
BPS: a Format-Preserving Encryption Proposal

Eric Brier, Thomas Peyrin and Jacques Stern

Ingenico, France
{forenare.nare}@ingenico.cor

Abstract. In recent months, attacks on servers of payment processors have led to
the disclosure of tens of millions of credit card numbers (also known as Personal Ac-
count Numbers, PANs). As an answer, end-to-end encryption has been advocated
and an encryption standard that preserves the format of the data would be wel-
come. More generally, a format-preserving encryption scheme would be welcomed
for many real-life applications. Unfortunately, this request falls in an area that is
not yet adequately covered by cryptography theory: direct constructions [1,20] have
not received enough attention to be considered for standardization, and construc-
tions based on Feistel schemes (as proposed by [5,4]) sufer from the lack of tight
exact security estimates. Very recently, the use of unbalanced Feistel schemes has
been suggested and a precise security bound, based on Markov chains, has been
derived [12]. However, the bound comes at the cost of a large number of calls to
the underlying cipher.
In this paper, we present a generic format-preserving symmetric encryption algo-
rithm BPS, which can cipher short or long string of characters from any given set. In
particular, this construction ofers a tweak capability, very useful in practice when
the user would like to cipher very small strings of data. We also provide particular
instances for the case of PANs ciphering. Very recently, a similar proposal has been
independently submitted to the NIST standardization process [3].

Most block ciphers from the industry and the academic world handle binary domain
{0, 1}n, with a block size often equal to n = 64 bits or 128 bits. While those ciphers
are clearly dealing with the most useful cases in practice, what if one wants to design a
cipher that maintains another message domain M whose cardinality |M| is arbitrary? For
example, such a primitive could be really useful in applications where the data manipulated
is composed of digits and not bits, as it is the case for credit-card numbers (PANs). Of
course, it is always possible to use a standardized block cipher with a larger binary domain
M' = {0, 1}n (|M| ≤ |M'|) and to use extra data felds coming with the ciphertext to
restore an equivalent format. However, we are looking here for elegant constructions that
are not based on any engineering trick and that produce ciphertexts with strictly no
expansion. In practice, the expansion is equivalent as breaking the format, which many
actors of the communication channel may not support.

Several dedicated block ciphers have recently been proposed to answer this challenge
for particular situations [20,6,1,9]. Yet, in practice it would be interesting to have a con-
struction that uses already standardized block ciphers or hash functions such as TDES [14],
AES [15] or SHA-2 [13] as internal primitive. In particular, those primitives are the most
likely to be available on hardware. Black and Rogaway [5] provided a theoretic study of
this problem. In their article, three potential constructions of arbitrary fnite domains ci-
pher have been proposed. The frst method, named prefx cipher, uses as internal primitive
a cipher E' with a larger domain than |M| and defnes the permutation EK (i) by frst K
computing all the |M| ciphertexts j = E' (i) of messages i with 0 ≤ i ≤ |M| − 1 and by K
sorting them according to their value. The ordinal position in the sorted table of values j

mailto:forenare.nare}@ingenico.cor

corresponding to the query i gives EK (i). The second method, named cycle-walking cipher,
also uses a cipher E ' with a larger domain than |M|. For a plaintext i, one outputs the K
value j = E ' (i) if j ∈ M. The out-of-range ciphertexts are simply treated by applying the K
permutation E ' again until one reaches the domain M. Finally, the last method, named K
generalized-Feistel cipher, uses a Feistel construction [7] with some random functions Fi

and modular additions. This construction maintains two branches with domains L and R
such that |M| ≤ L × R. When |M| < L × R, out-of-range ciphertexts may be reached and
the construction is then combined with the cycle-walking cipher (i.e. the permutation is
applied again until a valid ciphertext is reached).

The frst method is interesting for small values of |M| but is completely unpractical
otherwise since 2|M| time and memory are required in order to start using the cipher. The
second method is practical but presents a drawback: the duration of a ciphering process
is not deterministic. This could be a problem in some applications, even if the potential
threat of timing attacks should not be harmful (see [4]). Finally, the last method seems
to be the most elegant and promising one, even if the best known security proof yet only
achieves a birthday paradox bound (for the binary case, better proofs are known [17,18]).
More precisely, the analysis is an adaptation of the well known Luby-Rackof security
proof [11] and it shows that when the attacker is limited to access less than Q = 2min{L,R}/2

plaintext/ciphertext pairs, she has not enough information to distinguish this construction
from a random permutation with domain M.

