · M [m − 1] ⊕ M [m] 0∗ turns out to 
be the wrong way to generalize the Checksum to allow for short-final-block messages; in particular, 
the scheme using that checksum is easily attacked. 

Avoiding pretag collisions. Many of our earlier schemes, including [30], allowed the adversary 
to force a “pretag collision.” Recall that we compute the tag T by computing a “pretag” X[m+1] = 
Checksum ⊕ SomeOffset, forming a value Y [m + 1] = EK (X[m + 1]), and then forming T by doing 
further processing to Y [m + 1]. For a scheme of this form, we say that an adversary can force a 

¯ ¯ ¯pretag collision if there is an N, M that can be encrypted, getting C T , and then a forgery attempt 
¯ N, C T can be made such that, in it, the pretag X[m + 1] will coincide with a value X[i] or X[i] 
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at which the block cipher E was already evaluated. 
We designed OCB so that an adversary can not force pretag collisions. The presence of pretag 

collisions substantially complicates proofs, since one can not follow a line of argument that shows 
that tags are unpredictable because each pretag-value is almost certainly new. For schemes like 
IAPM, where pretag collisions arise, this intuition is simply wrong. Beyond this, note that in the 
presence of pretag collisions one must modify Y [m+1] by an amount Δ that depends on at least the 
key and nonce. Say that the modification is by xor, and one wants to be able to pull off an arbitrary 
bit as a 1-bit authentication tag. Then every bit of Δ will have to be adversarially unpredictable,. 
This is unfortunate, as many natural ways to make Δ fail to have this property. Suppose, for 
example, the first couple bits of L are forced to zero, as suggested by [30], and Δ = L · (m + 1). 
Then, for small m, the first bit of Δ will be zero. This can be exploited to give an attack on the 
xor-based scheme of [30] when τ = 1. Similarly, for i a power of two, Δ = iL mod 2n ends in a 
0-bit, so had [30] taken the tag to be the last τ bits instead of the first τ bits, one would again 
have an attack on 1-bit tags. A scheme would be arcane, at best, if certain bits of the full tag are 
usable and other bits are not. 

Block-cipher circuit-depth. One efficiency measure we have not discussed is the circuit depth 
of an encryption scheme as measured in terms of block-cipher gates. For OCB encryption, this 
number is three: a call to form R; calls to form the ciphertext core; and a call to compute the tag. 
Block-cipher circuit-depth serves as a lower bound for latency in an agressively parallel environment. 
Reducing the block-cipher circuit-depth to one or two is possible, but the benefit does not seem 
worth the associated drawbacks. 

5 Theorems 

5.1 Security Definitions 

We begin with the requisite definitions. These are not completely standard because OCB uses a 
nonce, and we wish to give the adversary every possible advantage (more than is available in real 
life) by allowing her to choose this nonce (though we forbid the adversary from choosing the same 
nonce twice). 

Syntax. We extend the syntax of an encryption scheme as given in [2]. A (nonce-using, symmetric) 
encryption scheme Π is a triple Π = (K, E , D) and an associated number n (the nonce length). Here 
K is a finite set and E and D are deterministic algorithms. Encryption algorithm E takes strings 
K ∈ K, N ∈ {0, 1}n, and M ∈ {0, 1} ∗, and returns a string C ← EK (N, M). Decryption algorithm D 
takes strings K ∈ K, N ∈ {0, 1}n, and C ∈ {0, 1} ∗, and returns DK (N, M), which is either a string 
M ∈ {0, 1} ∗ or the distinguished symbol Invalid. If C ← EK (N, M) then DK (N, C) = M . 

Privacy. We give a particularly strong definition of privacy, one asserting indistinguishability 
from random strings. This notion is easily seen to imply more standard definitions [2], and by 
tight reductions. Consider an adversary A who has one of two types of oracles: a “real” encryption 
oracle or a “fake” encryption oracle. A real encryption oracle, EK (·, ·), takes as input N, M and 
returns C ← EK (N, M). It is assumed that |C| = £(|M |) depends only on |M |. A fake encryption 

Roracle, $(·, ·), takes as input N, M and returns a random string C ← {0, 1}£(|M |). Given adversary A 
R R

AEK (·,·)and encryption scheme Π = (K, E , D), define Advpriv (A) = Pr[K ← K : = 1] − Pr[K ←Π 
K : A$(·,·) = 1]. 

An adversary A is nonce-respecting if it never repeats a nonce: if A asks its oracle a query 
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(N, M) it will never subsequently ask its oracle a query (N, M '), regardless of its coins (if any) and 
regardless of oracle responses. All adversaries are assumed to be nonce-respecting. 

Authenticity. We extend the notion of integrity of ciphertexts of [6, 7, 21]. Fix an encryption 
scheme Π = (K, E , D) and run an adversary A with an oracle EK (·, ·) for some key K. Adversary A 
forges (in this run) if A is nonce-respecting, A outputs (N, C) where DK (N, C) = Invalid, and 

Let Advauth R
A made no earlier query (N, M) which resulted in a response C. (A) = Pr[K ←Π 
K : AEK (·,·) forges ]. We stress that the nonce used in the forgery attempt may coincide with a 
nonce used in one of the adversary’s queries. 

Block ciphers and PRFs. A function family from n-bits to n-bits is a map E : K × {0, 1}n → 
{0, 1}n where K is a finite set of strings. It is a block cipher if each EK (·) = E(K, ·) is a permutation. 
Let Rand(n) denote the set of all functions from {0, 1}n to {0, 1}n and let Perm(n) denote the set 
of all permutations from {0, 1}n to {0, 1}n . These sets can be regarded as function families by 
imagining that each member is specified by a string. Letting E−1(Y ) be the unique string X such K 
that EK (X) = Y , define 

Advprf R R(A) = Pr[K ← K : AEK (·) = 1] − Pr[ρ ← Rand(n) : Aρ(·) = 1] E 

R RAdvprp(A) = Pr[K ← K : AEK (·) = 1] − Pr[π ← Perm(n) : Aπ(·) = 1] E 

Advsprp R
AEK (·),E−1 R(A) = Pr[K ← K : K (·) = 1] − Pr[π ← Perm(n) : Aπ(·),π−1(·) = 1] E 

5.2 Theorem Statements 

We give information-theoretic bounds on the authenticity and the privacy of OCB. Proofs are in 
Appendix B. 

Theorem 1 [Authenticity] Fix OCB parameters n and τ . Let A be an adversary that asks q 
queries and then makes its forgery attempt. Suppose the q queries have aggregate length of σ 
blocks, and the adversary’s forgery attempt has at most c blocks. Let σ̄ = σ + 2q + 5c + 11. Then 

1.5 σ̄2 1
Advauth (A) ≤ +OCB[Perm(n),τ ] 2n 2τ 

oqThe aggregate length of queries M1, . . . ,Mq means the number σ = IMrIn. r=1 
It is standard to pass to a complexity-theoretic analog of Theorem 1, but in doing this one will 

need access to an E−1 oracle in order to verify a forgery attempt, which translates into needing the 
strong PRP assumption. One gets the following. Fix OCB parameters n and τ , and a block cipher 
E : K × {0, 1}n → {0, 1}n . Let A be an adversary that asks q queries and then makes its forgery 
attempt. Suppose the q queries have aggregate length of σ blocks, and the adversary’s forgery 
attempt has at most c blocks. Let σ̄ = σ+2q +5c+11. Let δ = Advauth (A)−1.5 σ̄2/2n −1/2τ .OCB[E,τ ] 

Then there is an adversary B for attacking block cipher E that achieves advantage Advsprp (B) ≥ δ.E 
'Adversary B asks at most q = σ + 2q + 5c + 11 oracle queries and has a running time which is 

'equal to A’s running time plus the time to compute E or E−1 at q points plus additional time 
which is αnσ̄, where the constant α depends only on details of the model of computation. 

The privacy of OCB is given by the following result. 
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Theorem 2 [Privacy] Fix OCB parameters n and τ . Let A be an adversary that asks q queries, 
these having aggregate length of σ blocks. Let σ̄ = σ + 2q + 3. Then 

Advpriv 1.5 σ̄2 

(A) ≤OCB[Perm(n),τ ] 2n 

It is standard to pass to a complexity-theoretic analog of Theorem 2. One gets the following. 
Fix OCB parameters n and τ , and a block cipher E : K × {0, 1}n → {0, 1}n . Let A be an 
adversary that asks q queries, these having aggregate length of σ blocks. Let σ̄ = σ + 2q + 3. Let 
δ = Advauth 

OCB[E,τ ] (A) − 1.5 σ̄2/2n . Then there is an adversary B for attacking block cipher E that 
'achieves advantage Advprp(B) ≥ δ. Adversary B asks at most q = σ + 2q + 1 oracle queries and E 

'has a running time which is equal to A’s running time plus the time to compute E at q points 
plus additional time which is αnσ̄, where the constant α depends only on details of the model of 
computation. 

