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Abstract 

In this paper, a new encryption mode, which we call the 
2D-Encryption Mode, is presented. It has good security and 
practical properties. We first look at the type of problems it 
tries to solve, then describe the technique and its properties, 
and present a detailed mathematical analysis of its security, 
and finally discuss some practical issues related to its 
implementation. 

I. INTRODUCTION 

Imagine that two users, Alice and Bob, need to exchange 
some digital images. These images contain confidential data 
to both of them. They decide to use some block cipher to 
encrypt and decrypt the images, so that no one could see their 
contents. Accordingly, they agree on a key to use with the 
block cipher, so that they can safely store and exchange 
encrypted images. 

All block cipher implementations would allow Alice and 
Bob to operate the block cipher in a certain mode of 
operation, usually the ECB or the CBC modes of operation 
[NBS8O], [ANS83], and [IS097]. 

In the ECB mode, encryption proceeds on the data where 
data is divided to blocks of size n bits (the size of the 
underlying block cipher), and each data block is encrypted 
independently of all other data blocks, using the same key. 
This results in a simple and fast encryption method. Because 
there are no data-dependencies between encrypted blocks, 
ECB mode also has the advantage that it could be 
implemented on parallel processors. 

However, when the data encrypted becomes large the 
main problem of ECB becomes more apparent. The 
probability of encrypting the same data with the same key 
becomes larger, and this makes the job of an adversary easier. 
The adversary could build a code book of plaintext-ciphertext 
pairs (a known-plaintext attack), or at least she can deduce 
information from the encrypted image. A sample of such 
information deduction is shown in the Sample Images 
Appendix, in which the "lD" images were encrypted using 
DES in the ECB mode. The adversary could easily 
see through the encrypted images. She can deduce 
information related to objects inside them. The information 
she deduces could be the external outline of all objects in an 
image, the number of objects in that image, the kind and 
nature of these objects, or even the outline of each individual 
object. These might be the same kind of information that 
Alice and Bob want to hide. (Note that the 
"2D (BPR=l6)" images, encrypted using the 2D-Encryption 
Mode, also show some information, but that is mainly due to 
the special value which the parameter BPR - discussed later -

takes, and which is so chosen to let the Sample Images 
clearly illustrate the difference between lD encryption and 
2D encryption). 

In the CBC mode of operation, it is required that the 
sender uses an Initialization Vector, IV. Encryption then 
proceeds by adding IV to the first data block and encrypting 
the result with the key. The result of the first encryption is 
then added to the following data block, and the result is fed to 
the encryption algorithm. Encryption proceeds in this manner 
until all data blocks are consumed [NBS8O], [ANS83], and 
[IS097]. The CBC mode solves the main problem with the 
ECB mode, as it virtually decreases the probability that 
original repeated-data is encrypted with the same key twice, 
and so it prevents the adversary from building a code book of 
plaintext-ciphertext pairs. Moreover, CBC totally mixes-up 
the encrypted image, so that no information could be deduced 
from the encrypted image. 

This added security of CBC does not come at no price. 
Although CBC is as fast (on one processor), and as simple as 
ECB, it does introduce a high level of data dependencies. 
This causes the CBC mode to lose the parallelism property of 
ECB. It could not be implemented on parallel processors, as 
each processor would have to wait for the results of its 
previous processor before proceeding in its operation. In 
addition, long sequences of data-dependencies, in general, 
cause problems when transferring encrypted data on 
computer networks. 

The 2D-Encryption Mode, presented here, is a new 
encryption mode that is suited for all binary data, and, as a 
visual demonstration, we show how it could be applied in 
image encryption. The 2D-Encryption Mode tries to be a 
good compromise between the ECB and the CBC modes of 
operation, that gets as much good as possible from the two 
modes while trying to avoid as much of their problems. It is 
also more suited than ECB and CBC to some types of 
applications. 

I.1 Related Work 
Research is currently going on to study and enhance the 

properties of block ciphers' modes of operation. In [BKR94], 
the first exhaustive analysis of the CBC MAC was presented. 
While in [BDJR97], the authors make a concrete security 
analysis of two popular modes: the CBC mode, and the 
counter (X0R) mode. They also present four notions of 
concrete security in their analysis. In [BI99] the authors try to 
simplify the analysis of encryption schemes, but their results 
were not exploited in our analysis, as the tools and concepts 
presented in [BDJR97] and [BKR94] were enough for our 
purposes. 

In [RRYOO] the authors stress the need for a mode that 
has a high degree of parallelism, and recommend against 
using modes with high levels of data dependencies. While in 
[KnuOO] the author presents a detailed analysis of 
error-recovery and error-propagation properties of modes, 
and he gives some recommendations and, accordingly, 
presents the ABC mode. 

In [LRWOO] the authors present a review of the counter 
mode, while in [JutOO], [RogOOa], and [RogOOb] authors 
present other new modes of operation. 
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II. DESCRIPTION OF THE 2D-ENCRYPTION MODE 

The 2D-Encryption Mode (2DEM, for short) naturally 
extends normal 1D encryption to the 2D case. It takes as its 
input an image, or more abstractly a binary stream of data. It 
proceeds by first performing what is basically an ECB 
encryption phase on (the rows of) the image, treated as one 
continuous successive stream of blocks, then it performs 
another ECB encryption phase on the columns of the 
resulting image, also treating them as one successive 
continuous stream of blocks. 

An algorithmic description of the mode, in pseudocode, is 
given below. The pseudocode implements the 2DEM mode 
on any 2D data (later, it is shown how 2DEM is applied to 
1D data). The pseudocode assumes using DES as the 
underlying block cipher, and the data is assumed to be 
divided to 8 bit blocks (bytes). Data is supplied in a 
two-dimensional array of bytes called "Data", and its byte 
values are accessed by supplying a row number and a column 
number. The number of rows in the array Data is nunrows, 
while the number of columns is nuncols. 

(* Phase 1 : Row-Encryption *)
 
for row = 0 to nunrows - 1 do
 
for col = 0 to nuncols - 1, col += 8 do 
  
DES(Data(row, col)..Data(row, col+7))
 

(* Phase 2 : Colunn-Encryption *)
 
for col = 0 to nuncols - 1 do
 
for row  = 0 to nunrows - 1, row += 8 do 
  
DES(Data(row, col)..Data(row+7, col))
 

The ".." notation is used to denote the (eight) data values 
between the two boundary data bytes. 

