
Submission to NIST. This is a shorted version of [7].

The CWC Authenticated Encryption (Associated Data) Mode

Tadayoshi Kohno John Viega Doug Whiting
UC San Diego Virginia Tech Hifn, Inc.

9500 Gilman Drive, MC 0114 6066 Leesburg Pike, Suite 500 5973 Avenida Encinas, Suite 110

La Jolla, CA 92093 Falls Church, VA 22041 Carlsbad, CA 92009

tkohno@cs.ucsd.edu viega@securesoftware.com dwhiting@hifn.com

May 27, 2003

Abstract

We introduce CWC, a new block cipher mode of operation designed to protect both the
privacy and the authenticity of encapsulated data. Important properties of CWC include:

1.	 Performance. CWC is parallelizable and is efficient in both hardware and software.

2.	 Security. CWC is provably secure and its provable security depends only on the pseu­
dorandomness of the underlying block cipher. No other cryptographic primitives are used
and no other assumptions are made.

3.	 Patent-free. To the best of our knowledge CWC is not covered by any patents.

CWC is currently the only dedicated authenticated encryption with associated data (AEAD)
scheme that simultaneously has these three properties (e.g., CCM and EAX are not parallelizable
and OCB is not patent-free). Having all three of these properties makes CWC a strong candidate
for use with future high-performance systems.

1 Introduction

There has recently been significant interest in developing block cipher modes of operation capable
of simultaneously protecting both the privacy and the authenticity/integrity of encapsulated data.
Such modes of operation are often called authenticated encryption (AE) schemes or, if the schemes
are capable of authenticating more data than they encrypt, authenticated encryption with associated
data (AEAD) schemes.

In this work we propose a dedicated AEAD scheme that is patent-free, provably-secure,
parallelizable and efficient in both hardware and software. To our knowledge, ours is the only
dedicated AEAD scheme that simultaneously has all of these properties. (Our construction also
has other desirable properties. For example, it is clean and simple (in our opinion), on-line, uses a
single block cipher key, and allows for pre-processing of associated data or other header fields.)

Our general construction, CWC, is based on what is called “the Encrypt-then-Authenticate
generic composition paradigm.” In particular, CWC essentially combines a Carter-Wegman mes­
sage authentication scheme [14] with CTR mode encryption in an Encrypt-then-Authenticate man­
ner. The general idea is as follows: given a pair of strings (A, M) and a nonce N as input, the
CWC encapsulation algorithm encrypts M with CTR mode to get some intermediate ciphertext σ.
It then uses a Carter-Wegman MAC and the nonce N to MAC the pair (A, σ). If we let τ denote
the resulting MAC tag, then the output of the CWC encapsulation algorithm is the concatenation
of σ and τ . CWC is designed to protect the privacy of M and the integrity of both A and M .
Although based on the Encrypt-then-Authenticate generic composition paradigm, CWC is not a
generic composition construction; for example, the CWC encryption and MAC components share
the same block cipher key. This means, among other things, that we had to prove the security of
CWC directly, rather than invoke previous results about the generic composition paradigm.

Let us begin by discussing some of the motivations for CWC.

Why do we want dedicated authenticated encryption schemes? The traditional ap­
proach to achieving authenticated encryption is to combine some standard encryption scheme (e.g.,
CBC mode) with some standard message authentication scheme (e.g., HMAC). This is known
as the generic-composition approach and was first explored in [1] and [8]. Unfortunately, such
generic-composition constructions are often ad hoc and, as illustrated in [1] and [8], it is very
easy to accidentally combine secure encryption schemes with secure MACs and still get insecure
authenticated encryption schemes.

One of the biggest advantages of dedicated AEAD schemes over generic-composition AEAD
schemes is that dedicated AEAD schemes are not prone to such accidental errors. That is, since
dedicated AEAD schemes clearly specify how to achieve both privacy and authenticity, there is no
longer the risk of someone accidentally combing a privacy/encryption component with an authen­
ticity/MAC component in an insecure fashion. Furthermore, since most applications that require
privacy also require integrity, it is logical to focus on tools capable of providing both services simul­
taneously. There is thus great value in developing and standardizing dedicated AEAD schemes, as
evidenced by a wealth of papers in this area [2, 4, 5, 6, 11, 12, 15].