Performance 

Abstract accounting. OCB uses i|M |/nl+2 block-cipher calls to encrypt a nonempty message 
M . (The empty string takes three block-cipher calls.) We compare this with CBC encryption and 
CBC encryption plus a CBC MAC: 

“Basic” CBC encryption, where one assumes a random IV and a message which is a multiple 
of the block length, uses two fewer block-cipher calls—a total of |M |/n. 
A more fair comparison sets IV = EK (N) for CBC encryption (so both schemes can use a 
not-necessarily-random nonce), and uses obligatory 10∗ padding (so both schemes can handle 
arbitrary strings). This would bring the total for CBC to i(|M | + 1)/nl + 1 block-cipher 
calls, coinciding with OCB when |M | is a multiple of the block length, and using one fewer 
block-cipher call otherwise. 
If one combines the basic CBC encryption with a MAC, say MACing the ciphertext, then the 
CBC-encryption will use a number of block-cipher calls as just discussed, while the CBC MAC 
will use between i|M |/nl + 1 and i(|M | + 1)/nl + 3 block-cipher calls, depending on padding 
conventions and the optional processing done to the final block in order to ensure security 
across messages of varying lengths. So the total will be as few as 2i|M |/nl + 1 or as many as 
2i(|M | + 1)/nl + 4 block-cipher calls. Thus OCB saves between i|M |/nl− 1 and i|M |/nl +3 
block-cipher calls compared to separate CBC encryption and CBC MAC computation 

As with any mode, there is overhead beyond the block-cipher calls. Per block, this overhead is 
about four n-bit xor operations, plus associated logic. The work for this associated logic will vary 
according to whether or not one precomputed L(i)-values and many additional details. 

Though some of the needed L(i)-values are likely to be precomputed, computing all of them 
“on the fly” is not inefficient. Starting with 0n we form successive offsets by xoring the previous 
offset with L, 2 · L, L, 4 · L, L, 2 · L, L, 8 · L, and so forth. So half the time we use L itself; a 
quarter of the time we use 2 · L; one eighth of the time we use 4 · L; and so forth. Thus the expected o∞number of times to multiply by x in order to compute an offset is at most i/2i+1 = 1. Each i=1 
a · x instruction requires an n-bit xor and a conditional 32-bit xor. Said differently, for any m > 0,o mthe total number of a · x operations needed to compute γ1 · L, γ2 · L, . . . , γm · L is i=1 ntz(i), 
which is less than m. The above assumed that one does not retain or precompute any L(i) value 
beyond L = L(0). Suppose that one precomputes L(−1), L(0), L(1), L(2), L(3). Computing and 
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Algorithm 64 B 256 B 1 KB 4 KB 

OCB encrypt 24.7 (395) 18.5 (296) 16.9 (271) 16.7 (267) 

ECB encrypt 15.1 (241) 15.0 (239) 14.9 (238) 14.9 (238) 

CBC encrypt 15.9 (254) 15.9 (254) 15.9 (255) 15.9 (256) 

CBC mac 19.2 (307) 16.3 (261) 15.5 (248) 15.3 (246) 

Figure 3: Performance results from Lipmaa [24], in cycles per byte (and cycles per 16-byte block) on a 
Pentium III. The block cipher is AES128. Code is written in assembly. 

storing the four values beyond L = L(0) is cheaper than computing L itself, which required an 
application of EK . But now, in forming offsets, the desired multiple of L will have be available at 
least 1/2 + 1/4 + 1/8 + 1/16 ≈ 94% of the time. When it has not been precomputed it must be 
calculated, starting from L(3), so the amortized number of multiplications by x has been reduced o∞to = i/2i+4 = 0.125.i=1 

Experimental results. In Table 3 we report, with permission, some experimental results by Hel
ger Lipmaa [24]. On a Pentium III, in optimized assembly, Lipmaa implemented OCB encryption, 
ECB encryption, CBC encryption, and the CBC MAC. The last three modes were implemented in 
their “raw” forms, where one does no padding and assumes that the message acted on is a positive 
multiple of the block length. For CBC encryption, the IV is fixed. The underlying block cipher is 
AES128. 

Focusing on messages of 1 KByte, OCB incurs about 6.4% overhead compared to CBC encryp
tion, and that the algorithm takes about 54% of the time of a CBC encryption + CBC MAC. 
Lipmaa points out that overhead is so low that, in his experiments, an assembly AES128 with a 
C-code CBC-wrapper is slightly slower than the same AES128 with an assembly OCB-wrapper. 
Lipmaa’s (size-unoptimized) code is 7.2 KBytes, which includes unrolling an (already unrolled) 
AES128 implementation (2.2 KBytes) three times. 

Some aspects of the experiments above are unfavorable to OCB, making the performance esti
mates conservative. In particular, the “raw” CBC MAC needs to be modified to correctly handle 
length-variability, and doing so is normally done in a way that results in additional block-cipher 
calls. And when combined with CBC encryption, the CBC MAC should be taken over the full 
ciphertext, including the nonce, which would add an extra block-cipher call. Finally, an extra 
block-cipher call would normally be performed by CBC to correctly compute the IV from a nonce. 

The results above are for a serial execution environment. With plenty of registers and multiple 
instruction pipes, OCB, properly implemented, will be faster than CBC. 
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A Brief History 

An April 1999 paper by Gligor and Donescu describes an authenticated-encryption scheme they 
call PCBC [10]. The mode is wrong, as pointed out by Jutla [17]. That paper gives the first 
apparently correct schemes: IACBC and IAPM. Shortly after Jutla’s paper appeared, Gligor and 
Donescu described a different scheme, XCBC [11], which is similar to IACBC. The most conspicuous 
difference between XCBC and IACBC is the former’s use of mod 2n addition for forming offsets 
and adding them in. (In contrast, IACBC makes offsets using either xor or mod p addition, for p 
a prime just less than 2n.) 

A first call by NIST for modes of operation brought contributions [12, 18] based on [11, 17] and 
a contribution by Rogaway [30] that built on [17]. In [18], Jutla began to employ a Gray-code 
ordering for combining basis offsets, a refinement independently introduced in [30], along with 
several further tricks to improve offset production, to use a single block-cipher key, and to extend 
the domain to {0, 1} ∗ while ensuring that the ciphertext core (the ciphertext without the tag) has 
the same length as the plaintext. 

A second call by NIST resulted in [13, 19, 31], which were revisions to [12, 18, 30], respectively. 
In [19], Jutla now emphasized IAPM, and he adopted lazy mod-p addition for making offsets, first 
described in [30]. In [13], Gligor and Donescu now describe four authenticated-encryption modes, 
one of which, XECBS-XOR, is parallelizable. The modes incorporate some features introduced 
in [30] to deal with messages of arbitrary length and to use a single key. (The techniques are 
pushed less far and, in particular, there is ciphertext expansion when plaintexts are not a multiple 
of the block size.) In [31], Rogaway et al settled on one particular mechanism to make offsets (three 
are described in [30]), and made further refinements to [30]. 

Briefly comparing OCB and IAPM [19], the latter uses two separate keys and is defined only for 
messages which are a multiple of the block length. Once a padding regime is included, say obligatory 
10∗ padding, ciphertexts will be longer than OCB’s by 1 to n bits. IAPM supports offset-production 
using either lazy mod-p addition or an xor-based scheme. The latter is not competitive with OCB 
in terms of session-setup costs. 

The initial version of Jutla’s work [17] claimed a proof, and included ideas towards one. A 
subsequent writeup by Halevi [16] was more rigorous. 

Patents. The summary above ignores associated patent applications. Gligor/VDG, Jutla/IBM, 
and Rogaway have all indicated that there were such filings. All parties have provided statements 
to NIST promising reasonable and nondiscriminatory licensing. 
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Definitions. Though the fast authenticated-encryption goal is folklore, provable-security treat
ments are recent. The first definition for authenticated encryption is due to Bellare and Rogaway [7] 
and, independently, Katz and Yung [21]. Bellare and Namprempre were the first to seriously in
vestigate the properties of authenticated-encryption and the generic-composition paradigm [6]. 

B Proofs 

B.1 Structure of the Proofs 

Our proof of Theorem 1 is based on three lemmas. The first, the structure lemma, relates the 
authenticity of OCB to three functions: the M-collision probability, denoted Mcolln(·), the MM-
collision probability, denoted MMcolln(·, ·), and the CM-collision probability, denoted CMcolln(·, ·). 
We state this lemma and then explain its purpose and the functions to which it refers. 

Lemma 1 [Structure lemma] Fix OCB parameters n and τ . Let A be an adversary that asks q 
queries and then makes its forgery attempt. Suppose the q queries have aggregate length of σ 
blocks, and the adversary’s forgery attempt has at most c blocks. Let σ̄ = σ + 2q + 5c + 11. Let 
Mcolln(·), MMcolln(·, ·) and CMcolln(·, ·) be the M-, MM-, and CM-collision probabilities. Then ⎧ ⎨   

Advauth 
OCB[Perm(n),τ ](A) ≤ max 

m1,...,mqn ⎩ Mcolln(mr) + MMcolln(mr, ms)+
mi =σ 

mi≥1 
r∈[1..q] 1≤r<s≤q ⎫  

CMcolln(c, mr) 
⎬ ⎭ 

+ 
σ̄2 

2n+1 + 
1 
2τ 

r∈[1..q] 

What this lemma does. The structure lemma provides a recipe for measuring the maximal 
forging probability of an adversary attacking the authenticity of OCB: compute the M-, MM- and 
CM- collision probabilities, and then put them together using the formula of the lemma. 