This proof holds whatever the computing power of the attacker is. However, for inter-
mediate values of |M|, one can assume that the attacker can indeed access to Q queries
in practice. For example, let's consider the case of the encryption of credit-card numbers
between two parties. Only about a dozen digits are unpredictable in a credit-card number,
thus we consider M = {0, . . . , 9}12 and |M| = 1012. In this case, the generalized-Feistel
cipher birthday proof [5] ensures security up to 1000 plaintext/ciphertext pairs. Note that
a proposal by Spies [21] combining balanced Feistel networks and the cycle-walking tech-
nique has been submitted to the NIST in 2008.

A frst improvement would be to design a tweakable block cipher [10,8] instead, as
recently published by Bellare et al. [4]. In this case, the designer is ensured that much
more plaintext/ciphertext pairs are necessary in order to attack the scheme (since these
pairs are likely to use diferent tweak values). In our previous example, the attacker would
have to get 1000 plaintext/ciphertext pairs with the same tweak value instead of 1000
random plaintext/ciphertext pairs.

In parallel, another route has recently been taken by Morris, Rogaway and Stegers [12],
who used highly unbalanced Feistel schemes. Using the theory of Markov chains, the
authors were able to derive exact security bounds. Despite their attractive features, these
bounds come at the cost of a large number of calls to the underlying cipher due to many
Feistel rounds, which might make them unsuitable in practice.

Very recently, a proposal combining the tweak feature [4] and the new security proofs
techniques [12] has been submitted as a NIST proposal [3].

A second improvement would be to increase the expected security of the more con-
servative approach based on balanced Feistel schemes by improving the proven security
bounds. In our case, that would mean going beyond the birthday bound. To achieve this,
one would naturally draw his inspiration from Patarin's recent work on Feistel networks
security [16,17,18,19], also crossing the birthday bound barrier. However, since the domain
size can be small, we are aiming here at concrete security instead of asymptotic security,
and this task seems quite difcult for the time being. Note however, that, contrary to
unbalanced Feistel networks, the best bound one can achieve is O(2n), since it is always

possible for a computationally unbounded adversary to distinguish a r-round Feistel cipher
manipulating n-bit blocks from a random permutation with r × 2n queries (by simply try-
ing to guess all the r unknown internal functions used). This does not disqualify balanced
Feistel networks since they seem to require much less calls to the underlying cipher.

Our contribution. We propose a simple yet very fexible format-preserving encryption
algorithm. Our proposal can cipher short or long strings composed of characters from any
set. BPS can use any standardized primitives such as TDES [14], AES [15] or SHA-2 [13] as
internal brick.

1 The Generic BPS Cipher

For the description, we will use the following notations and the little-endian order. As-
sume that one wants to cipher strings of characters from a set S, with s representing the
cardinality of that set: s = |S|. For example, we have S = {0, 1} and s = 2 in the case of
bits, or S = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} and s = 10 in the case of digits. The only parameter
that matters here is the cardinality of the set of characters S, since one can always defne a
bijective mapping from S to {0, 1, . . . , s −1}. Thus, in the following, we will only deal with
integers in {0, 1, . . . , s − 1} each representing a character in S, which we call a s-integer.

We denote by len the length of the string ST to cipher, i.e. len = |ST |, and we also
denotes by ST [i] the i-th s-integer of the string ST starting the counting from the left,
with 0 ≤ i < len. For example, with s = 16, if ST = 0 14 2 11 we have len = 4 and
ST [0] = 0, ST [1] = 14, ST [2] = 2, ST [3] = 11. Then, ST ||ST ' denotes the concatenation
of the strings ST and ST ' , i.e. if ST ' = 8 15 6 4 then ST ||ST ' = 0 14 2 11 8 15 6 4.

BPS makes an extensive use of the modular addition (resp. subtraction) that we denote
by E (resp. E). When we will write C = AE B (mod x), we consider that A, B, C ∈ N. Of
course, we have C ∈ {0, . . . , x − 1}. Moreover, we will use the bitwise exclusive or (XOR)
operation that we denote c = a ⊕ b and where a, b, c are bit-words of the same length.

BPS is built upon two components: an internal length-limited block cipher (which itself
uses an internal function such as TDES [14], AES [15] or SHA-2 [13]) and a mode of opera-
tion in order to handle long strings. The two next sections respectively describe the two
components.