The algorithm assumes nuncols and nunrows are multiples 
of 8, which is the result of dividing n by 8 (the size of a byte). 
For a 128-bit block cipher (such as AES) nuncols and nunrows 
need to be multiples of 16 (=128/8). The operation DES, in 
the algorithm, encrypts the 64-bits of data supplied to it, 
using the DES algorithm and the key that the users have 
agreed upon, and the result of the encryption is returned to 
the same locations which the input used to occupy in the 
array "Data". 

For a general block cipher F, of size n bits (where n is 
assumed to be a multiple of 8), the value n/8 would be called 
NSB (number of sub-blocks), and the algorithm would be as 
follows: 

(* Phase 1 : Row-Encryption *)
 
for row = 0 to nunrows - 1 do
 
for  col  = 0 to nuncols - 1, col  += NSB do 
  
F(Data(row, col)..Data(row, col+NSB-1))
 

(* Phase 2 : Colunn-Encryption *)
 
for col = 0 to nuncols - 1 do
 
for  row  = 0 to nunrows - 1, row  += NSB do 
  
F(Data(row, col)..Data(row+NSB-1, col))
 

Later, we would map nuncols (the number of bytes in a 
row) to the BPR (blocks per row) parameter. BPR would be a 
randomly generated integer that defines the width of a row of 
data. Thus, BPR defines the extent of interleaving of data, 
and determines which data bytes are to be fed to the 
underlying block cipher, F, as the columns of the 2D image 
(or the array "Data" in the pseudocode above). 

II.l 2D and lD Examples 
We demonstrate how 2DEM operates by presenting an 

example. Then we show how 2DEM is applied to 1D data. 
Assume we have a 16 x 16 pixels image. Each pixel has a 

gray-scale color in the range 0..255 (and thus occupies eight 
bits), so eight pixels (in a row or in a column) would form 
one 64-bit DES data block. For simplicity, assume the color 
values in the image are as follows (in hexadecimal notation): 

00, 01, 02, 03, 04,    , 0B, 0C, 0D, 0E, 0F 
10, 11,    , 1E, 1F 
20, 21,    , 2E, 2F
  

  

  

D0, D1,    , DE, DF 
E0, E1,    , EE, EF 
F0, F1, F2, F3, F4,    , FB, FC, FD, FE, FF 

Moreover, the key used in DES encryption is 
k = 1234567890ABCDEF. 

2DEM proceeds by encrypting the 64-bit block 
0001020304050607, the first eight pixels in the first row 
of the image, using DES with the key k. Then it encrypts the 
block 08090A0B0C0D0E0F. The technique then follows to 
encrypt 1011121314151617, which is the first block of 
the second row, and so on it continues, until it reaches the 
final row block in the image, i.e., the block 
F8F9FAFBFCFDFEFF. The intermediate image (equivalent 
to an ECB encryption of the rows of the image) would be as 
follows: 

70, 7F, 12, 2A, 2B,    , CF, 7C, 6A, 67, 7B 
67, C7,    , DF, 7A 
CA, 2F,    , CE, 4B 
0E, 6C,    , 4F, 9B 
4F, A6,    , C7, 3D 
B6, 35,    , 7B, BB 
4D, 7B,    , 3B, 61 
15, A4,    , 7F, BB 
44, 20,    , BF, 46 
CB, E4,    , 37, 3A 
04, BB,    , 35, 19 
3F, 1B,    , 3B, D1 
22, 19,    , B7, 33 
C4, 41,    , 95, C0 
46, E0,    , ED, AA 
64, 0A, 63, F7, 4B,    , 2B, CE, B2, D5, 7B 

Then, 2DEM enters its second phase, the 
column-encryption phase. It encrypts the 64-bit encrypted 
column block 7067CA0E4F864D15 (see intermediate 
image above), then encrypts the second column block 
7FC72F6CA6357BA4. It then finishes encrypting the first 
eight rows by encrypting the column block 
7B7A48983DB8618B. 2DEM, then, proceeds to encrypt 
the block 44C8043F22C44664. It then continues 
encryption of the columns of the last eight rows of the image, 
till it reaches the final block, 463A19D133C0AA7B. The  
final 2DEM encrypted image, then, would be: 

14, 36, F4, 72, E1,    , B2, 50, 07, 39, E0 
0B, 5A,    , 36, B6 
B3, 04,    , 73, B9 
26, 0A,    , C2, DE 
AB, A4,    , 7B, 6F 
7C, 4B,    , 0C, A4 
D9, C1,    , 26, 65 
6B, 51,    , A2, 16 
E9, 3B,    , 02, D2 
F4, B6,    , 24, E5 
00, F4,    , 0C, 97 
92, 0D,    , D0, 99 
0C, CA,    , 9E, E6 
AB, 20,    , B2, 5A 
B6, E2,    , BE, CB 
B2, BE, C1, 34, 43,    , 31, F0, CB, BA, 62 

Although the 2DEM mode seems - because it is described 
above in 2D terms - to be more suited for encrypting images, 
and data of 2D nature (such as relational database tables, or 
spreadsheet tables), 2DEM could be applied to other forms of 
data such as text-files, word-processor documents, and other 
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data of lD nature. 2D data have natural row and column 
boundaries, and the columns of the data are just as easily 
accessible as its rows. For lD data, this could be simulated, 
by defining a row width and making appropriate coding of 
data access. (2DEM is designed to make software and 
hardware implementations efficient for both lD and 2D data). 
By defining a row width (nurcols or BPR) and defining data 
separated apart by "row width" to be in the same column, 
2DEM could operate normally on the new artificial rows and 
columns. 

An example of how 2DEM would be applied to lD data, 
is presented below. This extra example would be beneficial 
also in fostering a better understanding and interpretation of 
the security and error-propagation analysis of 2DEM which, 
for compatibility and consistency with all research work in 
this field, is presented in lD terms. 

We use the term "sub-block" to refer to a block of bits of 
length n, which is input to the underlying block cipher; while 
the two terms "2D block" and "n2/8-bits block" are used 
synonymously to refer to the block of bits of size n2/8 bits 
that is supplied to 2DEM. In 2DEM, this 2D block is 
subdivided to NSB sub-blocks that are fed to the underlying 
block cipher F, where in the first phase they are fed as rows 
of the plaintext, while in the second phase they are fed as 
columns of the encrypted rows. 

Using DES as the underlying block cipher, our example 
assumes a message of size 384 bytes. So, the size of the 

message, in bits, is M = 384 x 8 = 3072 bits = 6 x 5l2, 
i.e., six 2D blocks. 