Informally, Mcolln(m) measures the probability of running into trouble when the adversary asks 
a single query of the specified length. Trouble means the occurrence of any collision in the associated 
block-cipher-input values. This includes the “special” input 0n (used to define L = EK (0n) and 
N ⊕ L (used to define R = EK (N ⊕ L)). Informally, MMcolln(m, m̄) measures the probability of 
running into trouble when the adversary asks some two particular oracle queries of the specified 
lengths. Trouble means that a block-cipher input associated to the first message coincides with 
a block-cipher input associated to the second message. Informally, CMcolln(c, m̄) measures the 
probability of running into trouble when the adversary tries to forge some particular ciphertext C 
of the specified block length c, there having been an earlier query of some particular message M 
of the specified block length m, it receiving some particular response. This time trouble basically 
refers to the final block-cipher input for the forgery attempt, X[c + 1], coinciding with some earlier 
block-cipher input. 

The structure lemma simplifies the analysis of OCB in two ways. First, it allows one to excise 
adaptivity as a concern. Dealing with adaptivity is a major complicating factor in proofs of this 
type. Second, it allows one to concentrate on what happens to fixed pairs of messages. It is easier 
to think about what happens with two messages than what is happening with all q + 1 of them. 

The M- and MM-collision probability. We next define the M-collision probability and the 
MM-collision probability, and then state our upper bound on these functions. 
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Definition 1 [M- and MM-collision probabilities] Fix n and let M = M [0] · · · M [m + 1] and 
¯ ¯ ¯ ¯ M = M [0] · · · M [m̄ + 1] be strings of at least 2n bits, where each M [i] and M [j] has n bits. Choose 

R ¯ L, R, R ¯ ← {0, 1}n and then associate to M and M the points 

X[−1] = 0n 

¯ ¯ X[0] = M [0] ⊕ L X[0] = M [0] ⊕ L
 
¯ ¯
 X[1] = M [1] ⊕ γ1 · L ⊕ R X[1] = M [1] ⊕ γ1 · L ⊕ R ¯
 
¯ ¯
 X[2] = M [2] ⊕ γ2 · L ⊕ R X[2] = M [2] ⊕ γ2 · L ⊕ R ¯ 

. . . . . . 
¯ ¯ X[m − 1] = M [m − 1] ⊕ γm−1 X[ ¯ = m − 1] ⊕ γ ̄ · L ⊕ ¯ · L ⊕ R m − 1] M [ ¯ m−1 R 
¯ ¯ X[m] = M [m] ⊕ (γm X[ ¯ = m] ⊕ (γ ̄ ⊕ huge) · L ⊕ ¯⊕ huge) · L ⊕ R m] M [ ¯ m R 
¯ ¯ X[m + 1] = M [m + 1] ⊕ γ ̄ · L ⊕ R m + 1] = M [ ¯ · L ⊕ ¯ 

m X[ ¯ m + 1] ⊕ γm R 

and the multisets 

X0 = { X[−1], X[0], X[1], . . . , X[m], X[m + 1] } 

X = { X[0], X[1], . . . , X[m], X[m + 1] } 

¯ ¯ ¯ ¯ ¯X = { X[0], X[1], . . . , X[m̄], X[m̄ + 1] } 

Let Mcolln(M) denote the probability that some string is repeated in the multiset X0, and let 
¯ ¯MMcolln(M, M) denote the probability that some element occurs in both X and X . When m 

and m̄ are numbers, let Mcolln(m) denote the maximal value of Mcolln(M) over all strings M ∈ 
¯({0, 1}n)m+2 and let MMcolln(m, m̄) denote the maximal value of Mcolln(M, M) over all M ∈ 

¯ ¯({0, 1}n)m+2 and M ∈ ({0, 1}n) ̄ M [0]. m+2 such that M [0] = 

Think of M [0] as a synonym for the nonce N , think of M [m] as a generalization of len(M [m]) 
(where the adversary can effectively control M [m] as opposed to len(M [m]) to influence X[m]), 
and think of M [m + 1] as a synonym for Checksum, which we likewise let the adversary control. 

¯ ¯ ¯One similarly understands M [0], M [m̄], and M [m̄ + 1]. The needed bound is as follows. 

Lemma 2 [Bound on the M- and MM-collision probability]   
m + 3 1 (m + 2)( ̄m + 2) 

Mcolln(m) ≤ · and MMcolln(m, m̄) ≤
2 2n 2n 

The CM-collision probability. The CM-collision probability is defined in Figure 4. The 
following lemma tells us how large it can possibly be. 

Lemma 3 [Bound on the CM-collision probability] Assume c, m̄ ≤ 2n−2 . Then 

2c + 3m̄ + 9 
CMcolln(c, m̄) ≤ 

2n 

Concluding the authenticity theorem. To prove Theorem 1, combine Lemmas 1, 2, and 3.
 
Let Π = OCB[Perm(n), τ ]. Given the aggregate block length σ and the bound c on the length of
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10 bad ← false; for all x ∈ {0, 1}n do π(x) ← undefined 
R11 L ← {0, 1}n; π(0n) ← L 

R¯ ¯ ¯ ¯20 X[0] ← N ⊕ L; Y [0] ← R ← {0, 1}n 

¯21 for i ← 1 to m̄ do Z(i) ← γi · L ⊕ R ¯ 
¯ ¯ ¯ ¯22 for i ← 1 to m̄− 1 do { X[i] ← M [i] ⊕ Z̄[i]; Y [i] ← C[i] ⊕ Z̄[i] }

¯ ¯ ¯ ¯23 X[m̄] ← len(M̄ [m̄]) ⊕ huge · L ⊕ Z̄[ ̄m] ; Y (m̄) ← C[m̄] 0∗ ⊕ M [m̄] 0∗ 

¯ ¯24 Checksum' ← M [1] ⊕ · · · ⊕ M [m̄ − 1] ⊕ C̄[ ̄m] 0∗ ⊕ Y ̄[m̄]
 
25 X̄[ ̄m + 1] ← Checksum' ⊕ Z̄[ ̄m]
 
26 for i ← 0 to m̄ + 1 do π(X̄[i]) ← Y ̄[i]
 

30 X[0] ← N ⊕ L 
¯31 if N = N and X[0] ∈ Domain(π) then bad ← true 

R¯ ¯32 if N = N then R ← R else R ← {0, 1}n 

33 π(X[0]) ← R 
34 for i ← 1 to c do Z[i] ← γi · L ⊕ R 
35 for i ← 1 to c − 1 do {
36 Y [i] ← C[i] ⊕ Z[i] 

R37 if Y [i] ∈ Range(π) then X[i] ← π−1(Y [i]) else X[i] ← {0, 1}n
 

38 π(X[i]) ← Y [i]; M [i] ← X[i] ⊕ Z[i] }

39 X[c] ← len(C[c]) ⊕ huge · L ⊕ Z[c]
 

R40 if X[c] ∈ Domain(π) then Y [c] ← π(X[c]) else Y [c] ← {0, 1}n
 

41 π(X[c]) ← Y [c]
 
42 Checksum ← M [1] ⊕ · · · ⊕ M [c − 1] ⊕ C[c] 0∗ ⊕ Y [c]
 
43 X[c + 1] ← Checksum ⊕ Z[c]
 
44 if X[c + 1] ∈ Domain(π) then bad ← true
 

¯Figure 4: Defining the CM-collision probability. The function CMcolln N, C, N,C) is defined as ( ¯ M, ¯ 

the probability that bad gets set to true when executing this game. The value CMcolln(c, m̄) is the maximal 
( ¯ ¯ ¯ ¯ ¯ ¯value of CMcolln N, C, N, C) over all m-block M and C, and all c-block C such that N = N or C = C.M, ¯ ¯

the forgery attempt, one must bound the maximum possible value of ⎫⎬ 
⎧⎨ 

Advauth 
Π (A) Mcolln(mr) + MMcolln(mr,ms) + CMcolln(c, mr) +≤ max ⎩ ⎭m1,...,mqn 

=σmi r∈[1..q] 1≤r<s≤q r∈[1..q] 
mi≥1 

σ2¯ 1 
+

2n+1 2τ ⎧⎨ 
⎫⎬(mr + 3)2 (mr + 2)(ms + 2) 2c + 3mr + 9 

+ + +≤ max 
2n+1 2n 2n⎩ ⎭m1,...,mqn 

=σmi r∈[1..q] 1≤r<s≤q r∈[1..q] 
mi≥0 

(σ + 2q + 5c + 11)2 1 
+

2n+1 2τ 

One can bound the first sum by letting m1 = σ and letting the remaining mi = 0; one can bound 
the second sum by letting each mi = σ/q; and one can bound the third sum by letting m1 = σ 
and letting the remaining mi = 0. These choices can be justified by the technique of Lagrange 
multipliers. This gives 

0.5(σ + 3)2 + 4.5q 0.5q2(σ/q + 2)2 2c + 3σ + 9 + q(2c + 9) 
Advauth 

Π (A) ≤ 
2n 

+
2n 

+
2n 

+ 
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0.5(σ + 2q + 5c + 11)2 1 
+

2n 2τ 

0.5(σ + 3)2 + 4.5q + 0.5(σ + 2q)2 + 2c + 3σ + 9 + 2cq + 9q + 0.5(σ + 2q + 5c + 11)2 1 ≤ +
2n 2τ 

0.5(σ + 3)2 + 0.5(σ + 2q)2 + 0.5(σ + 2q + 5c + 11)2 + (3σ + 2cq + 2c + 13.5q + 9) 1 ≤ 
2n 

+ 
2τ 

≤ 
1.5 (σ + 2q + 5c + 11)2 

2n 
+ 

1 
2τ 

1.5 σ̄2 1 ≤ 
2n 

+ 
2τ 

The fourth inequality can be justified by checking that 0.5(σ + 3 + (2q + 5c + 8))2 − 0.5(σ + 3)2) 
already exceeds 3σ + 2cq + 2c + 13.5q + 9. This completes the proof. 