Patents. Pragmatically, patents are a major impediment to the standardization and wide-spread
deployment of some of the modes presented in the above-mentioned papers. In particular, three
independent parties have applied for patents on single-pass authenticated encryption schemes. It
is not our purpose to describe the specifics of these patent applications (and, indeed, the specifics
are not completely known to the public). Rather, we point out that the existence of these patent
applications makes many existing authenticated encryption modes less attractive, and therefore
less amenable to standardization and deployment. To exemplify this point, we note that although

1

Rogaway, Bellare, Black, and Krovetz’s OCB mode [12] is very efficient and elegant, it was appar­
ently rejected from the IEEE 802.11 wireless working group largely because of the fact that it was
covered by patent applications from multiple parties.

What is needed? Noting the need for patent-free dedicated AEAD schemes, Whiting, Ferguson,
and Housley proposed a patent-free AEAD scheme called CCM [15] which, apparently because of
its patent-free nature, has been adopted by the IEEE 802.11 working group. CCM was recently
followed by another construction, called EAX, by Bellare, Rogaway, and Wagner [2]. Since CCM
and EAX are based on the generic-composition approach (they both essentially combine standard
CTR mode encryption with variants of CBC-MAC message authentication), CCM and EAX do
not fall under the aforementioned patent applications.

There is, however, one significant disadvantage with both CCM and EAX: the CCM and EAX
encryption and decryption operations are not parallelizable. That is, although the CTR mode
portions of CCM and EAX are clearly parallelizable, their CBC-MAC portions are not. Paralleliz­
ability is, however, very important. For example, without the ability to parallelize the encryption
process, using current technology it does not seem possible to build a single hardware engine for
CCM or EAX capable of encrypting beyond approximately 2 Gbps.1 Although 2 Gbps might be
adequate for today’s applications, such speeds will not be adequate for the coming 10 Gbps network
devices.

Therefore, there is a need for a patent-free dedicated mode of operation capable of encrypting
and authenticating data at 10 Gbps.

The CWC solution. We propose a general paradigm, called CWC, that addresses all the afore­
mentioned issues. In particular, our preferred instantiation of CWC for 128-bit block ciphers is
un-patented, provably-secure, parallelizable, and efficient in both hardware and software. The par­
allelizability enables high-speed CWC hardware implementations to encrypt at 10 Gbps when using
AES.

Throughout the body of this paper we will focus on our instantiation of the CWC paradigm
for 128-bit block ciphers.2 In particular, we focus on CWC-AES-kl, a CWC instantiation with
AES-kl as the underlying block cipher (here AES-kl denotes kl-bit AES, where the key length kl ∈
{128, 192, 256}). When our results apply to AES with all key lengths, we shall simply refer to
CWC-AES. Instead of writing CWC-AES-kl for some appropriate kl, we shall write CWC-BC or
simply CWC when we mean the general CWC paradigm instantiated like CWC-AES-kl but with any
128-bit block cipher BC in place of AES-kl.

Note the difference in font between CWC, the general paradigm, and CWC, our specific proposal.

Achieving parallelism. Clearly the CTR mode portion of CWC is parallelizable. Furthermore,
the core of the Carter-Wegman MAC portion of CWC (a.k.a. the universal hashing portion of CWC)
can be made parallelizable. In the case of CWC, the universal hashing step works by computing

Y1x n + Y2x n−1 + Y3x n−2 + Y4x n−3 + · · · + Ynx + Yn+1 mod 2127 − 1 .

where Y1, . . . , Yn+1 are 96-bit integers3 corresponding to the pair (A, σ) and x is an integer modulo
the prime 2127 − 1. It is well-known that the computation of this polynomial is parallelizable. For

1It is always possible to build two totally independent units and process two packets at a time, but this is
dramatically more complex, requiring twice the area, plus a load balancer.

2If desired, it is possible to instantiate the general CWC paradigm with 64-bit block ciphers, although certain
limitations (e.g., nonce size) apply to such variants. We do not present a 64-bit CWC variant here since we are
primarily concerned with new, high-speed systems using AES, not legacy applications.