Furthermore, assume that the message is composed of the 
following byte values (in hexadecimal notation): 

00, 01, 02, 03, 04, ooo , FD, FE, FF, 7F, 7E, 
7D, 7C, 7B, ooo , 02, 01, 00 

This lD message could be encrypted using 2DEM as 
follows. The message is divided to six blocks of size 
n
2
/8 = 5l2 bits each. The rows of the 2D blocks that are input 

to 2DEM, are then selected from these six blocks according 
to the parameter BPR. Notice that BPR has a minimum value 
of l, while its maximum possible value 
is M/(noNSB) = M/(n2/8). 

Each row in a 2D block is of length n bits (i.e., each row 
is a sub-block), and these rows are selected such that 
consecutive rows are BPR sub-blocks apart in the original 
message. This is equivalent to interleaving the rows of BPR 
consecutive 2D blocks that are chosen sequentially from all 
the n2/8-bit blocks of the message. 

To summarize, this implies that the plaintext (a lD stream 
of bytes) is treated as a 2D array of bytes whose 
nurcols= BPRoNSB. 

For the message given above the possible values for BPR 
would be l, 2, 3, 4, 5, and 6. BPR is randomly generated 
from this set of possible values. If BPR takes the value l, 
then the six 2D blocks that get encrypted would be as 
follows: 

00, 01,    , 06, 07 
08, 09,    , 0E, OF 
10, 11,    , 16, 17
     

     

     

30, 31,    , 36, 37 
38, 39,    , 3E, 3F 

40, 41,    , 46, 47 
48, 49,    , 4E, 4F 
50, 51,    , 56, 57
     

     

     

70, 71,    , 76, 77 
78, 79,    , 7E, 7F 

80, 81,    , 86, 87 
88, 89,    , 8E, 8F 
90, 91,    , 96, 97
     

     

     

B0, B1,    , B6, B7 
B8, B9,    , BE, BF 

C0, C1,    , C6, C7 
C8, C9,    , CE, CF 
D0, D1,    , D6, D7
     

     

     

F0, F1,    , F6, F7 
F8, F9,    , FE, FF 

7F, 7E,    , 79, 78 
77, 76,    , 71, 70 
6F, 6E,    , 69, 68
     

     

     

4F, 4E,    , 49, 48 
47, 46,    , 41, 40 

3F, 3E,    , 39, 38 
37, 36,    , 31, 30 
2F, 2E,    , 29, 28
     

     

     

0F, 0E,    , 09, 08 
07, 06,    , 01, 01 

while if BPR takes the value 2 then the six 2D blocks that 
get encrypted would be as follows: 

00, 01,
10, 11,
20, 21,
 

 

 

60, 61,
70, 71,

   

   

   

   

   

   

   

   

, 
, 
, 

, 
, 

06, 07 
16, 17 
26, 27 

 

 

 

66, 67 
76, 77 

08, 09,
18, 19,
28, 29,
 

 

 

68, 69,
78, 79,

   

   

   

   

   

   

   

   

, 
, 
, 

, 
, 

0E, OF 
1E, 1F 
2E, 2F

 

 

 

6E, 6F 
7E, 7F 

80, 81,
90, 91,
A0, A1,
 

 

 

E0, E1,
F0, F1,

   

   

   

   

   

   

   

   

, 
, 
, 

, 
, 

86, 87 
96, 97 
A6, A7 

 

 

 

E6, E7 
F6, F7 

88, 89,
98, 99,
A8, A9,
 

 

 

E8, E9,
F8, F9,

   

   

   

   

   

   

   

   

, 
, 
, 

, 
, 

8E, 8F 
9E, 9F 
AE, AF

 

 

 

EE, EF 
FE, EF 

7F, 7E,
6F, 6E,
5F, 5E,
 

 

 

1F, 1E,
0F, 0E,

   

   

   

   

   

   

   

   

, 
, 
, 

, 
, 

79, 78 
69, 68 
59, 58 

 

 

 

19, 18 
09, 08 

77, 76,
67, 66,
57, 56,
 

 

 

17, 16,
07, 06,

   

   

   

   

   

   

   

   

, 
, 
, 

, 
, 

71, 70 
61, 60 
51, 50

 

 

 

11, 10 
01, 00 

and so on for the other values of BPR. Notice that, the 
bytes of the encrypted 2D block would occupy the same 
positions, in the ciphertext array, as their corresponding 
plaintext did in the plaintext array. Also, note that for 
BPR = 4 or 5 we would have shortage of 2D blocks. So either 
the message is padded with enough blocks, or the blocks of 
the "last row of 2D blocks" could be encrypted without 
interleaving, or encrypted with an interleaving factor equal to 
the number of remaining blocks (less than BPR), or 
ciphertext-stealing - or any other alternative to padding -
could be used [Sch95]. 

In the next section we present an evaluation of 2DEM, 
while mathematical analysis of its security, error-recovery 
and error-propagation properties is presented in section IV, 
and finally section V discusses some practical issues related 
to its design and implementation. 
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111. EVALUATION OF THE 2D-ENCRYPTION MODE 

111.1	 Evaluation of the Security of the 2D-Encryption 
Mode 

With respect to security, the 2DEM mode has the 
following properties: 

i. The probability of encrypting the same data block using 
the same key becomes much lower than that of ECB, that is 
because the size of the data block that needs to be repeated 
has increased from 64 bits to 64 x 8 = 512 bits for DES as the 
underlying block cipher, or has increased from 128 bits to 
128 x 16 = 2048 bits for AES as the underlying block cipher. 
The memory requirements for mounting a successful birthday 
attack, thus, have increased approximately from 232 

to 2256 
for 

i024 
for2DEM using DES, and approximately from 264 

to 2
2DEM using AES. 

ii. 2DEM, due to the extra encryption phase it performs, 
hides the statistical information of the original message more 
than the ECB mode does. The row-encryption phase (the first 
phase) randomizes the input to the column-encryption phase 
(the second phase). The effect of this is clear in the statistics 
and histograms accompanying each of the Sample Images in 
the Appendix. These statistics and histograms show that the 
number of colors, in encrypted images, increases from 
1D encryption (i.e., using ECB) to 2D encryption (i.e., using 
2DEM). In addition, the maximum repetition for a single 
color decreases; the minimum repetition for a single color 
increases; and the variance between color repetitions 
decreases and the average color of the whole encrypted image 
approaches the middle of the color scale. (a gray-scale of 
colors from 0 to 255 is used, so the midpoint of the scale is 
127.5). 

iii. By vertically encrypting data that lie in the same 
column, 2DEM encrypts data blocks that are far apart by 
BPR sub-blocks. This lets 2DEM be more resistive to the 
"block replay" attack, which is a serious security problem 
with the ECB mode [Sch95], and has a counterpart in the 
CBC mode [Knu00]. Because it defines and uses a row width 
(nurcols, or alternatively BPR), 2DEM correlates data blocks 
that are not logically related to each other, which is the main 
feature exploited by the block replay attack in ECB mode. 
This is even more effective when the width of rows is chosen 
at random, or could be chosen and changed easily by the 
users. 