1.1 The Internal Block Cipher BC

We denote by BC the internal cipher of BPS, distinguishing the encryption and the de-
cryption processes by BC and BC−1 respectively. We instantiate the cipher according to
the cardinality s of the characters set and according to the block length b of the cipher
we are building. Thus, Y = BCF,s,b,w(X, K, T) denote the w-round encryption (an even
number) of a s-integer string X of length b, with key K and the 64-bit tweak value T . Of
course, since we are building format-preserving encryption, the output string Y will also
be composed of b s-integers.

We denote by f the number of output bits of the internal function F . We have the
natural restriction that at least two characters must be ciphered, i.e. b ≥ 2. Also, the bit
length k of the key K is limited according to the internal function F used. If F is a f -bit
block cipher that manipulates k ' -bit keys, then we require that k = k ' . In the case of F
being a HMAC construction [2] with a f -bit hash function, one can use a key of arbitrary
length. We denote by FK (x) the application of the block cipher E with the key K on the
plaintext x (FK (x) = EK (x)), or the application of the HMAC construction with the hash
function H and the key K on the message x (FK (x) = HMAC[H]K (x)).

We frst divide the 64-bit tweak T into two 32-bit sub-tweaks TL and TR, i.e. if T
(T − TR)/232is considered as a 64-bit integer, then TR = T mod 232 and TL = . Then,

we divide the s-integer input string X of length b into two sub-strings XL and XR of
similar length l and r respectively, i.e. X = XL||XR. More precisely, if b is even, XL =
X[0] . . . X[l − 1] and XR = X[l] . . . X[l + r − 1], where l = r = b/2. If b is odd, XL =
X[0] . . . X[l − 1] and XR = X[l] . . . X[l + r − 1], where l = (b + 1)/2 and r = (b − 1)/2.

The internal state of the cipher is composed of two branches L and R, each of f − 32
bits.1 We impose the last restriction (the explanation is given in later sections): b ≤ maxb,
with

maxb = 2 × log (2f −32) .s

For example, when using AES as internal function, each branch will be represented by a
96-bit integer and when ciphering digits (s = 10) we would have the restriction b ≤ 56.
We give in Table 1 the maximal value maxb for b according to s and the internal function
F used.

Table 1. Maximal value maxb for the number b of input s-integers of BC and BC−1, according to
the characters set cardinality s and the internal function used.

s = 2
bits

s = 10
digits

s = 61

TDES 64 18 10
AES 192 56 32

SHA-2 448 134 74

The encryption BC is composed of w simple Feistel-like rounds, and each of them will
update the right or left branch in turn. We denote by Li (resp. Ri) the left (resp. right)
branch value after application of round i. The left and right branches are initialized with
XL and XR respectively:

l−1L0 = XL[0].s0 + XL[1].s1 + . . . + XL[l − 1].s
r−1R0 = XR[0].s0 + XR[1].s1 + . . . + XR[r − 1].s

When the encryption process BC is instantiated with a block cipher E, for each 0 ≤
i < w we apply the round function (see Figure 1):

Li+1 = Li E EK ((TR ⊕ i).2f −32 + Ri) (mod sl) if i is even

Li+1 = Li if i is odd

Ri+1 = Ri if i is even

Ri+1 = Ri E EK ((TL ⊕ i).2f−32 + Li) (mod sr) if i is odd

Finally, the output string Y is the concatenation of YL and YR, i.e. Y = YL||YR with
YL and YR built by decomposing Lw and Rw into the s basis:

1	 Conceptually, the two branches always maintain the formating and thus the left branch manip-
ulates data in {0, . . . , s l −1} and the right branch manipulates data in {0, . . . , s r −1}. However,
those branches are always coded on (f − 32)-bit integers for consistency with the concatenation
function.

http:XR[1].s1
http:XR[0].s0
http:XL[1].s1
http:XL[0].s0

E TR ⊕ i

K

(mod s l)

Li Ri

ETL ⊕ (i + 1)

K

(mod s r)

Li+1 Ri+1

Li+2 Ri+2

Fig. 1. 2 rounds of the encryption BC of the internal block cipher.

l−1YL[0].s0 + YL[1].s1 + . . . + YL[l − 1].s = Lw
r−1YR[0].s0 + YR[1].s1 + . . . + YR[r − 1].s = Rw

Note that because of our restriction on the number of input s-integers, we always ensure
that each branch can be coded on a (f − 32)-bit word. The overall encryption process BC
is given in Algorithm 1.