3Actually, Yn+1 may be more than 96-bits long, but we ignore that detail here.

2

example, if we have two processors available, we can rewrite the above polynomial as

m−1 + · m−1 + ·
(
Y1y m + Y3y · · + Yn

)
x +

(
Y2y m + Y4y · · + Yn+1

)
mod 2127 − 1 ,

where y = x2 mod 2127 − 1, m = (n − 1)/2, and we assume for illustrative purposes that n is odd.
We can then compute both the left and the right portions of the above in parallel. Additional

'parallelism can be achieved by further splitting the original polynomial into j polynomials in y =
xj mod 2127 − 1.

Single key. The CWC paradigm uses a single block cipher key K. The key K is used in all
applications of the underlying block cipher and is used to derive a subkey Kh for use in CWC’s
universal hashing step. In the case of our CWC instantiation, deriving Kh requires one block
cipher invocation. The main advantage with deriving subkey Kh from K is that it simplifies key
management and reduces the costs associated with fetching key material in hardware, which can
be a bottleneck.

Performance. Let (A, M) be some input to the CWC encapsulation algorithm (recall that A is the
associated data and M is the message to encrypt). Assuming that the universal hashing subkey is
maintained across invocations, encapsulating (A, M) takes I|M |/128l + 2 block cipher invocations.
The polynomial used in CWC’s universal hashing step will have degree d = I|A|/96l + I|M |/96l.
There are several ways to evaluate this polynomial (details in [7]). For example, assuming no
precomputation, we could evaluate this polynomial using d 128-by-128-bit multiplies. As another
example, assuming n precomputed powers of the hash subkey, which are cheap to maintain in
software for reasonable n, we could evaluate the polynomial using d − m 96-by-128-bit multiplies
and m 128-by-128-bit multiplies, where m = I(d + 1)/nl − 1.

As noted before, it is possible to implement CWC-AES in hardware at 10 Gbps using conven­
tional ASIC technology. Specifically, at 0.13 micron, it should take about 300 Kgates to reach 10
Gbps throughput. In software, experimental results show that the current best implementation of
CWC-AES-128 on a Pentium III (due to Brian Gladman) runs significantly faster than CCM and
EAX with 128-bit AES and implemented with popular crypto libraries. Using the precomputation
approach from Bernstein [3], we anticipate reducing the cost of CWC’s universal hashing step to
around 8 cpb, thereby significantly improving the performance of CWC-AES in software.

Provable security. CWC is a provably-secure AEAD scheme assuming that the underlying
block cipher is a secure pseudorandom function or pseudorandom permutation. Consequently, if
we believe AES to be a secure pseudorandom permutation (which is a widely-held belief), then
CWC-AES is secure. For our proofs of security, we use Rogaway’s AEAD notions from [11]. In
our provable security results we clearly show that the same block cipher key can be used in CWC’s
CTR mode portion, in the generation of the hash subkey Kh, and in the block cipher applications
used within CWC’s message authentication portion.

1.1 Background and related work

The notion of an authenticated encryption (AE) scheme was formalized in Katz–Yung [6] and
Bellare–Namprempre [1] and the notion of an authenticated encryption with associated data (AEAD)
scheme was formalized in Rogaway [11]. In [1, 8], Bellare–Namprempre and Krawczyk explored
ways to combine standard encryption schemes with MACs to achieve authenticated encryption. A
number of dedicated AE and AEAD schemes also exist, including RPC [6], XCBC [4], IACBC [5],
OCB [12], CCM [15], and EAX [2]. Within the scope of dedicated block cipher-based AEAD
schemes, CWC’s closest relatives are CCM and EAX, which also use two passes and are un­
patented. From a broader perspective, CWC is similar to the combination of McGrew’s UST [10]

3

and TMMH [9], where one of the main advantages of CWC over UST+TMMH is CWC’s small key
size, which can be a bottleneck for UST+TMMH in hardware at high speeds.