It is to be noted that we discuss and evaluate in this paper 
"bare" 2D encryption using 2DEM, and we mainly compare 
it with "bare" 1D encryption using ECB, i.e., with no IVs (as  
in the CBC mode) and no nonces or counters (as in the 
Counter mode). These could be equally and easily added to 
both 1D and 2D encryption modes, to add extra security. For 
the counters, the positional counter in 1D encryption could be 
split to two counters in 2D encryption: a row positional 
counter and a column positional counter. These are extra 
suggestions, but are not investigated furthermore here, and 
are not included in the specification of the 2D-Encryption 
Mode, as we feel it is appropriately secure. 

111.2	 Evaluation of the Performance of the 
2D-Encryption Mode 

With respect to performance, the 2DEM mode has the 
following properties: 

i. Speed: Implemented on one processor, 2DEM takes just 
double the time the ECB mode takes. While this is more than 
the time required for the CBC mode, 2DEM regains the 

parallelizability property of ECB. Each block of 8 x 64 bits 
(or 16 x 128 bits) could be encrypted independently from 
other blocks, so 2DEM could be implemented on parallel 
processors, and thus substantially reduce the encryption time. 
Also the 8-byte (or 16-byte) rows of each 2D block, in the 
first row-encryption phase, could be encrypted in parallel 
independently of each other; while in the second column-
encryption phase the 8-byte (or 16-byte) columns of the block 
could be encrypted in parallel, also independently of each 
others. That means that when enough processors are 
available, the time to encrypt the whole 2D block (and, 
accordingly, also the whole message) could be just double the 
time required to encrypt one sub-block. That is because the 
length of the longest critical path in the 2D-Encryption Mode 
is two, and in fact all critical paths have a length of two. 

ii. Memory requirements: if 2DEM is implemented on 
parallel processors, each processor requires just its 8 x 64 bits 
(or 16 x 128 bits) block. When implemented on a single 
processor then just only eight (or sixteen) rows of the original 
data need to be held in memory. This could be reduced, with 
some handling and processing, to just the 8 x 64 bits block 
(or 16 x 128 bits) if the whole data is available on permanent 
storage, and is not, for example, downloaded from a network. 
Thus, 2DEM virtually adds no memory requirements beside 
that required for implementing the underlying block cipher 
(for its tables and S-boxes, for example), and the memory 
required for keeping the parameter BPR (an integer value). 

iii. Error-Propagation and Error-Recovery: 2DEM limits 
the effect of bit errors only to the encryptedIdecrypted 8 x 64 
bits (or 16 x 128 bits) block of data. Extra analysis of the 
error-recovery and error-propagation properties of 2DEM is 
presented in the next section. 

1V. MATHEMATICAL ANALYSIS 

In this section, we present an analysis of the security and 
error-propagation properties of the 2D-Encryption Mode. 

1V.1	 Security Analysis of the 2D-Encryption Mode 
When using a block cipher with block size n bits, it is 

shown in the description of 2DEM that it works on 2D blocks 
of data of size NSB rows by NSB columns, and each element 
has a size n I NSB bits. This implies that the size of the 2D 
blocks is NSB · NSB · (n I NSB) = n · NSB bits. For our 
choice of NSB = n I 8, the size of the 2D blocks is n · (n I 8)  
= n

2
I8 bits (See § V for the rationale behind choosing 

NSB = nI8). The row-encryption and column-encryption 
phases of 2DEM are then repeated for each block of data, 
where the data of the columns are input to the block cipher 
according to the number of blocks per row, BPR. 

To start our analysis, let us denote the encryption of the 
2D block of size n2I8 by "2D Encryption", and denote the 
usage of the parameter BPR with "2D Encryption" as 
"2D Mode" (BPR determines which data are fed together to 
"2D Encryption" as a 2D block). 

Our proof for the security of the 2D-Encryption Mode 
proceeds in four consecutive steps. The proof is divided into 
two parts, and each part is additionally divided to two steps. 

The first part proves the security of "2D Encryption" by 
proving that it produces a wide PRP family from a small PRP 
family (e.g., DES or AES), and the second part proves the 
security of "2D Mode", which using BPR, allows 

4
 



"2D Encryption" to be used on messages of arbitrary length 
M. 

The two steps of proving security of "2D Encryption", 
and the two steps of proving security of "2D Mode" are 
similar. The first step in each part proves security assuming 
the underlying block cipher is a random permutation family, 
while the second step extends this to the case where it is 
assumed that the underlying block cipher is a pseudorandom 
permutation (PRP) family. 

In the analysis of "2D Mode", it is also assumed that the 
adversary knows the value of the parameter BPR, and that 
she is performing a known-plaintext attack. These 
assumptions, together with an assumption made when 
analyzing the security of "2D Encryption" imply that, in fact, 
the 2D-Encryption Mode may have better security limits than 
those proven here. (We target, here, to make a worst-case 
analysis). 

IV.l.l Security of �2D Encryption" 
In this part, we prove in two steps that "2D Encryption" 

produces a wide pseudorandom permutation (PRP) family 
from a small PRP family (e.g., DES or AES). 

Proving "2D Encryption" secure in the "random 
permutation family" model means "2D Encryption" provides 
a random permutation family if the underlying block cipher is 
a random permutation family. The proof is direct and 
straightforward. Next, this is extended to the case where the 
underlying block cipher is a PRP family, where 
"2D Encryption" is proved to produce a PRP family if the 
underlying block cipher is a PRP family. Together, both facts 
imply that "2D Encryption", while extending the size of the 
input/output blocks, preserves the security properties of the 
underlying block cipher, and that is at the cost of an extra 
encryption per sub-block. This loss in performance is 
regained by exploiting the high degree of parallelism inherit 
in the design of the algorithm. 

The following two figures are used in our proofs. They 
show simplified versions of "2D Encryption" and they help 
demonstrate how the proof goes on. It takes a little bit of 
imagination to see that figures (1) and (2) represent the 
"2D Encryption" part in 2DEM with NSB = 1, and NSB = 2, 
respectively. 