Algorithm 1 : encryption BCF,s,b,w(X, K, T)
TR = T mod 232;

TL = (T − TR)/232;

l = lb/2l, r = Lb/2J;

0 1 l−1;L0 = X[0].s + X[1].s + . . . + X[l − 1].s
0 1 r−1R0 = X[l].s + X[l + 1].s + . . . + X[l + r − 1].s ;

for i = 0 to w − 1 do
if (i is even) then

Li+1 = Li E FK ((TR ⊕ i).2f −32 + Ri) mod s l;
Ri+1 = Ri;

else
Ri+1 = Ri E FK ((TL ⊕ i).2f −32 + Li) mod s r ;
Li+1 = Li;

end for
for i = 0 to l − 1 do

Y [i] = Lw mod s, Lw = (Lw − Y [i])/s;
end for
for i = 0 to r − 1 do

Y [i + l] = Rw mod s, Rw = (Rw − Y [i + l])/s;
end for
return Y ;

http:YR[1].s1
http:YR[0].s0
http:YL[1].s1
http:YL[0].s0

The decryption BC−1 is composed of w simple Feistel-like rounds, and each of them will
update the right or left branch in turn. We denote by Li (resp. Ri) the left (resp. right)
branch value after application of round i. The left and right branches are initialized with
XL and XR respectively:

l−1Lw = XL[0].s0 + XL[1].s1 + . . . + XL[l − 1].s
r−1Rw = XR[0].s0 + XR[1].s1 + . . . + XR[r − 1].s

ETL ⊕ (i + 1)

K

(mod s l)

Li+2 Ri+2

E TR ⊕ i

K

(mod s r)

Li+1 Ri+1

Li Ri

Fig. 2. 2 rounds of the decryption BC−1 of the internal block cipher.

When the decryption process BC−1 is instantiated with a block cipher E, for each
w > i ≥ 0 we apply the round function (see Figure 2):

Li = Li+1 E EK ((TR ⊕ i).2f −32 + Ri+1) (mod sl) if i is even

Li = Li+1 if i is odd

Ri = Ri+1 if i is even

Ri = Ri+1 E EK ((TL ⊕ i).2f−32 + Li+1) (mod sr) if i is odd

Finally, the output string Y is the concatenation of YL and YR, i.e. Y = YL||YR with
YL and YR built by decomposing L0 and R0 into the s basis:

l−1YL[0].s0 + YL[1].s1 + . . . + YL[l − 1].s = L0
r−1YR[0].s0 + YR[1].s1 + . . . + YR[r − 1].s = R0

Note that because of our restriction on the number of input s-integers, we always ensure
that each branch can be coded on a (f −32)-bit word. The overall decryption process BC−1

is given in Algorithm 2.

http:YR[1].s1
http:YR[0].s0
http:YL[1].s1
http:YL[0].s0
http:XR[1].s1
http:XR[0].s0
http:XL[1].s1
http:XL[0].s0

Algorithm 2 : decryption BC−1 (X, K, T)F,s,b,w

TR = T mod 232;

TL = (T − TR)/232;

l = lb/2l, r = Lb/2J;

0 1 l−1Lw = X[0].s + X[1].s + . . . + X[l − 1].s ;
0 1 r−1Rw = X[l].s + X[l + 1].s + . . . + X[l + r − 1].s ;

for i = w − 1 to 0 do
if (i is even) then

Li = Li+1 E FK ((TR ⊕ i).2f −32 + Ri+1) mod s l;
Ri = Ri+1;

else
rRi = Ri+1 E FK ((TL ⊕ i).2f −32 + Li+1) mod s ;

Li = Li+1;
end for
for i = 0 to l − 1 do

Y [i] = Lw mod s, Lw = (Lw − Y [i])/s;
end for
for i = 0 to r − 1 do

Y [i + l] = Rw mod s, Rw = (Rw − Y [i + l])/s;
end for
return Y ;

1.2 The Operating Mode

We described in previous section the internal encryption BC and decryption BC−1 routines
that can handle plaintext of a limited length. Namely, one can cipher from 2 to maxb =
2 × logs(2f−32) s-integers with one call. If one needs to cipher larger input strings (up to
maxb.216 characters), we defne an operating mode using BC and BC−1. This very simple
process is similar to the classical Cipher-Block Chaining mode (CBC mode) for block
ciphers, but instead of the XOR operation each character is added separately modulo s
(for example, 275849 + 150965 = 325704 with digits). When the total length is not a
multiple of maxb, a shift is applied for the last call of the internal cipher in order to
accommodate the current position of the cursor, i.e. the frst input s-integers of the last
cipher call are the last output s-integers of the previous cipher call. The whole process
is given in Algorithm 3 for the encryption and in Algorithm 4 for the decryption. Of
course, the operating mode can naturally support the use of initialization vectors (IV):
the plaintext string of the frst block processing is added character per character modulo
s to an IV string of the same length.