Rogaway and Wagner recently released a critique of CCM [13]. For each issue raised in [13], we
find that we have already addressed the issue (e.g., we designed CWC to be on-line) or we disagree
with the issue (e.g., we feel that it is sufficient for new modes of operation to handle arbitrary
octet-length, as opposed to arbitrary bit-length, messages4).

The integrity portion of CWC builds on top of the Carter-Wegman universal hashing approach to
message authentication [14]. Like Bernstein’s hash127 [3], CWC’s universal hash function evaluates
a polynomial over the integers modulo the prime 2127 − 1. The main difference between hash127
and the CWC universal hash function is that hash127 uses signed 32-bit coefficients and CWC uses
unsigned 96-bit coefficients.

In April 2003 we introduced an Internet-Draft, within the IRTF Crypto Forum Research Group,
specifying the CWC-AES mode of operation. The latest version of the Internet-Draft can be found
at http://www.zork.org/cwc or on the IETF website http://www.ietf.org.

1.2 Outline

We begin in Section 2 with some preliminaries and then describe the CWC mode of operation
in Section 3. In Section 4 we present our formal statements of security for CWC. Appendix A
presents a summary of CWC’s properties. Appendix B contains our intellectual property statement.
Appendix C contains test vectors.

Versions. In this “submission to NIST” we specify the CWC mode of operation. This is an
abbreviated version of [7], which contains security proofs for CWC, further notes on some of the
design decisions we made, and more detailed implementation and performance discussions.

2 Preliminaries

Notation. If x is a string then |x| denotes its length in bits (not octets). Let ε denote the empty
string. If x and y are two equal-length strings, then x ⊕ y denotes the xor of x and y. If X and Y
are sets, then Func(X, Y) denotes the set of all functions from X to Y and Perm(X) denotes the
set of all permutations on X. If l and L are positive integers, then Func(l, L) denotes the set of all
functions from {0, 1}l to {0, 1}L and Perm(L) denotes the set of all permutations on {0, 1}L .

If N is a non-negative integer and l is an integer such that 0 ≤ N < 2l, then tostr(N, l) denotes
the encoding of N as an l-bit string in big-endian format. If x is a string, then toint(x) denotes the
integer corresponding to string x in big-endian format (the most significant bit is not interpreted
as a sign bit). For example, toint(10000010) = 27 + 2 = 130.

$Let x ← y denote the assignment of y to x. If X is a set, let x ← X denote the process of
uniformly selecting at random an element from X and assigning it to x. If f is a randomized

$algorithm, let x ← f(y) denote the process of running f with input y and a uniformly selected
random tape.

When we refer to the time of an algorithm or experiment, we include the size of the code (in
some fixed encoding). There is also an implicit big-O surrounding all time references.

Authenticated encryption schemes with associated data. We use Rogaway’s notion of
an authenticated encryption with associated data (AEAD) scheme [11].

4Although we stress that, if desired, it is easy to modify CWC to handle arbitrary bit-length messages. See [7].

4

http:http://www.ietf.org
http://www.zork.org/cwc

An AEAD scheme SE = (Ke, E , D) consists of three algorithms and is defined over some key
space KeySpSE , some nonce space NonceSpSE = {0, 1}n , n a positive integer, some associated data
(header) space AdSpSE ⊆ {0, 1}∗, and some payload message space MsgSpSE ⊆ {0, 1}∗ . We require

'that membership in MsgSpSE and AdSpSE can be efficiently tested and that if M, M are two strings
'such that M ∈ MsgSpSE and |M ' | = |M |, then M ∈ MsgSpSE .

The randomized key generation algorithm Ke returns a key K ∈ KeySpSE ; we denote this
← Ke.

a nonce N ∈ NonceSpSE , a header (or associated data) A ∈ AdSpSE , and a payload message
M ∈ MsgSpSE , and returns a ciphertext C ∈ {0, 1}∗; we denote this process as C ← EN,A (M) or K
C ← EK (N, A, M). The deterministic decryption algorithm D takes as input a key K ∈ KeySpSE ,
a nonce N ∈ NonceSpSE , a header A ∈ AdSpSE , and a string C ∈ {0, 1}∗ and outputs a message
M ∈ MsgSpSE or the special symbol INVALID on error; we denote this process as M ← DN,A (C).K