F

 Lo Ro 

F F 

F

 2

 2 = F( F(  ) ) 

Figure (1)
 
2D Encryption with n = 8 (or NSB = 1)
 

In the equations above, "II" represents the concatenation 
operator, while "IL" represents the permutation that outputs 
the left half of its input, and "IR" outputs the right half. 

 � L� R� 

F 

L2 

L2 = F( F( Lo )IL II F( Ro)IL ) 

F 

R2 

R2 = F( F( Lo )IR II F( Ro)IR ) 

Figure (2) 
2D Encryption with n = 16 (or NSB = 2) 

Having the notation necessary for our four-pronged proof 
laid out, here is the first step of it. 
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IV.l.l.A �2D Encryption" is secure in the �random 
permutation family" model 

Intuitively, the proof says that, since we assume the input 
is random and we are using a random permutation family and 
use (in a randomness-preserving way) operations which 
preserve the randomness property then we have a random 
output. 

Formally, the input block of bits to "2D Encryption" (of 
size n2/8) is assumed to be a random variable. The following 
three operations are used within "2D Encryption": (see 
figures (1) and (2)) 

a.	 Compression permutations, which are permutations 
that output a finite subset of the bits of their input. 
These permutations are used between the 
row-encryption phase and the column-encryption 
phase. In the figures, the permutations are 
represented by the arrows between the top 
encryptions (row-encryption phase) and the bottom 
encryptions (column-encryption phase). Notice that 
the permutations select disjoint subsets of their 
inputs. 

b.	 The concatenation operation, which outputs the bit 
concatenation of its two (left and right) inputs. 

c.	 Computing F (the underlying block cipher) using the 
key k. 

Each of these three operations produces a random variable 
if its inputs are random variables (and for F, its output is also 
assumed to be totally independent from its input. That is part 
of the definition of a random permutation family). 

R

Let us, then, analyze the case where NSB = 2. From 
figure (2), the output equals L2 II R2 (the concatenation of L2 

and R2) where L2 = F( F(Lo)IL II F(Ro)IL ) and  
2 = F( F(Lo)IR II F(Ro)IR ). 
L2 is the output of F computed on the concatenation of the 

left parts of the outputs of F, computed for Lo, Ro. Since we 
assume the input is a random variable, then Lo, Ro are totally 
independent and each is a random variable of size 8 bits. So 
the two outputs of F when applied to Lo, Ro are two 
independent random variables. In figure (2), these are L1, R1. 

Accordingly, the left parts of L1, R1 are also two 
independent random variables (from the properties of the 
compression permutation implied here), and they are also 
independent of the right parts of L1, R1 which are used in 
computing R2. (From here comes the importance that the 
compression permutations select disjoint subsets of bits). 

Using the same argument for R2, the same conclusions 
could be reached; and so we have L2, R2 as the computations 
of F for the two independent random variables VJ, Vr where 
VJ = F(Lo)IL II F(Ro)IL and Vr = F(Lo)IR II F(Ro)IR, and so (again, 
because F is a random permutation family) we have L2, R2 as 
two independent random variables, and so the output (which 
is their concatenation) is a random variable which is totally 
independent of VJ, Vr and so independent of Lo, Ro. 

This proves that "2D Encryption" produces a random 
permutation family assuming the underlying block cipher is a 
random permutation family. (Q.E.D) 

A similar argument applies for the trivial case where 
NSB = 1, in figure (1); and the argument can be extended to 
the practical cases where NSB = 8 (for DES) or NSB = 16, 24 
or 32 (for AES with 128, 192 or 256 data bits, respectively). 
(In the longer version of this paper a diagram for the case of 
NSB = 4 is presented). 

Another proof considers the probability of obtaining some 
output value assuming a certain input value. The probability 
is proved (using an argument similar to the one used above) 

'
n
 

n  SB 8
- N

to be 2 = 2 
-

for a certain input value and all output 
values, and vice versa. 

It is appropriate to notice at this point that the security of 
"2D Encryption" increases as n-NSB increases (the 
probability of obtaining an output value decreases when the 
size of output increases), so it is clear that the larger the value 
of NSB the more the security gained (the maximum possible 
value for NSB is n), but the value of NSB had to be sensibly 
chosen taking in consideration security, performance and 
flexibility issues (See § V: 2D-Encryption Mode and Some 
Practical Issues, for further discussion about choosing the 
value of NSB). 

IV.l.l.B Extending �2D Encryption" to the real world of 
PRPs 

This step relates the security of "2D Encryption" to the 
security of the underlying block cipher (PRP). It is assumed 
that the adversary A mounts a chosen-plaintext attack against 
"2D Encryption", and we relate her advantage in 
distinguishing it from a random permutation family over n2/8 
bits to her advantage in distinguishing F (the underlying 
block cipher) from a random permutation family over n bits. 

For an adversary A to mount a chosen-plaintext attack 
against "2D Encryption", she must be provided with an 
oracle 0 that supplies her with the ciphertext corresponding 
to a plaintext 2D block that she chooses, encrypted with the 
users' key k (which is unknown to her). 

We also assume that the adversary knows the 
intermediate results of invocating F, i.e., the output of the 
row-encryption phase (these are L1, R1 in figure (2)). This 
assumption makes the analysis untight, as an oracle of F is 
not sure to be available to the adversary A (she is only 
guaranteed access to the "2D Encryption" oracle), but this 
assumption simplifies the analysis, and provides an 
upper-bound on the success probability of the adversary in 
attacking F. 

The resources available to the adversary are the running 
time t (which includes the space for her program), and the 
number of queries q she makes to the "2D Encryption" 
oracle. The parameter we are interested in calculating is E, 
the adversary's advantage over simple guessing. For a 
permutation family to be a "random permutation family" E 
must be zero irrespective of t and q. For a permutation family 
to be a "pseudorandom permutation family" E must be 
negligible (See [NR97] for more details). 

Assume that the adversary A can (t, q, E)-break 
"2D Encryption". This means that A runs in time t, makes q 
queries to her "2D Encryption" oracle, and succeeds with 
advantage E in distinguishing the output of "2D Encryption" 
from a random permutation over n2/8 bits. Our results specify 
t', q', E' as functions of t, q, E, n, such that there exists an 
adversary A' (a simple modification of A) that 
(t', q', E')-breaks the underlying block cipher, F. Current 
knowledge gives us values t', q', E' for which it seems safe 
to rule out (t', q', E')-breaks for typical F. From this we can 
derive values for which (t, q, E)-breaks of "2D Encryption" 
are effectively ruled out. Thus, the security of 
"2D Encryption" is reduced to that of F in a constructive and 
useful way. 
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Proof: 
Intuitively, the previous step in the proof, says that 

"2D Encryption" assuming F is a random permutation family 
is secure. If "2D Encryption" were not secure, this would 
mean F is not good as a PRP family. 