Privacy. Privacy is obtained rather easily en route to proving authenticity. The is because of the 
following result, which closely follows the first half of the proof of the structure lemma. 

Lemma 4 [Privacy lemma] Fix OCB parameters n and τ , and let Π = OCB[Perm(n), τ ]. Let A 
be an adversary that asks q queries, these having aggregate block length of σ blocks. Let Mcolln(·) 
and MMcolln(·, ·) be the M- and MM-collision probabilities. Then ⎫⎬ 

⎧⎨ 
Advpriv (σ + 2q + 1)2 

(A) ≤Π 2n+1 +
 Mcolln(mr) + MMcolln(mr,ms)max
 ⎩
 ⎭
m1,...,mqn 
=σ 

mi≥1 
mi r∈[1..q] 1≤r<s≤q 

Combining Lemmas 2 and 4 gives Theorem 2. Namely, ⎧⎨ 
⎧⎨ 

⎫⎬ 
⎫⎬(σ + 2q + 1)2 (mr + 3)2 (mr + 2)(ms + 2) 

Advpriv (A)Π ≤ + +max max
2n+1 2 · 2n 2n⎩ ⎭ ⎩ ⎭m1,...,mqn m1,...,mqn 

mi =σ mi =σr∈[1..q] 1≤r<s≤q 
mi≥0 mi≥0 

and we bound the two sums exactly as before, giving 

Advpriv 0.5(σ + 2q + 1)2 0.5(σ + 3)2 + 4.5q 0.5q2(σ/q + 2)2 

(A) ≤ + +Π 2n 2n 2n 

0.5(σ + 2q + 1)2 + 0.5(σ + 3)2 + 4.5q + 0.5(σ + 2q)2 + 4.5q≤ 
2n 

1.5 (σ + 2q + 3)2 

≤ 
2n 

1.5 σ̄2 

≤ 
2n 

The third inequality can be justified by noting that 0.5(σ + 3 + 2q)2 − 0.5(σ + 3)2 exceeds 4.5q. 

B.2 Proof of the Structure Lemma (Lemma 1) 

Let A be a (computationally unbounded) adversary that attempts to violate the authenticity of 
Π = OCB[Perm(n), τ ]. Without loss of generality, A is deterministic. The adversary is given 
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Initialization: 
01 bad ← false; for all x ∈ {0, 1}n do π(x) ← undefined 
02 L← {0, 1}n; π(0n) ← L 

When A asks query (N, M): //q such queries will be asked 
10 Partition M into blocks M [1] · · · M [m] 
11 X[0] ← N ⊕ L; Y [0]← {0, 1}n 

12 if X[0] ∈ Domain(π) then { bad ← true; Y [0] ← π(X[0]) } else 
13 if Y [0] ∈ Range(π) then { bad ← true; Y [0]← Range(π) }
14 π(X[0]) ← Y [0] 

R

15 for i ← 1 to m do Z[i] ← γi · L ⊕ Y [0] 
16 for i ← 1 to m − 1 do { 

R

17 X[i] ← M [i] ⊕ Z[i]; Y [i]← {0, 1}n 

R

18 if X[i] ∈ Domain(π) then { bad ← true; Y [i] ← π(X[i]) } else 

R

R n0 1← { }, 

19 if Y [i] ∈ Range(π) then { bad ← true; Y [i]← Range(π) } 

R

20 π(X[i]) ← Y [i]; C[i] ← Y [i] ⊕ Z[i] } 

21 X[m] ← len(M [m]) ⊕ huge · L ⊕ Z[m]; Y [m]
22 if X[m] ∈ Domain(π) then { bad ← true; Y [m] ← π(X[m]) } else 
23 if Y [m] ∈ Range(π) then { bad ← true; Y [m]← Range(π) }
24 π(X[m]) ← Y [m]; C[m] ← M [m] ⊕ Y [m] 

R

R

25 Checksum ← M [1] ⊕ · · · ⊕ M [m − 1] ⊕ C[m] 0∗ ⊕ Y [m] 
26 X[m + 1] ← Checksum ⊕ Z[m]; Y [m + 1]← {0, 1}n 

27 if X[m + 1] ∈ Domain(π) then { bad ← true; Y [m + 1] ← π(X[m + 1]) } else 
28 if Y [m + 1] ∈ Range(π) then { bad ← true; Y [m + 1]← Range(π) }
29 π(X[m + 1]) ← Y [m + 1]; T ← Y [m + 1] [first τ bits] 
30 return C ← C[1] · · · C[m] T 

R

Figure 5: Game A, part 1. This game provides adversary A a perfect simulation of OCB[Perm(n), τ ]. 

an oracle for OCB.Encπ(·, ·). We must bound the probability that A, after adaptively using this 
oracle q times, on messages with aggregate length σ blocks, produces a properly forged ciphertext 
having at most c blocks. This forgery probability is denoted Advauth (A).Π 

Game A. One can conceive of A interacting with OCB.Encπ(·, ·) and then producing a forgery 
attempt as A playing a certain game, game A, as defined in Figures 5 and 6. Rather than choose 

R
π ← Perm(n) all at once, this game defines the values of π(x) point-by-point, as needed. We use the 
notation Domain(π) for the set of values x ∈ {0, 1}n such that π(x) = undefined. By Domain(π) 
we mean {0, 1}n \ Domain(π). Similarly, Range(π) is the set of y ∈ {0, 1}n such that there exists 
an x ∈ {0, 1}n for which π(x) = y, and Range(π) = {0, 1}n \ Range(π). 

An inspection of game A makes clear that it supplies to A a perfect simulation of OCB.Encπ(·, ·). 
Game A simulates OCB in a somewhat unusual way, not only defining π point-by-point, but, 
when a value π(x) is needed, for some new x, we get this value, in most cases, not by choosing 

R R
y ← Range(π), as would seem natural, but by choosing y ← {0, 1}n, setting π(x) to y if y is not 

Ralready in the range of π, and “changing our minds,” setting π(x) ← Range(π), otherwise. In the 
latter case, a flag bad is set to true. The flag bad is also set to true when the adversary successfully 
forges. Consequently, upperbounding the probability that bad gets set to true in game A serves 
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When A makes forgery attempt (N, C): 
50 Partition C into C[1] · · · C[c] T 
51 X[0] ← N ⊕ L; if X[0] ∈ Domain(π) then Y [0] ← π(X[0]) else Y [0] R← Range(π) 
52 π(X[0]) ← Y [0] 
53 for i ← 1 to c do Z[i] ← γi · L ⊕ Y [0] 
54 
55 

for i ← 1 to c − 1 do {
Y [i] ← C[i] ⊕ Z[i] 

56 if Y [i] ∈ Range(π) then X[i] ← π−1(Y [i]) else X[i] R← Domain(π) 
57 π(X[i]) ← Y [i]; M [i] ← X[i] ⊕ Z[i] } 

58 X[c] ← len(C[c]) ⊕ huge · L ⊕ Z[c] 
59 if X[c] ∈ Domain(π) then Y [c] ← π(X[c]) else Y [c] R← Range(π) 
60 π(X[c]) ← Y [c] 
61 Checksum ← M [1] ⊕ · · · ⊕ M [c − 1] ⊕ C[c] 0∗ ⊕ Y [c] 
62 X[c + 1] ← Checksum ⊕ Z[c] 
63 if X[c + 1] ∈ Domain(π) then Y [c + 1] ← π(X[c]) else Y [c + 1] R← Range(π) 
64 T ' ← Y [c + 1] [first τ bits] 
65 if T = T ' then bad ← true 

Figure 6: Games A, A' B, B', and C, part 2. 

to upperbound the adversary’s forging probability. 

Game A'. We begin by making a couple of quite trivial changes to game A. First, instead of setting 
C[m] = M [m] ⊕ Y [m] (in line 24 of game A), we set C[m] = M [m] 0∗ ⊕ Y [m], instead. That is, we 
imagine returning the “full” final-ciphertext-block instead of the truncated final-ciphertext-block. 
Clearly the extra bits given to the adverary can not make worse an optimal adversary’s chance of 
successful forgery. Second, instead of returning (in line 30 of game A) a tag T which is the first τ 
bits of Y [m + 1], we return the full tag, Y [m + 1]. Once again, the extra bits provided to the 
adverary can only improve an optimal adversary’s chance of success. Let game A' denote this new, 
“easier” game. We will bound the probability that bad gets set to true in game A' . 

Game B. Next we eliminate from game A' the statement which immediately follows bad being set 
to true in each of lines 12, 13, 18, 19, 22, 23, 27, 28. The else statements are also eliminated. 
This new game, game B, is shown in Figure 7. This new game is different from game A', and an 
adversary A having queries answered according to game B will not be seeing the same view as one 
whose queries are answered according to A' . Still, game B has been constructed so that it behaves 
identically to game A' until the flag bad is set to true. Only at that point do the two games 
diverge. As a consequence, regardless of the behavior of A, the probaiblity that bad will get set to 
true when A plays game B is identical to the probability that bad gets set to true when A plays 
game A' . Now we are interested in upperbounding the probability of forgery in game A, which 
we do by upperbounding the probability that bad gets set to true in game A', which is just the 
probability that bad gets set to true in game B. 