(EN,A We require that DN,A (M)) = M for all K ∈ KeySpSE , N ∈ NonceSpSE , A ∈ AdSpSE , and K K
M ∈ MsgSpSE . Let l(·) denote the length function of SE ; i.e., for all keys K, nonces N , headers A,
and messages M , |EN,A (M)| = l(|M |).K

Privacy. Let $(·, ·, ·) be an oracle that, on input (N, A, M) ∈ NonceSpSE × AdSpSE × MsgSpSE ,
returns a random string of length l(|M |). Let B be an adversary with access to an oracle and that
returns a bit. Then

← Ke
$

$ The deterministic encryption algorithm E takes as input a key K ∈ KeySpSE ,process as K

(B) = Pr
[

K
 : BEK (·,·,·) = 1
]
− Pr

[
B$(·,·,·) = 1

]
Advpriv

SE

is the ind$-cpa-advantage of B in breaking the privacy of SE under chosen-plaintext attacks; i.e.,
Advpriv(B) is the advantage of B in distinguishing between ciphertexts from EK (·, ·, ·) and random SE
strings. An adversary B is nonce-respecting if it never queries its oracle with the same nonce twice.
Intuitively, a scheme SE preserves privacy under chosen plaintext attacks if the ind$-cpa-advantage
of all nonce-respecting adversaries using reasonable resources is small.

Integrity/authenticity. Let F be a forging adversary and consider an experiment in which

$

$← Ke

F forges if F returns a pair (N, A, C) such that DN,A (C) = INVALID but F did not make a query K
(N, A, M) to EK (·, ·, ·) that resulted in a response C. Then

← Ke

we first pick a random key K
 and then run F with oracle access to EK (·, ·, ·). We say that

(F) = Pr
[

K
 : F EK (·,·,·) forges
]

Advauth
SE

$$

is the auth-advantage of F in breaking the integrity/authenticity of SE . Intuitively, SE preserves
integrity if the auth-advantage of all nonce-respecting adversaries using reasonable resources is
small.

Pseudorandom functions and permutations. Let F be a family of functions from D to R.
Let A be an adversary with access to an oracle and that returns a bit. Then

← F ← Func(D, R) : Ag(·) = 1
]

(A) = Pr
[

f
 : Af(·) = 1
]
− Pr

[
gAdvprf

F

$$

denotes the prf-advantage of A in distinguishing a random instance of F from a random function.
Intuitively, we say that F is a secure prf if the prf-advantages of all adversaries using reasonable
resources is small.

Let F be a a family of functions from D to D. Let A be an adversary with access to an oracle
and that returns a bit. Then

← F ← Perm(D) : Ag(·) = 1
]

Advprp
F (A) = Pr

[
f
 : Af(·) = 1

]
− Pr

[
g

5

denotes the prp-advantage of A in distinguishing a random instance of F from a random permu­
tation. Intuitively, we say that F is a secure prp if the prp-advantages of all adversaries using
reasonable resources is small.

We often model block ciphers as pseudorandom functions or permutations. In this case, given
a block cipher E : {0, 1}k × {0, 1}L → {0, 1}L, we use EK (·), K ∈ {0, 1}k, to denote the function

$ $
E(K, ·) and we use f ← E as short hand for K ← {0, 1}k ; f ← EK . We call k the key length of
E and we call L the block length.

3 The CWC mode of operation

We now describe the CWC mode of operation for 128-bit block ciphers. (See [7] for a description
of the general CWC construction.)

If BC denotes a block cipher with 128-bit blocks and kl-bit keys, and if tl is the desired tag
length for CWC in bits, then let CWC-BC-tl denote the CWC mode of operation instantiated with
BC using tag length tl. Throughout the remainder of this section, fix BC and tl and let CWC-BC-tl =
(K, CWC-ENC, CWC-DEC).

We associate to CWC-BC-tl the following sets:

MsgSpCWC-BC-tl = { x ∈ ({0, 1}8)∗ : |x| ≤ MaxMsgLen }

= { x ∈ ({0, 1}8)∗ : |x| ≤ MaxAdLen }AdSpCWC-BC-tl

= {0, 1}kl
KeySpCWC-BC-tl

= {0, 1}88NonceSpCWC-BC-tl

where MaxMsgLen and MaxAdLen are both 128 · (232 − 1). That is, the payload and associated data
spaces for CWC-BC-tl consist of all strings of octets that are at most 232 − 1 blocks long.