2 Overview of BPS

The operating mode of BPS is simple and efcient. It is very similar to the well known
Cipher-Block Chaining mode (CBC mode) for block cipher encryption with an IV set to
0. Moreover, we also incorporate a counter on the tweak input. More precisely, a 16-bit
counter will be XORed on the 16 most signifcant bits of both the right and left 32-bit
tweak words TL and TR (since those two words act separately in the BPS internal block
cipher). Only the 16 most signifcant bits are impacted in order to avoid any conjunction
with the local round counter applied on the least signifcant bits of the tweak in BC or BC−1 .
Therefore, we limit the size of the input string to 216 blocks (which should be sufcient for
all applications of format-preserving encryption). Finally, the local round counter ensures
that we never use twice the same internal function F during a whole encryption process.

plaintext

199 . . . 612 241 . . . 706 544 . . . 642 69

495 . . . 817 704 . . . 589 331 . . . 025 92

495 . . . 817 704 . . . 589 338 . . . 460 21

9

T

K
9

T ⊕ u

K
9

T ⊕ 2.u

K

9

T ⊕ 3.u

K

ciphertext

Fig. 3. Example of operating mode encryption process with s = 10 (digits) and len = 3.maxb +2.
We denote u = 216 + 248 .

Algorithm 3 : encryption BPSF,s,len,w(X, K, T)

maxb = 2 × Llogs(2
f −32)J;

if (len ≤ maxb) then
Y [0, . . . , len − 1] = BCF,s,len,w(X[0, . . . , len − 1], K, T);
return Y ;

rest = len mod (maxb), c = 0, i = 0;
Y [0, . . . , len − 1] = X[0, . . . , len − 1];
while (len − c > maxb) do

if (i = 0) then

Y [c, . . . , c + maxb − 1] =

(Y [c − maxb] + Y [c] mod s), . . . , (Y [c − 1] + Y [c + maxb − 1] mod s);

Y [c, . . . , c + maxb − 1] =

BCF,s,maxb,w (Y [c, . . . , c + maxb − 1], K, T ⊕ (i.216) ⊕ (i.248));

c = c + maxb, i = i + 1;

end while
if (len = c) then

Y [len − rest, . . . , len − 1] =
(Y [len − rest − maxb] + Y [len − rest] mod s), . . . , (Y [len − maxb − 1] + Y [len − 1] mod s);
Y [len − maxb, . . . , len − 1] =
BCF,s,len,w(Y [len − maxb, . . . , len − 1], K, T ⊕ (i.216) ⊕ (i.248));

return Y ;

The core of BPS is built upon a Feistel network. This choice seems natural in regards
to the history of block ciphers and format-preserving algorithms. Indeed, Feistel networks
have been studied for a long time by the cryptography community and is considered as

Algorithm 4 : decryption BPS−1 (X, K, T)F,s,len,w

maxb = 2 × Llogs(2
f −32)J;

if (len ≤ maxb) then
Y [0, . . . , len − 1] = BC−1 (X[0, . . . , len − 1], K, T);F,s,len,w

return Y ;
rest = len mod (maxb), c = len − rest, i = Lc/maxbJ;
Y [0, . . . , len − 1] = X[0, . . . , len − 1];
if (len = c) then