Note that we are not claiming that the probability of the adversary forging in game B (meaning 
that bad gets set to true at line 65 of game B) is the same as the probability of the adversary 
forging in A' (meaning that bad gets set to true in the last line of that game). Claims of this sort 
are tempting to make, but they are untrue. 

Bounding Y -collisions in Game B. We next bound the probability that bad will be set to true 
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Initialization:
 
01 bad ← false; for all x ∈ {0, 1}n do π(x) ← undefined
 

R02 L ← {0, 1}n; π(0n) ← L 

When A asks query (N, M): //q such queries will be asked 
10 Partition M into blocks M [1] · · · M [m] 
11 X[0] ← N ⊕ L; Y [0] R← {0, 1}n 

12 if X[0] ∈ Domain(π) then bad ← true 
13 if Y [0] ∈ Range(π) then bad ← true 
14 π(X[0]) ← Y [0] 
15 for i ← 1 to m do Z[i] ← γi · L ⊕ Y [0] 
16 for i ← 1 to m − 1 do {
17 X[i] ← M [i] ⊕ Z[i]; Y [i] R← {0, 1}n 

18 if X[i] ∈ Domain(π) then bad ← true 
19 if Y [i] ∈ Range(π) then bad ← true 
20 π(X[i]) ← Y [i]; C[i] ← Y [i] ⊕ Z[i] }
21 X[m] ← len(M [m]) ⊕ huge · L ⊕ Z[m]; Y [m] R← {0, 1}n 

22 if X[m] ∈ Domain(π) then bad ← true 
23 if Y [m] ∈ Range(π) then bad ← true 
24 π(X[m]) ← Y [m]; C[m] ← M [m] 0∗ ⊕ Y [m] 
25 Checksum ← M [1] ⊕ · · · ⊕ M [m − 1] ⊕ C[m] 0∗ ⊕ Y [m] 
26 X[m + 1] ← Checksum ⊕ Z[m]; Y [m + 1] R← {0, 1}n 

27 if X[m + 1] ∈ Domain(π) then bad ← true 
28 if Y [m + 1] ∈ Range(π) then bad ← true 
29 π(X[m + 1]) ← Y [m + 1] 
30 return C ← C[1] · · · C[m] Y [m + 1] 

Figure 7: Game B, part 1. 

in any of lines 13, 19, 23, or 28 of game B. In each of these lines, a random n-bit string was just 
chosen and then it is tested for membership in the growing set Range(π). In the course of game B 
the size Range(π) starts off at 0 and then grows one element at a time until it reaches a final size 
of σ + 2q + 1 elements. Therefore the probability that, in growing Range(π), there is a repetition 
as we add in random points is at most (1 + 2 + · · · + σ + 2q)/2n ≤ (σ + 2q + 1)2/2n+1 . We note 
this for future reference: 

(σ + 2q + 1)2 

Pr[A causes bad to be set in any of lines 13, 19, 23 or 28 of game B] ≤ (1)
2n+1 

Having bounded the probability that bad will be set in the four indicated lines, we may imagine 
eliminating these four lines, forming a new game, game B' . The probability that bad is set in 
game B is at most the computed bound more than than the probability that bad is set in game B' . 
Thus we may continue the analysis using game B' as long as we compensate the final bound by 
adding in the term given by Equation (1). 

Game C. In game B', consider the distribution on strings returned to the adversary in response 
to a query (N, M), where m = IMIn. The adversary learns C = C[1] · · · C[m − 1]C[m] Y [m + 1]. 
Since each block of this string is a uniform random value xor’ed with some other, independent value, 
we have that C is uniformly distributed and independent of the query M , apart from its length. 
As a consequence, when a query of N, M is made, where M has m blocks, we can return a random 
answer C (of nm + n bits) and do no more at that time. Later, when the adversary is done making 
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When A asks its r-th query, (Nr, Mr): //r will range from 1 to q 
10 Partition Mr into blocks Mr[1] · · · Mr[mr] 

R11 Cr[1], . . . , Cr[mr], Yr[m + 1] ← {0, 1}n 

12 return Cr ← Cr[1] · · · Cr[mr] Yr[mr + 1] 

When A is done making oracle queries:
 
20 bad ← false; for all x ∈ {0, 1}n do π(x) ← undefined
 

R21 L ← {0, 1}n; π(0n) ← L 

30 for r ← 1 to q do { 
R31 Xr[0] ← Nr ⊕ L; Yr[0] ← {0, 1}n
 

32 for i ← 1 to mr do Zr[i] ← γi · L ⊕ Yr[0]
 
33 for i ← 1 to mr − 1 do { Xr[i] ← Mr[i] ⊕ Zr[i]; Yr[i] ← Cr[i] ⊕ Zr[i] }

34 Xr[mr] ← len(M [mr]) ⊕ huge · L ⊕ Zr[mr] ; Yr[mr] ← Cr[mr] ⊕ Mr[mr] 0∗
 

35 Checksumr ← Mr[1] ⊕ · · · ⊕ Mr[mr − 1] ⊕ Cr[mr] 0∗ ⊕ Yr[mr]
 
36 Xr[mr + 1] ← Checksumr ⊕ Zr[mr] }
 

37 X ← (X1[0], X1[1], . . . , X1[m1 + 1], . . . , Xq[0], Xq[1], . . . , Xq [mq + 1])
 
38 Y ← (Y1[0], Y1[1], . . . , Y1[m1 + 1], . . . , Yq[0], Yq[1], . . . , Yq[mq + 1])
 
39 if some string is repeated in X ∪ {0n} then bad ← true
 
40 for i ← 1 to |X | do π(X [i]) ← Y[i]
 

Figure 8: Game C, part 1. This game provides adversary A with the same view as game B, and sets bad 
with the same probability. But it defers some random choices. 

its q queries, we can set the remaining random values, make the associated assignments to π, and 
set the flag bad, as appropriate. This is what has been done in Game C of Figure 8. From the 
adversary’s point of view, game B' and game C are identical. Furthermore, the probability that 
bad gets set to true is identical in the two games. 

Game D. We have reduced the problem of upperbounding the forging probability to the problem 
of upperbounding the probability that bad gets set to true in game C. This probability is over the 
coins used in line 11 of game C (which defines the Cr-values) and over the additional coins used 
subsequently in the program. We must show that, over this sequence of coins (remember that the 
adversary is deterministic) the flag bad is rarely set. 

We will show something stronger: that even if one fixes all of the coins used in line 11 (the 
Cr-values) and takes the probability over just the remaining coins, still the probability that bad 
gets set to true is small. The virtue of this change is that it effectively eliminates the q interactive 
queries from the game. Namely, since the adversary A is deterministic and each response Cr has 
been fixed, the adversary can be imagined to “know” all of the queries N1,M1, . . . , Nq,Mq that 
it would ask and all of the answers C1, . . . , Cq that it would receive. All the adversary has left 
to do is to output the forgery attempt (N,C T ). This value too is now pre-determined, as our 
adversary is deterministic. So the adversary is effectively gone, and we are left to claim that for any 
N1,M1, . . . , Nq,Mq, C1, . . . , Cq, N,C, T , the flag bad will rarely be set if we run game C starting 
at line 20. The new game is called game D. It depends on N1,M1, . . . , Nq,Mq, C1, . . . , Cq, N, C, T , 
which are now just constants. The constants are not quite arbitrary: the Nr-values are still required 
to be distinct. The lengths of M1, . . . ,Mq are m1, . . . ,mq blocks. The length of C is c blocks. 

The Mcolln and MMcolln terms. At this point we make the observation that bad will be set to 
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20 bad ← false; for all x ∈ {0, 1}n do π(x) ← undefined
 
21 L← {0, 1}n; π(0n) ← L
 

30 for r ← 1 to q do {

31 Xr[0] ← Nr ⊕ L; Yr[0]← {0, 1}n
 

32 for i ← 1 to mr do Zr[i] ← γi · L ⊕ Yr[0]
 
33 for i ← 1 to mr − 1 do { Xr[i] ← Mr[i] ⊕ Zr[i]; Yr[i] ← Cr[i] ⊕ Zr[i] }
 

R

34 Xr[mr] ← len(M [mr]) ⊕ huge · L ⊕ Zr[mr] ; Yr[mr] ← Cr[mr] ⊕ Mr[mr] 0∗ 

35 Checksumr ← Mr[1] ⊕ · · · ⊕ Mr[mr − 1] ⊕ Cr[mr] 0∗ ⊕ Yr[mr] 

R

36 Xr[mr + 1] ← Checksumr ⊕ Zr[mr] }
37 X ← (X1[0], X1[1], . . . , X1[m1 + 1], . . . , Xq[0], Xq[1], . . . , Xq [mq + 1]) 

R

38 Y ← (Y1[0], Y1[1], . . . , Y1[m1 + 1], . . . , Yq[0], Yq[1], . . . , Yq[mq + 1]) 
39 for i ← 1 to |X | do π(X [i]) ← Y[i] 

R

40 if some string is repeated in X ∪ {0n} then bad ← true 

50 X[0] ← N ⊕ L; if X[0] ∈ Domain(π) then Y [0] ← π(X[0]) else Y [0]← Range(π)
 
51 π(X[0]) ← Y [0]
 
52 for i ← 1 to c do Z[i] ← γi · L ⊕ Y [0]
 
53 for i ← 1 to c − 1 do {

54 Y [i] ← C[i] ⊕ Z[i]
 
55 if Y [i] ∈ Range(π) then X[i] ← π−1(Y [i]) else X[i]← Domain(π)
 