Formally, a construction argument is used to prove that 
"2D Encryption" is a PRP provided F is a PRP. The 
construction provides the adversary A with a means to break 
F with advantage E', if she could break "2D Encryption" 
with advantage E. 

Again, we analyze the case where NSB = 2. The results 
are then easily extended to other cases. 

From figure (2), we see that the output L2 II R2 would be 
seen as a "random permutation" of the input Lo II Ro, if and  
only if, each of the four invocations of F acts as a "random 
permutation". This implies that L2 II R2 does not seem random 
to the adversary A (with probability E) when the input/output 
behavior of at least one of the four invocations of F does not 
seem random. 

This implies that the probability of success of A in 
attacking "2D Encryption" equals the sum of the success 
probabilities for all invocations of F. Since the latter 
probabilities are all, by definition, equal to E', the adversary 
(using one query to the "2D Encryption" oracle, 0) has  
E = 4·E', and since each query to "2D Encryption" maps to 
four queries to F, then if A issues q queries to the oracle 0, 
we have 

q = q'/4, 
and E = 4·q·E'. 

For the general case, we would have 

q' 4 · q' 
q = = , 

2 · NSB n 
q · n 

and E = 2·NSB·q·E' = 
4 

·E', 

and so 
q · n 

q' = 2·NSB·q = ,
4 

E 4 
and E' = = ·E. 

2 · NSB · q q · n 

Also, the time used to break F is the same used in 
querying the "2D Encryption" oracle 0, so  t' = t. 

Thus, the given values of t', q', E', provide us with a 
construction of an adversary A' that (t', q', E')-breaks F. 

(Q.E.D) 

(A more optimistic analysis, that assumes intermediate 
results are unknown, gives E = q·NSB2

·E'
2
. This more 

optimistic E is smaller than the one above since E', by  
definition, is very small (negligible) and so is smaller than 
2/NSB (=16/n) which is constant for a certain block cipher. 
For DES, this constant is equal to 1/4, and for 128-bit AES it 
is equal to 1/8). 

IV.1.2 Security of �2D Mode" 
The second part in the security analysis of the 

2D-Encryption Mode involves the analysis of "2D Mode". 
That is the usage of the parameter BPR with 
"2D Encryption", which allows "2D Encryption" to be used 
on arbitrary length messages. "2D Mode" is built on the 

structure and design of "2D Encryption". Using BPR, 
"2D Mode" defines the location of the data in the message 
that will constitute the 2D blocks of "2D Encryption" (of size 
n
2
/8 bits each). 
If BPR is known or is calculated according to some fixed 

rule, then "2D Mode" adds no security to "2D Encryption" 
("2D Encryption" has its own large-enough security 
parameters). That is because, in this case, "2D Mode" would 
be the same as applying ECB, but using large blocks of 
size n2

/8, and so the likelihood of a collision (successful 
birthday attack) is greatly reduced. (See the third step of the 
proof, below. It presents exact equations). But a random 
unknown BPR adds much to the security of messages, as it 
aims at preventing practical attacks other than the birthday 
attack. This point is further discussed, separately, after the 
fourth step of the proof. 

Like the proof for "2D Encryption", the proof of security 
of "2D Mode" proceeds in two steps. In both steps, it is 
assumed that the adversary knows the value of BPR (and, 
w.l.o.g., BPR = 1), and that she performs a known-plaintext 
attack. These two assumptions make the security analysis of 
"2D Mode" be the same as that of ECB, and thus the security 
parameters would be easily deduced. 

ECB could be analyzed only assuming a known-plaintext 
attack. Using a chosen-plaintext attack, the adversary A could 
easily produce a collision in ECB mode, by choosing two 
equal input blocks. "2D Mode" prevents this attack on ECB, 
by using the random parameter BPR, and making the cost of 
confirming a guess of BPR very large (quadratically 
exponential). 

IV.1.2.A �2D Mode" is secure in the �random 
permutation family" model 

We prove here that if A is an adversary performing a 
known-plaintext attack against "2D Mode", using q 
plaintext-ciphertext pairs, totaling at most f bits, then the 
advantage Adv of A in distinguishing the input-output 
behavior of "2D Mode" from a "random permutation" on the 
plaintext is upper-bounded by the following equation: 

'
> q ( q -I) 

-

2
Adv s 1 - (1 - 2 8 ) 

Proof: 
[KnuOO] states the fact that for an l-bit block cipher used 

in ECB mode, where the plaintext blocks are assumed to be 
chosen at random from a uniform distribution, if s blocks are 
encrypted under the same key then information is leaked 
about some plaintext blocks with probability 

(l+J)/2 
Ps = 1 - (1 - 2

-l
)
s(s-J)/2

, and for s s 2 we have Ps s O.632. 
For ECB, this is the birthday attack, where the adversary 

given two equal ciphertext blocks knows that the 
corresponding plaintext blocks are equal. Thus, the given 
equation places an upper bound on the success probability of 
the adversary in mounting a birthday attack against ECB. 

Mapping this to the analysis of "2D Mode" makes us 
replace l, in the equation of Ps by n2

/8, and replace s by q, and  
'

> q ( q -I) 

8 ) 2thus Pq = 1 - (1 - 2 
-

, and for a success probability 
'

> 
+I 

8 
2Pq � O.632, the adversary A requires q � 2 queries, each 

of size n2
/8 bits. 

7 



                      

    

This shows that "2D Encryption" has quadratically 
exponential increased the amount of ciphertext needed to 
mount a birthday attack against "2D Mode". 

Since we are assuming the underlying block cipher is a 
"random permutation family", the adversary realizes a 
non-random output of "2D Mode" only if she sees two equal 
2D blocks of ciphertext, so we have for q queries 

'
� 

+l
 
8
 
2(q � 2 ), and f = q·(n2/8) bits, the advantage of A =  Adv 

'
� q ( q -l) 

2where Adv = pq � 1 - (1 - 2 
-

8 ) (Q.E.D) 

The last step in our proof, extends this to the "real-world" 
case of PRPs. 

IV.1.2.B Extending �2D Mode" to the real world of PRPs 
This is a standard proof (See [BDJR97]). It is omitted for 

space considerations. It follows a similar line to that given for 
the second step of "2D Encryption" when extending it to the 
real world of PRPs. It intuitively says that if "2D Mode" were 
not secure this would mean that the underlying block cipher 
("2D Encryption" in the case of "2D Mode") is not good as a 
PRP family. 