Y [len − maxb, . . . , len − 1] =

−1) ⊕ (i.248
BC (Y [len − maxb, . . . , len − 1], K, T ⊕ (i.216));F,s,len,w

Y [len − rest, . . . , len − 1] =

(Y [len − rest] − Y [len − maxb − rest] mod s), . . . , (Y [len − 1] − Y [len − maxb − 1] mod s);

while (c = 0) do
c = c − maxb, i = i − 1;
Y [c, . . . , c + maxb − 1] =
−1) ⊕ (i.248BC (X[c, . . . , c + maxb − 1], K, T ⊕ (i.216));F,s,maxb,w

if (i = 0) then

Y [c, . . . , c + maxb − 1] =

(Y [c] − Y [c − maxb] mod s), . . . , (Y [c + maxb − 1] − Y [c − 1] mod s);

end while
return Y ;

a robust method for building block ciphers. In particular, one can leverage the advances
concerning security proofs [17,18,5] and generic attacks [16]. This lowers the probability
of unexpected successful cryptanalysis compared to ad-hoc proposals [1,20]. This kind of
construction seems also to be the best and simplest for solving the problem of format-
preserving encryption, as early noticed by Black and Rogaway [5]. We believe that their
original proposal is very elegant and is a major step for format-preserving constructions,
but we made some adaptation in order to smoothly support any string length and add
tweak capability.

We stated in previous sections that the number of s-integers that the internal block
cipher BC and BC−1 can handle is upper bounded by

maxb = 2 × log (2f −32) .s

This bound is due to the efects of the modular addition. Indeed, as already analyzed
in [4], the statistical distance between the uniform distribution on ZM and the distribution
obtained by picking a random point x in ZN and returning x mod M is lower bounded
by M/N . Thus, for each use of the modular addition in BC or BC−1, our bound forces
this statistical distance to be at most 2−32 and we believe this is sufcient to simulate a
uniform output.

One of the main goals of BPS is its adaptability. One can use BPS to cipher strings from
2 to maxb.216 s-integers, picked from any set. Moreover, all the block cipher and hash
function standardized primitives (TDES [14], AES [15] or SHA-2 [13]) can be used as basic
internal bricks. This is another layer of confdence concerning the assumptions made on
the security of the internal function F since one can rely on the advances of the academic
community regarding cryptanalysis. In practice, the 64-bit block cipher TDES remains
implemented in many applications, it is also very valuable to have a format-preserving
encryption algorithm that can handle 64-bit internal primitives.

Another essential quality of BPS is its efciency. First, one can note that the input key
for all the block cipher internal calls is constant. This requires only one internal cipher
keying per BPS encryption. Considering the non-negligible time a key schedule can take,
this often saves a lot of operations. Moreover, we recommend to use w = 8 rounds for the
Feistel network, which makes the whole encryption process very efcient.

Regarding the security, one can leverage on the existing proofs on Feistel networks [5].
However, while asymptotic proofs of security exist and could be adapted [17,18], fnding
tight concrete bounds is still an open problem. Solving it would be very welcome since we
are potentially manipulating very small plaintext.

We chose to use w = 8 Feistel rounds in BC and BC−1 after analyzing the proven security
bounds and the best known generic attacks. Patarin [16] already published a generic attack
that can distinguish a w ≥ 6 round Feistel based family of permutations from a random

n	 n
family of n-bit permutations with about 2 2 (w−4) operations and 2 2 (w−6) permutations.
However, about 2n plaintext/ciphertext pairs per tweak are required to mount the attack
and this already exceeds our aimed goal of a sb security. We also believe that such a threat
is not relevant in practice since the technique only allows to distinguish several instances
from our block cipher from a random keyed permutation family. Being resistant to this
technique would certainly lead to an overkill in terms of performance (for example, the
recent NIST submission FFX [3] do resist to this attack, but requires much more internal
function calls than BPS).

Using the tweak is very valuable to avoid some kind of dictionary attacks. Indeed, if
no tweak is used, an attacker could build a dictionary of plaintext / ciphertext pairs and
fnd with good probability the eavesdropped encrypted PANs. This attack works when the
amount of data manipulated is small, which is particularly the case for PANs encryption.
Using random tweak will render this dictionary technique useless as one dictionary per
tweak value would be required.

When using the tweak capability of BPS, we suggest to apply a truncated hash function
on the input tweak data. For example, in the scenario of PANs ciphering, one should use
the non-ciphered digits of the PAN (usually the 6 frst for routing purposes and the last
4 for receipt printing) as a tweak data. Moreover, several other informations, such as
transaction date, transaction amount, etc. can be incorporated as tweak data as well.
We therefore recommend to concatenate all the available tweak data and apply a secure
hash function on this bit string and then truncate the obtained hash output to 64-bit, as
required by BPS's input tweak T size.

References

1. Thomas Baigneres, Jacques Stern, and Serge Vaudenay.	 Linear cryptanalysis of non binary
ciphers. In Carlisle M. Adams, Ali Miri, and Michael J. Wiener, editors, Selected Areas in
Cryptography, volume 4876 of Lecture Notes in Computer Science, pages 184-211. Springer,
2007.