56 π(X[i]) ← Y [i]; M [i] ← X[i] ⊕ Z[i] }

57 X[c] ← len(C[c]) ⊕ huge · L ⊕ Z[c]
 
58 if X[c] ∈ Domain(π) then Y [c] ← π(X[c]) else Y [c]← Range(π)
 
59 π(X[c]) ← Y [c]
 
60 Checksum ← M [1] ⊕ · · · ⊕ M [c − 1] ⊕ C[c] 0∗ ⊕ Y [c]
 
61 X[c + 1] ← Checksum ⊕ Z[c]
 
62 if X[c + 1] ∈ Domain(π) then Y [c + 1] ← π(X[c]) else Y [c + 1]← Range(π) 

R

'63 T ← Y [c + 1] [first τ bits] 
'64 if T = T then bad ← true 

R

Figure 9: Game D. This game depends on N1, . . . , Nq, M1, . . . ,Mq, C1, . . . , Cq, Y1[m1 + 1], . . . , Yq [mq + 1], 
N , C = C[1] · · · C[c] and T . 

true in line 40 of game D if and only if either 
There is some r ∈ [1..q] such that there is a repetition in the multiset 

{0n, Xr[0], Xr[1], . . . , Xr[mr]} 

There is some pair r, s ∈ [1..q], where r < s, such that 

{Xr[0], . . . Xr[mr + 1]} has some a point in common with {Xs[0], . . . Xs[ms + 1]} 

The probability of this event is at most 

Mcolln(mr) + MMcolln(mr,ms) (2) 
r∈[1..q] 1≤r<s≤q 

by our definition of Mcolln and MMcolln. Therefore the probability that bad is set to true in 
line 40 of Game D is at most the expression above. We are left now to focus on the probability 
that bad gets set to true in line 64 of Game D (Figures 9 and 6). 
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50 X[0] ← N ⊕ L 
51 if N = Nr for any r and X[0] ∈ Domain(π) then bad ← true 
52 if N = Nr for some r then Y [0] ← Yr[0] else Y [0] R← {0, 1}n 

53 π(X[0]) ← Y [0] 
54 for i ← 1 to c do Z[i] ← γi · L ⊕ Y [0] 
55 for i ← 1 to c − 1 do {
56 Y [i] ← C[i] ⊕ Z[i] 
57 if Y [i] ∈ Range(π) then X[i] ← π−1(Y [i]) else X[i] R← {0, 1}n 

58 π(X[i]) ← Y [i]; M [i] ← X[i] ⊕ Z[i] }
59 X[c] ← len(C[c]) ⊕ huge · L ⊕ Z[c] 
60 if X[c] ∈ Domain(π) then Y [c] ← π(X[c]) else Y [c] R← {0, 1}n 

61 π(X[c]) ← Y [c] 
62 Checksum ← M [1] ⊕ · · · ⊕ M [c − 1] ⊕ C[c] 0∗ ⊕ Y [c] 
63 X[c + 1] ← Checksum ⊕ Z[c] 
64 if X[c + 1] ∈ Domain(π) then bad ← true 

Figure 10: Game E, part 2. The first half of this game is lines 20–39 of Game D. 

Game E. We modify the second half of game D (lines 20–39 are unchanged). First, we simplify 
lines 50, 55 and 58, and 62 by choosing a random value in {0, 1}n as opposed to a value in the 
co-range, co-domain, co-range, and co-range of π, respectively. By similar reasoning to that used 
before, this new game may decrease the probability that bad gets set to true, but by an amount 
that is at most 

(c + 2)(σ + 2q + c + 3) 
2n 

Second, we modify the game so as to “give up” (set bad) if the condition of line 62 is satisfied. 
(Here is where pretag-collisions would begin to cause extra complications.) In doing this, we may 
again decrease the probability that bad will be set to true. But the decrease is at most 1/2τ 

Rsince, when the else clause of the new line 62 is executed (that is, Y [m + 1] ← {0, 1}n), T will 
'equal T with probability exactly 1/2τ . Finally, we modify the game to give up (set bad) whenever 

N  ∈ {N1, . . . , Nq} but X[0] = N ⊕ L is already in Domain(π) when this is checked at line 50. The 
new game is called game E and it is shown in Figure 10. We note for future reference: 

Pr[bad gets set in game D] 

(c + 2)(σ + 2q + c + 3)2 1 ≤ Pr[bad gets set in game E] + + (3)
2n 2τ 

Game F. We now examine game E and relate it to a final game, F. If bad is set to true in game E 
the reason is either that X[0] = N ⊕ L was found to be in the domain of π even though N is a new 
nonce, or else X[c + 1] was found to be in the domain of π when this was checked. In the latter 
case, how did X[c + 1] come to be in the domain of π? At least one of the following must be true: 

X[c + 1] = 0n . (The value 0n was added to the domain of π at line 21.) 
For some r ∈ [1..q], for some j ∈ [0..mr + 1], X[c + 1] = Xr[j]. (These values were added to 
the domain of π at line 39.) 
For some i ∈ [0..c], X[c+1] = X[i]. (These values were added to the domain of π at lines 53, 57, 
and 61). 
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When bad is set to true we will assign responsibility for this event to exactly one index r ∈ [1..q]. 
We say that the responsible index is r where: 

If N is a new nonce and X[0] ∈ Domain(π) at line 51, then the responsible index is the least 
r ∈ [1..q] such that Xr[j] = X[0] for some j. Otherwise, 
If X[c + 1] = 0n, then the responsible index is r = 1. Otherwise, 
If there is an r ∈ [1..q] such that, for some j ∈ [0..mr +1], X[c+1] = Xr[j], then the responsible 
index is the least such value r. Otherwise, 
The responsible index is r = 1. (This last case can happen when X[c + 1] = X[i] for some 
i ∈ [0..c].) 

Partition the coins used in the running of game E into: the coins s0 used in the initialization step 
(line 21); the coins s1, . . . , sq used for processing message M1, . . . ,Mq, respectively (line 31); and 
the coins s used to process the forgery attempt C (lines 52, 57, and 60). Suppose we eliminate the 
for statement at line 30, and execute lines 31–36 for some specific value of r. Call this game Er. 
We make the crucial observation that if bad is set to true in game E using coins (s0, s1, . . . , sq, s) 
then bad will still be set to true in game Er using coins (s0, sr, s) when the responsible index 
is r. This follows from our definition of the responsible index. The only observation that is needed 
is that when X[c + 1] = X[i] for some i ∈ [0..c], then, considering the least such i, if X[i] was 
selected by assigning to it an already-selected Xs[j]-value, then the third case in the definition of 
the responsible index will result in the selection of an index r that forces bad to true. 

By what we have said, one can bound the probability that bad gets set to true in game E by 
summing the probabilities that bad gets set to true in game Er, where r ∈ [1..q]. Game Er is 
precisely the game that was used to define the CMcolln; in particular, the probability that bad is 
set in Er is CMcolln(c, mr). We conclude that the probability that bad is set to true in game Er 

is at most CMcolln(c, mr). Thus the probability that bad gets set to true in game E is at most 

q 

CMcolln(c, mr) (4) 
r=1 

Summing Equations (1), (2), (3) and (4) gives that the adversary’s chance of forgery is at most 

q
 

Mcolln(mr) + MMcolln(mr,ms) + CMcolln(c, mr) +
 
r∈[1..q] 1≤r<s≤q r=1
 

(σ + 2q + 1)2 + 2(c + 2)(σ + 2q + c + 3) 1 
+

2n+1 2τ 

Using that (σ + Δ)2 − σ2 ≥ 2σΔ and (σ + Δ)2 − σ2 ≥ Δ2, we can increase σ by a small amount in 
order to compensate for the lower-order terms and clean up the expression. Namely, increasing σ 
by 2q + 1 is enough to take care of the first addend, while increasing σ by c + 2 plus 2(c + 2) plus √ 

2(c+3) is enough to take care of the second addend. So increasing σ by 2q + 5c + 11 will take 
care of both. Letting σ̄ = 2q + 5c + 11 we thus have that the adversary’s chance of forgery is at 
most 

q 
σ2¯ 1 1

MMcolln(qr, qs) + CMcolln(c, qs) + · +
2 2n 2τ 

1≤r<s≤q r=1 

This completes the proof of the structure lemma.
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B.3 Proof of the M- and MM-Collision Bounds (Lemma 2) 

We assume that m, m̄ < 2n−2, since the specified probability upper bound is meaningless (it exceeds 
1) otherwise. According to remarks we have made earlier, this ensures that γ1, . . . , γmax{m, ̄m}, huge 
are distinct nonzero field elements. 

We begin with the first inequality. There are m + 3 points in the set X0, and we claim that for 
any two of them, the probability that they coincide is at most 1/2n . This is enough to show the   

m+3first inequality, that the probability of a collision within X0 is at most · 2−n . There are a 2
few cases to consider. Below, remember that L and R are random, and everything else is constant. 
The probabilities are over L, R. In the following, we let i, i ' ∈ [1..m − 1], i = i ' . 

Pr[X[−1] = X[0]] = Pr[0n = M [0] ⊕ L] = 1/2n .
 
Pr[X[−1] = X[i]] = Pr[0n = M [i] ⊕ γi · L ⊕ R] = 1/2n .
 