IV.1.2.C The Role of BPR in �2D Mode" and the 
2D-Encryption Mode 

As mentioned earlier, the parameter BPR aims at 
preventing attacks other than the birthday attack. These are 
practical attacks such as the "block replay" attack [Sch95], 
and other ciphertext manipulation attacks. BPR presents a 
factor of uncertainty facing the adversary, since it would take 
some random value in the range 1..M/(n2/8). Moreover, to 
confirm a guess the adversary has to mount an expensive 
birthday attack. 

Usually a small set of possible values for BPR is enough 
to totally confuse an adversary and prevent her from 
performing ciphertext manipulation attacks. If the adversary 
has a guess for the value of BPR, she has to perform a very 
expensive birthday attack to be certain of her guess or to 
renounce it. Using her guess of BPR and performing a 
known-plaintext attack, the adversary A has to find two equal 
plaintext 2D blocks (of size n2/8 bits), and if the two 
corresponding ciphertext 2D blocks are equal then her guess 
is correct, else she renounces it. Thus, the main purpose of 
the unknown BPR is to prohibit the adversary from trying to 
know the effect (on the plaintext) of any changes she makes 
to the ciphertext. 

Since the range of possible values of BPR is 1 .. M/(n2/8), 
we notice a nice behavior of BPR. The range of possible 
values for BPR increases when M increases. So for larger 
messages, where plaintext blocks are more probable to 
repeat, the range of possible values of BPR increases and thus 
an adversary faces more difficulty in guessing BPR. 

The usage of the parameter BPR is assumed to be as 
follows: it is generated randomly from a set of possible 
values, then it is used in encrypting the message using 
2DEM, and finally the parameter is encrypted itself (using 
the users' key k) and sent with the ciphertext. The BPR could 
be encrypted using 1D encryption, and, because it is not part 
of the original message, mounting an attack on it would not 
pose a threat to the original message. If maximum security is 
required, the BPR could be encrypted in a separate 2D block 
using 2DEM, but that is not strictly required in 2DEM. The 

only necessary requirement regarding the parameter BPR, is 
that Bob (the receiver) knows BPR before he starts 
decrypting the message. This is the same condition required 
for the IV or nonce values used in the CBC or counter modes, 
but although these could be public [Sch95], the parameter 
BPR adds security to the 2DEM mode, and so should be 
encrypted. 

Also, note that for a message (or data) of length M bits, 
the possible values of BPR (1..M/(n2/8)) are allowed to be 
further limited by some other practical considerations, since 
BPR is a random value that is under the total control of the 
users, Alice and Bob. So if they gain some practical 
advantage by excluding some (context-specific) values of 
BPR, or further limit themselves to a subset of all possible 
values of BPR, they are free to do so. That is possible as long 
as there remains a set of possible values for BPR, and the 
value of BPR used is chosen randomly from this set, and is 
totally independent from the message encrypted. This 
freedom is possible because 2DEM is proved to be secure 
using the assumption that BPR is known, and w.l.o.g. equal 
to 1. 

IV.2	 Error-Recovery and Error-Propagation Properties 
of the 2D-Encryption Mode 

[KnuOO] defines the error-recovery property of an 
encryption mode as: the property that an error in the ith 
ciphertext block is inherited by only a few plaintext blocks 
after which the mode resynchronizes. It also defines 
error-propagation as: the property that an error in the ith 
ciphertext block is inherited by the ith and all subsequent 
plaintext blocks (sometimes error-recovery is called finite 
error-propagation, while error-propagation is called infinite 
error-propagation). The author advocates infinite error-

propagation. Mainly he argues that the more the error-
propagation in a mode the more secure the mode is. 

Using the notation in [KnuOO], the error-recovery and 
error-propagation properties of the 2DEM mode could be 
analyzed using the following equation. 

P
; = f

k (Cl ; J 
 C

l ; J 
 C

l ; J 
  

*NSB *NSB + BPR *NSB + 2*BPRl J l J l J
 NSB   NSB   NSB  

      C
l ; J 

)
*NSB + (NSB - )*BPRl J

 NSB  

Note that i in the equation refers to sub-blocks of size n, 
and not to 2D blocks of size n2/8. For 1 � i � M/n, P; refers to 
the ith plaintext sub-block, and C; refers to the ith ciphertext 
sub-block, while fk represents some decryption function with 
a parameter k representing the users' key, and L J is the floor 
operator. 

According to the equation above and the discussion in 
[KnuOO], 2DEM has finite error-propagation, and the extent 
of such error-propagation (and accordingly error-recovery) 
depends on the values of NSB and BPR. NSB is fixed for a 
certain block cipher of size n, and equals n/8, while BPR is a 
randomly-generated integer from a set of possible values. The 
point relevant to error-propagation is that 2DEM uses NSB 
plaintext sub-blocks that are far apart by BPR sub-blocks to 
calculate C;, and similarly uses NSB ciphertext sub-blocks 
that are far apart by BPR sub-blocks to calculate P;. This 
implies that an error in a bit or a sub-block of ciphertext or 
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plaintext propagates to the encryption/decryption of the 
2D block containing that bit or sub-block. 

The 2D-Encryption Mode, thus, strikes a balance in its 
error-recovery and error-propagation properties by making 
the extent of error-propagation finite (for error-recovery 
properties, which are practically desired) but large (for 
error-propagation properties, that [KnuOO] advocates to be 
more secure). 

V. 2D-ENCRYPTION MODE AND SOME PRACTICAL ISSUES 

This section discusses some practical issues related to the 
2D-Encryption Mode. 

1. The design issue in 2D-Encryption Mode that was 
affected by practical considerations is choosing the value of 
NSB. Security, in general, requires a large value for NSB, but 
on the other hand, smart cards, byte-oriented processors (in 
embedded systems), and software implementations could not 
easily deal with bits, as they normally and naturally deal with 
bytes. Bit manipulation is obligatory if 2DEM is 
implemented with NSB = n (the largest possible value for 
NSB), thus making the 2D block of size n2 

bits (instead of 
n
2
/8 bits). 
Accordingly NSB = n/8 was appropriately chosen so that 

software implementations of 2DEM could do the 
transposition (compression permutation) between rows and 
columns, between the first and the second phases of 2DEM, 
in "no time", using appropriate coding for (byte-addressed) 
memory accesses; while for hardware implementations of 
2DEM these transpositions are typically done in very small 
time, irrespective of the size of the input and the output of the 
transposition. Additionally, NSB = n/8, keeps the good 
security behavior of 2DEM, which grows quadratically 

n

exponential as n grows. ( 0 (c 
' 

) ciphertext is required to 
mount a successful birthday attack). 