2. M. Bellare, R. Canetti, and H. Krawczyk. Hmac: Keyed-hashing for message authentication.
RFC 2104, February 1997.

3. M.	 Bellare, P. Rogaway, and T. Spies. The fx mode of opera-
tion for format-preserving encryption. NIST submission, November 2009.
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/fx/fx-spec.pdf.

4. Mihir Bellare, Thomas Ristenpart, Phillip Rogaway, and Till Stegers.	 Format-preserving
encryption. In M.J. Jacobson Jr, V. Rijmen, and R. Safavi-Naini, editors, Selected Areas in
Cryptography, volume 5867 of Lecture Notes in Computer Science. Springer, 2009.

http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/fx/fx-spec.pdf

5. John Black and Phillip Rogaway.	 Ciphers with arbitrary fnite domains. In Bart Preneel,
editor, CT-RSA, volume 2271 of Lecture Notes in Computer Science, pages 114-130. Springer,
2002.

6. Paul Crowley. Mercy: A fast large block cipher for disk sector encryption. In Bruce Schneier,
editor, FSE, volume 1978 of Lecture Notes in Computer Science, pages 49-63. Springer, 2000.

7. Horst Feistel. Cryptography and Computer Privacy, pages 15-23. Scientifc American, 1973.
8. David Goldenberg, Susan Hohenberger, Moses Liskov, Elizabeth Crump Schwartz, and Hakan
Seyalioglu. On tweaking luby-rackof blockciphers. In ASIACRYPT, pages 342-356, 2007.

9. Louis Granboulan, Eric Levieil, and Gilles Piret.	 Pseudorandom permutation families over
abelian groups. In Matthew J. B. Robshaw, editor, FSE, volume 4047 of Lecture Notes in
Computer Science, pages 57-77. Springer, 2006.

10. Moses Liskov, Ronald L. Rivest, and David Wagner. Tweakable block ciphers. In Moti Yung,
editor, CRYPTO, volume 2442 of Lecture Notes in Computer Science, pages 31-46. Springer,
2002.

11. Michael Luby and Charles Rackof.	 How to construct pseudorandom permutations from
pseudorandom functions. SIAM J. Comput., 17(2):373-386, 1988.

12. Ben Morris, Phillip Rogaway, and Till Stegers. How to encipher messages on a small domain
- deterministic encryption and the thorp shufe. In S. Halevi, editor, CRYPTO, volume 5677
of Lecture Notes in Computer Science, pages 286-302. Springer, 2009.

13. National Institute of Standards and Technology.	 FIPS 180-2: Secure Hash Standard, August
2002. http://csrc.nist.gov.

14. National Institute of Standards and Technology.	 SP800-67: Recommendation for the Triple
Data Encryption Algorithm (TDEA) Block Cipher, May 2004. http://csrc.nist.gov.

15. National Institute of Standards and Technology.	 FIPS 197: Advanced Encryption Standard,
November 2001. http://csrc.nist.gov.

16. Jacques Patarin.	 Generic attacks on feistel schemes. In Colin Boyd, editor, ASIACRYPT,
volume 2248 of Lecture Notes in Computer Science, pages 222-238. Springer, 2001.

17. Jacques Patarin. Luby-rackof: 7 rounds are enough for 2n(1-epsilon) security. In Dan
Boneh, editor, CRYPTO, volume 2729 of Lecture Notes in Computer Science, pages 513-
529. Springer, 2003.

18. Jacques Patarin. Security of random feistel schemes with 5 or more rounds. In Matthew K.
Franklin, editor, CRYPTO, volume 3152 of Lecture Notes in Computer Science, pages 106-
122. Springer, 2004.

19. Jacques Patarin.	 A proof of security in o(2n) for the xor of two random permutations. In
Reihaneh Safavi-Naini, editor, ICITS, volume 5155 of Lecture Notes in Computer Science,
pages 232-248. Springer, 2008.

20. Rich Schroeppel. Hasty pudding cipher specifcation, June 1998.
http://www.princeton.edu/∼rblee/HPC/index.htm.

21. T. Spies. Feistel fnite set encryption. NIST submission, February 2008.
http://csrc.nist.gov/groups/ST/toolkit/BCM/modes development.html.

http:http://csrc.nist.gov
http:http://csrc.nist.gov
http:http://csrc.nist.gov