Pr[X[−1] = X[m]] = Pr[0n = M [m] ⊕ (γm ⊕ huge) · L ⊕ R] = 1/2n .
 
Pr[X[−1] = X[m + 1]] = Pr[0n = M [m + 1] ⊕ γm · L ⊕ R] = 1/2n .
 
Pr[X[0] = X[i]] = Pr[M [0] ⊕ L = M [i] ⊕ γi · L ⊕ R] = 1/2n .
 
Pr[X[0] = X[m]] = Pr[M [0] ⊕ L = M [m] ⊕ (γm ⊕ huge) · L ⊕ R] = 1/2n .
 
Pr[X[0] = X[m + 1]] = Pr[M [0] ⊕ L = M [m + 1] ⊕ γm · L ⊕ R] = 1/2n .
 
Pr[X[i] = X[i ']] = Pr[M [i] ⊕ γi · L = M [i '] ⊕ γi' · L] = Pr[M [i] ⊕ M [i '] = (γi ⊕ γi' ) · L] = 1/2n
 

because γi = γi' .
 
Pr[X[i] = X[m]] = Pr[M [i] ⊕ γi · L ⊕ R = M [m] ⊕ (γm ⊕ huge) · L ⊕ R] = Pr[M [i] ⊕ γi · L =
 
M [m]⊕(γm⊕huge)·L] = Pr[M [i]⊕M [m] = (γm⊕huge⊕γi)·L] = 1/2n because γi⊕γm = huge.
 
The reason that γi ⊕ γm = huge is that huge begins with a 1 in bit position 1, while neither
 
γi nor γm do, because i, m ≤ 2n−2 and γi < 2i, γm ≤ 2m.
 
Pr[X[i] = X[m + 1]] = Pr[M [i] ⊕ γi · L ⊕ R = M [m + 1] ⊕ γm · L ⊕ R] = Pr[M [i] ⊕ M [m +1] =
 
(γi ⊕ γm) · L] = 1/2n .
 
Pr[X[m] = X[m + 1]] = Pr[M [m] ⊕ (γm ⊕ huge) · L ⊕ R = M [m + 1] ⊕ γm · L ⊕ R] =
 
Pr[M [m] ⊕ M [m + 1] = huge · L] = 1/2n .
 

This completes the first inequality. 
¯For the second inequality, we wish to show that for any point in X and any point in X , 

the probability that they coincide is at most 2−n . The result follows, since there are at most 
¯(m + 2)( ̄m + 2) such pairs. Remember, below, that L, R and R are random, and everything else is 

constant. We let i ∈ [1..m − 1] and j ∈ [1..m̄− 1]. As before, γ1, . . . , γm, huge are distinct nonzero 
points. 

¯ ¯ ¯Pr[X[0] = X[0]] = Pr[M [0] ⊕ L = M [0] ⊕ L] = 0, since M [0] = M [0] by assumption. 
¯ ¯ ¯Pr[X[0] = X[j]] = Pr[M [0] ⊕ L = M [j] ⊕ γj · L ⊕ R̄] = 1/2n due to the influence of R. 
¯ ¯Pr[X[0] = X[ ¯ M [ ¯ m R] = 1/2nm] = Pr[M [0] ⊕ L = m] ⊕ (γ ̄ ⊕ huge) · L ⊕ ¯ due to the influence 

of R̄. 
¯Pr[X[0] = X[m̄ + 1] = Pr[M [0] ⊕ L = M̄ [m̄ + 1] ⊕ γ ̄ · L ⊕ R̄] = 1/2n due to the influence of 

¯ 
m 

R. 
¯ ¯ ¯Pr[X[i] = X[j]] = Pr[M [i] ⊕ γi · L ⊕ R = M [j] ⊕ γj · L ⊕ R̄] = 1/2n due to the influence of R. 
¯ ¯ ¯Pr[X[i] = m]] = Pr[M [i] ⊕ γi · L ⊕ R = m] ⊕ (γ ̄ ⊕ huge) · L ⊕ R] = due to the X[ ¯ M [ ¯ m 1/2n
 

influence of R̄.
 
¯
Pr[X[i] = X[m̄ + 1] = Pr[M [i] ⊕ γi · L ⊕ R = M̄ [m̄ + 1] ⊕ γ ̄ · L ⊕ R̄] = 1/2n due to the 

influence of R̄. 
¯ ¯ 

m 

Pr[X[m] = X[m̄] = 1/2n, as before, due to the influence of R.
 
¯
Pr[X[m] = X[m̄ + 1] = 1/2n for the same reason. 
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¯Pr[X[m + 1] = X[m̄ + 1] = 1/2n for the same reason. 

The remaining cases follow by symmetry. This completes the proof. 

B.4 Proof of the CM-Collision Bound (Lemma 3) 

¯ ¯Proof: At the top level, we consider two cases: N = N and N = N . The second of these will be 
analyzed by breaking into four subcases. 

¯ Case 1: N = N . In this case there are two ways for bad to be set to true: it can happen at 
line 31 or line 44 in the game that defines the CMcolln collision probability (Figure 4). Let us first 
calculate the probability that bad is set to true at line 31, which is 

¯ ¯Pr[bad is set at line 31] = Pr[N ⊕ L ∈ {0n , X[1], . . . , X[m̄ + 1]}] 

One point in the domain of π has been omitted from set B = {0n , X̄[1], . . . , X̄[ ̄m], X̄[m̄ + 1]}: 
¯ ¯ ¯ X[0] = N ⊕ L, which we know is different from N ⊕ L since N = N . The probability above is taken 

¯ ¯ over L and R, where each X[i] implicitly depends on both. We claim that for each of the m̄ + 2 
values in B, the probability that N ⊕ L is equal to this particular value is exactly 1/2n . This is 
verified by: 

Pr[N ⊕ L = 0n] = 1/2n because of the random L.
 
¯ ¯
For any j ∈ [1..m̄− 1], Pr[N ⊕ L = X[j]] = Pr[N ⊕ L = M [j] ⊕ γj · L ⊕ R̄] = 1/2n because of 

the random R̄. 
¯Similarly, Pr[N ⊕ L = M̄ [m̄] ⊕ (γ ̄ ⊕ huge) · L ⊕ R̄] = 1/2n because of the random R. 

¯ 
m 

Similarly, Pr[N ⊕ L = M [m̄ + 1]] = Pr[N ⊕ L = Checksum' ⊕ γm̄ · L ⊕ R̄] = 1/2n because of 
the random R̄. 

We conclude that 

m̄ + 2 
Pr[bad is set at line 31] ≤ (5)

2n 

We next show that 

c + m̄ + 3 
Pr[X[c] ∈ Domain(π) at line 40] ≤ (6)

2n 

For this, let us define S to be 

S = {0n , X̄[0], X̄[1], . . . , X̄[m̄ + 1], X[0], X[1], . . . , X[c − 1]} 

This is the domain of π at the time that line 40 is executed. The set has c+m̄+3 points and we shall 
use the sum bound to see that the probability that X[m] is one of these is at most (c + m̄ + 3)/2n . 
Namely, 

Pr[X[c] = 0n] = Pr[len(C[c]) ⊕ (γm ⊕ huge) · L ⊕ R = 0n] = 1/2n as the right-hand side of the 
equality sign does not depend on R. 

¯ ¯Pr[X[c] = X[0]] = Pr[len(C[c]) ⊕ (γc ⊕ huge) · L ⊕ R = N ⊕ L] = 1/2n for the same reason. 
¯For j ∈ [1..m̄− 1], Pr[len(C[c]) ⊕ (γc ⊕ huge) · L ⊕ R = M [j] ⊕ γj · L ⊕ R̄] = 1/2n for the same 

reason. 
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¯ ¯Pr[X[c] = X[ ¯ ⊕ huge) · L ⊕ R = m] ⊕ (γ ̄ ⊕ huge) · L ⊕ ¯ m]] = Pr[len(C[c]) ⊕ (γc M [ ¯ m R] = 1/2n 

for the same reason. 
¯Pr[X[c] = X[ ¯ ⊕ huge) · L ⊕ R = Checksum' 

m · L ⊕ R̄] = 1/2nm + 1]] = Pr[len(C[c]) ⊕ (γc ⊕ γ ̄
for the same reason. 
Pr[X[c] = X[0]] = Pr[len(C[c]) ⊕ (γc ⊕ huge) · L ⊕ R = N ⊕ L] = 1/2n for the same reason. 
For i ∈ [1..c − 1], X[i] is determined in one of two possible ways: either it is a value already 
placed into the Domain(π) (the then clause at line 37 was executed) or else it is a randomly 
selected value in {0, 1}n (the else clause was executed). In the former case, the sum bound 
has already accounted for the probability of a collision with X[i]. In the latter case, the chance 
of the random value colliding with X[c] = len(C[c]) ⊕ (γc ⊕ huge) · L ⊕ R is 1/2n . 

Equation (6) has now been established. 