Also, notice that, the maximum value for BPR is 
M/(n-NSB). That implies that the smaller the value of NSB 
the larger the range of possible values for BPR. This allows 
for more flexibility in generating the random BPR. 

Furthermore, messages are required to be multiples of 
n-NSB bits, and so decreasing this value requires less 
padding for each message. Also the chosen value of NSB lets 
the 2D-Encryption Mode be more attractive to sector-oriented 
file-systems, where a disk sector is usually 

512 bytes = 2 x 256 bytes = 8 x 64 bytes (if using 2DEM 
with 128-bit AES, the number of bytes required per block 
is 256 bytes, while for DES the number required is 64 bytes). 

Also, choosing NSB = n/8, rather than n, allows a greater 
potential for parallelization if each n-NSB bits block is 
encrypted on a different processor, as a smaller value of NSB 
allows more processors to be used, if available, for example 
in a distributed or networked system. 

2. From a practical point of view, there is some 
implementational advantage if the encryption and decryption 
operations of a mode are similar. 2DEM decryption is as 
simple as 2DEM encryption. It uses the decryption operation 
of the underlying block cipher, and the row-decryption phase 
and column-decryption phase are transposed. The 
column-decryption phase is done first, followed by the 
row-decryption phase. This could be effected by transposing 

the 2D data block (a 2D matrix transpose, which is just the 
compression permutations used between the row-encryption 
and column-encryption phases of 2DEM), and performing the 
row-decryption phase followed by the column-decryption 
phase (i.e., as in 2DEM encryption, processing of rows is 
followed by processing of columns), and performing another 
data transpose. This has the advantage that encryption and 
decryption could use exactly the same module, especially if 
the underlying block cipher is the inverse of itself (though, 
for block ciphers, this may not be recommended from a 
security point of view, and a slight difference between 
encryption and decryption is always recommended). DES has 
this property, and only the order of the subkeys has to be 
reversed [NBS77]. AES, on the other hand, is not the inverse 
of itself, but has the decryption and encryption operations 
structurally similar to each other, i.e., both operations use the 
same components [DR99]. 

Since the "2D array" transpositions of data, before and 
after 2DEM is applied, could be done in software and 
hardware in "no time", this implies that 2DEM decryption 
could be efficiently implemented with no performance 
degradation using mainly the same hardware components and 
software modules of 2DEM encryption, using the fact that 
DES decryption and AES decryption are similar to DES 
encryption and AES encryption. 

3. An estimate for the time requirements of 2DEM, if 
implemented on a single processor, is given below. For a 
message of length M bits, and using an underlying block 
cipher of size n, the time required for the 2D-Encryption 
Mode to encrypt the message is: 

M M M 
t = 2 · · c + T · - & · (2 · -1) 

n n · NSB n 

where 
c = the time required to do one encryption/decryption 

using the underlying block cipher, 
- = the time required to do the transpose operation 

(M/(n-NSB) is the total number of 2D blocks in the 
message, and NSB = n/8 is chosen to let software 
implementations of the transposition be done in "no 
time", using appropriate coding for memory 
accesses; and hardware implementations do 
transpositions in very small time irrespective of the 
size of the input and the output), and 

8 = the time required to calculate the 
encryption/decryption subkeys. These need not be 
calculated more than once for the whole message, so 
they are subtracted from the time t. 

M 
Typically, we have c >> - and c >> 8, so  t � 2 · · c 

n 
In accordance with what is mentioned earlier in point 2, 

we do not distinguish between time requirements of 2DEM 
encryption and 2DEM decryption; and if the encryption and 
decryption operations of the underlying block cipher have 
different time requirements, the constants c, 8 could be split 
to ce, 8e and cd, 8c. 

(In the longer version of this paper more practical issues 
related to 2DEM are presented). 
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VI. CONCLUDING REMARKS 

In this paper, we presented a new encryption mode, the 
2D-Encryption Mode (abbreviated 2DEM). We evaluated it 
from the viewpoints of security, performance, and 
practicality. We discussed how it is a general-purpose mode, 
and how it also has special affinity to some types of 
applications. 
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APPENDIX 

SAMPLE IMAGES 

Given below are two sample images, together with 
images resulting from their encryption. Following each image 
(or encrypted image) is the number of colors used in the 
image, and the image's histogram. 

The "1D" images represent the ECB DES encryption of 
the Original Image, using the key 1234567890ABCDEF, 
while the "2D (BPR=16)" images represent the 
2D-Encryption Mode encryption of the Original Image, using 
DES with the key 1234567890ABCDEF. BPR=16 was not 
chosen randomly, but for the purpose of demonstration 
equals number of pixels in a row divided by NSB = 
nurcols/8). The "2D (BPR=10)" images represent the 2D-
Encryption Mode encryption of the Original Image, using 
DES with the key 1234567890ABCDEF, where BPR is 
chosen to be equal to 10. The histogram of each image (or 
encrypted image) shows the following: 

i. A graph showing the number of occurrences (on the 
ordinate) of each of the colors (0..255 on the abscissa) in the 
image. The variance between the ordinate values could be 
seen visually from the graph. 

ii. The maximum number of times a single color is 
repeated in the image. For example, for First Sample's 
Original Image Histogram this is 7607. Next to it, is shown 
(in parentheses) the percentage of this number to the total 
number of pixels of the image. 

iii. The minimum number of times a single color is 
repeated in the image. For example, for First Image's 
Original Image Histogram this is 0, and it means that some 
color does not exist in First Sample's Original Image. 

iv. The average color of the image. This is calculated by 
multiplying each color value by the ratio in which it is 
repeated in the whole image. For example, for First Sample's 
Original Image Histogram this is 187, and that means that the 
average color of First Image's Original Image is equivalent to 
a gray-scale color of 187, i.e., a somewhat light image (nearer 
to the "white" end of the range of colors). 
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First Sample 
Original Image ID 

# Colors Used = I0 

Original Image Histogram 

2D �BPR=I6� 

# Colors Used = 256 

BPR=I6 Histogram 

# Colors Used = 254 

ID Histogram 

2D �BPR=I0� 

# Colors Used = 256 

BPR=I0 Histogram 
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Second Sample 
Original Image 

# Colors Used = 9 

Original Image Histogram 

2D �BPR=I6� 

# Colors Used = 256 

BPR=I6 Histogram 

ID 

# Colors Used = 256 

ID Histogram 

2D �BPR=I � 

# Colors Used = 256 

BPR=I Histogram 
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