Next we observe that 

c + m̄ + 4 
Pr[X[c + 1] ∈ Domain(π) at line 44 | X[c]  ∈ Domain(π) at line 40 ] ≤ (7)

2n 

The reason is that, when the conditioning event happens, Y [c] is selected as a random point in 
{0, 1}n at line 40, which results in Checksum being a random value independent of the points in 
the domain of π, which results in X[c + 1] being a random value independent of the points in the 
domain of π. Since the domain of π has at most 1 + (m̄ + 2) + (c + 1) = c + m̄ + 4 points at this 
time, Equation (7) follows. Now, summing Equations (5), (6) and (7) gives us that 

3m̄ + 2c + 9 
Pr[bad gets set | Case 1 ] ≤ (8)

2n 

Case 2A: N = N ¯ and c = m̄. The next case we consider is when N = N ¯ and c = m̄. Redefine S 
to be 

¯ ¯ S = {0n , X[0], . . . , X[m̄ + 1], X[1], . . . , X[c − 1]} 

This is Domain(π) at the time line 40 is executed. We show that 

c + m̄ + 2 
Pr[X[c] ∈ S | Case 2a ] ≤ (9)

2n 

To show this, one has as before to go through the c + m̄ + 2 points of S: 

Pr[X[c] = 0n] = Pr[len(C[c]) ⊕ (γc ⊕ huge) · L ⊕ R = 0n] = 1/2n .
 
Pr[X[c] = N ⊕ L] = Pr[len(C[c]) ⊕ (γc ⊕ huge) · L ⊕ R = N ⊕ L] = 1/2n .
 

¯ ¯
For j ∈ [1..m̄− 1], Pr[X[c] = X[j]] = Pr[len(C[c]) ⊕ (γc ⊕ huge) · L ⊕ R = M [j] ⊕ γj · L ⊕ R] = 
¯Pr[len(C[c]) ⊕ M [j] = (γj ⊕ γc ⊕ huge) · L] = 1/2n since γj ⊕ γc = huge. The reason that 

γj ⊕ γc = huge is that γj < 2j ≤ 2m̄ ≤ 2 · 2n−2 = 2n−1, so γj begins with a 0-bit; and 
γc < 2c ≤ 2m̄ ≤ 2 · 2n−2 = 2n−1, so γc begins with a 0-bit; so the xor of γj and γc begins with 
a 0-bit, while huge begins with a 1-bit, so they are certainly unequal. 

¯Pr[X[c] = X[m̄]] = Pr[len(C[c]) ⊕ (γc ⊕ huge) · L ⊕ R = len( M̄ [m̄]) ⊕ (γ ̄ ⊕ huge) · L ⊕ R] = m 

Pr[len(C[c]) ⊕ len(M̄ [m̄]) = (γc ⊕ γ ̄ ) · L] = 1/2n since γc = γ ̄ (since c = m̄).m m 
¯ X[ ¯ mPr[X[c] = m + 1]] = Pr[len(C[c]) ⊕ (γc ⊕ huge) · L ⊕ R = Checksum' ⊕ γ ̄ · L ⊕ R] = 

Pr[len(C[c]) ⊕ Checksum' = (γc m) · L] = 1/2n as before. ⊕ huge ⊕ γ ̄
For i ∈ [1..c − 1], either X[i] was selected as a value already in Domain(π), in which case the 
sum bound has already accounted for the probability of a collision with X[c], or else X[i] was 
selected as a new random value, in which case it has a 1/2n chance of colliding with X[c]. 
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We have established (9). Next, as before, if X[c]  ∈ S then Y [c] is chosen at random, making 
Checksum random, and making X[c + 1] random. Thus 

c + m̄ + 3 
Pr[X[c + 1] ∈ Domain(π) at line 44 | X[c]  ∈ Domain(π) at line 40 ] ≤ (10)

2n 

since the size of the domain of π at line 44 is at most c + m̄ + 3. Adding Equations (9) and (10) 
we have that 

2c + 2m̄ + 5 
Pr[bad gets set | Case 2A] ≤ (11)

2n 

¯ ¯ Case 2B: N = N and c = m̄ and ∃ a, a < c, s.t. C[a] = C[a]. In this case, let a ≥ 1 be the 
¯smallest index such that C[a] = C[a]. We claim that Y [a] is almost certainly not in the range of π 

when this point is examined at line 37, when i = a. In fact, we claim something stronger: that 
Y [a] is almost certainly different from every point in 

¯ ¯ S = {L, Y [0], . . . , Y [c + 1], Y [1], . . . , Y [a − 1], Y [a + 1], . . . , Y [c − 1]} 

In particular, 

c + m̄
Pr[Y [a] ∈ S] ≤ (12)

2n 

This is verified by going through each point in S, exactly as before. This time, for each point in 
¯ S except Y [a], the probability that this point coincides with Y [a] is exactly 1/2n . The probability 

¯ ¯that Y [a] = Y [a] is 0, since C[a] = C[a]. 

Now we modify the game which defines CMcolln so that X[a] is always selected at random from 
{0, 1}n . If we bound the probability that bad gets set in this new game and then add to it the 
bound of Equation (12), the result bounds the probability that bad gets set in Case 2B. From now 
on in this case analysis, assume this new game. 

Next we claim that X[c] is almost certainly different from X[a]: 

1
Pr[X[c] = X[a]] = (13)

2n 

This is clear because, in the modified game we have described, X[a] is now chosen at random, 
independent of X[c] = len(C[c]) ⊕ (huge ⊕ γc) · L ⊕ R. 

We may now modify the game once again so that Y [c] is selected at random even in the case that 
X[c] = X[a]. Bounding the probability of bad being set in the new game, and adding in the bound 
of (13), serves to bound the probability of bad being set in the prior game. 

Now we can look at the probability that X[c + 1] ∈ Domain(π) when this is checked in the modified 
game. At this point the domain of π contains the c + m̄ + 3 points 

¯Domain∗ = {0n , X̄[0], . . . , X[m̄ + 1], X[1], . . . , X[a], . . . , X[c]} 

We want to know the probability that Checksum ⊕ γc · L ⊕ R is in this set. But Checksum 
now contains the point Y [c], which, in the modified game, has just been selected at random and 
independent of the points above. So 

c + m̄ + 3 
Pr[X[c + 1] ∈ Domain(π) in the modified game] ≤ (14)

2n 
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Summing Equations (12), (13), and (14), we conclude that 

2c + 2m̄ + 4 
Pr[bad gets set | Case 2B ] ≤ (15)

2n 

¯ ¯ Case 2C: N = N and c = m̄ and C[i] = C[i] for all 1 ≤ i < c and |C[c]| = |C̄[c]|. In 
¯this case, necessarily C[c] = C[c]. Note that Checksum has a known value, which is different from 

Checksum' , being exactly Checksum' ⊕ C̄[c] 0∗ ⊕ C[c] 0∗ . The values M [1], . . . ,M [c − 1] are likewise 
¯ ¯known, being identical to M [1], . . . , M [c − 1], respectively. We are interested in 

¯Pr[X[c + 1] ∈ {0n, X[0], . . . , X[c], X[c + 1]} 

One goes through each of the points, as before, and sees that the probability that X[c + 1] = 
Checksum⊕ γc ·L⊕R is any one of them is 1/2n, except for the last point, for which the probability 
that they coincide is 0. Thus 

Pr[bad gets set | Case 2C ] ≤ 
c + 2 
2n (16) 

¯ ¯ Case 2D: N = N and c = m̄ and C[i] = C[i] for all 1 ≤ i < c and |C[c]| = |C̄[c]|. For this 
case, we first claim that X[c] is almost certainly not in the domain of π when this is inspected at 

¯line 40 of Figure 4. The method is as before. The point X[c] is certain to be different from X[c], 
¯and its chance of coinciding with any of the c + 2 points in {0n, X[0], X[1], . . . , X[c − 1], X[c + 1]}

is easily verified to be 1/2n . Thus 

c + 2 
Pr[X[c] ∈ Domain(π) at line 40 ] ≤ (17)

2n 

Proceeding as before, 

c + 3 
Pr[X[c + 1] ∈ Domain(π) at line 44 | X[c]  ∈ Domain(π) at line 38 ] ≤ (18)

2n 

since c + 3 bounds the size of the domain when line 44 is executed, and the conditioning event 
ensures a random value for X[c + 1] which is independent of these points. Summing the bounds of 
Equation (17) and (18) gives 

2c + 5 
Pr[X[c + 1] ∈ Domain(π) at line 44 ] ≤ (19)

2n 

Conclusion. Taking the maximum from Equations (8), (11), (15), (16), and (19) we have 

3m̄ + 2c + 9 
Pr[bad gets set ] ≤ 

2n 

which is the lemma. 
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B.5 Proof of the Privacy Bound (Lemma 4) 

The proof is straightforward compared to authenticity, so we quickly go though it. We begin by 
following the proof of the Structure Lemma (Appendix B.2). Games A to D are defined as before, 
except that 

The second half of each game is omitted, since there is no forgery attempt in this context. 
Return the truncated final-ciphertext-blocks, instead of the full final-ciphertext blocks, as the 
games specify. 

Focus on the (modified) game C, where we have now returned to the adversary A a random string 
of |Mr| + τ bits whenever a query Mr is asked. Furthermore, the behavior of game C coincides 
with the behavior of the original game A unless the flag bad is set to true, at which point the two 
games diverge. Thus we can bound Advpriv (A) by bounding the probability that the flag OCB[Perm(n),τ ]

bad is set to true in (the modified) game C, which is at most the probability that it gets set in 
Game D. From the same reasoning as in the structure lemma, this is at most ⎫⎬ 

⎧⎨(σ + 2q + 1)2 

+ max
 Mcolln(mr) + MMcolln(mr,ms)2n+1 m1,...,mqn 
mi =σ 
⎩
 ⎭
 

r∈[1..q] 1≤r<s≤q 
mi≥1 

which is precisely the bound given by the the lemma.
 

35
 