3.1 The CWC core

The key generation algorithm K returns a randomly selected key from KeySpCWC-BC-tl (i.e., the key
generation returns a random kl-bit string).

The encryption algorithm CWC-ENC works as follows:

Algorithm CWC-ENCK (N, A, M) // CWC encryption
σ ← CWC-CTRK (N, M)
τ ← CWC-MACK (N, A, σ)
Return σ�τ

where CWC-CTR and CWC-MAC are described in Section 3.2. The decryption algorithm CWC-DEC
works as follows:

Algorithm CWC-DECK (N, A, C) // CWC decryption
If |C| < tl then return INVALID
Parse C as σ�τ where |τ | = tl
If A ∈ AdSpCWC-BC-tl or σ ∈ MsgSpCWC-BC-tl then return INVALID
If τ = CWC-MACK (N, A, σ) then return INVALID
Return CWC-CTRK (N, σ)

6

3.2 The CWC subroutines

The remaining CWC algorithms are defined as follows:

Algorithm CWC-CTRK (N, M) // CWC counter mode module
α ← I|M |/128l
For i = 1 to α do

ksi ← BCK (107�N�tostr(i, 32)) // Note that 107 means a one bit followed by 7 zeros
σ ← (first |M | bits of ks1�ks2� · · · �ksα) ⊕ M
Return σ

Algorithm CWC-MACK (N, A, σ) // CWC authentication module
R ← BCK (CWC-HASHK (A, σ))
τ ← BCK (107�N�032) ⊕ R
Return first tl bits of τ

Algorithm CWC-HASHK (A, σ) // CWC universal hashing module
Z ← last 127 bits of BCK (110126)
Kh ← toint(Z) // The same Kh value is used in every invocation of CWC-HASHK .
l ← minimum integer such that 96 divides A�0l

l ' ← minimum integer such that 96 divides σ�0l�

X ← A�0l�σ�0l� ; β ← |X|/96 ; lσ ← |σ|/8 ; lA ← |A|/8
Break X into chunks X1, X2, . . . , Xβ // |X1| = |X2| = · · · = |Xβ | = 96
For i = 1 to β do

Yi ← toint(Xi)
Yβ+1 ← 264 · lA + lσ // Include the lengths of A and σ in the polynomial.

βR ← Y1K + · · · + Yβ Kh + Yβ+1 mod 2127 − 1h
Return tostr(R, 128) // Note: first bit of result will always be 0

4 Theorem statements

The CWC mode is a provably secure AEAD scheme assuming that the underlying block cipher (e.g.,
AES) is a secure pseudorandom function or pseudorandom permutation. This is a quite reasonable
assumption since most modern block ciphers (including AES) are believed to be pseudorandom.
Furthermore, all provably-secure block cipher modes of operation that we are aware of make the
same assumptions we make (and some modes, e.g. OCB [12], make even stronger, albeit still
reasonable, assumptions).

The specific results for CWC appear as Theorem 4.1 and Theorem 4.2 below. The proofs of
these theorems appear in [7].

4.1 Integrity/authenticity

Theorem 4.1 [Integrity/authenticity of CWC.] Let CWC-BC-tl be as in Section 3. (Recall
that the block cipher is BC and tag length is tl.) Consider a nonce-respecting auth adversary A
against CWC-BC-tl. Assume the execution environment allows A to query its oracle with associated
data that are at most n ≤ MaxAdLen bits long and with messages that are at most m ≤ MaxMsgLen
bits long. Assume A makes at most q − 1 oracle queries and the total length of all the payload data

7

(both in these q − 1 oracle queries and the forgery attempt) is at most µ. Then given A we can
construct a prf adversary BA and a prp adversary CA against BC such that

Advauth (A) ≤ Advprf n + m 1 1
(BA) + + +CWC-BC-tl BC 2133 2125 2tl

and

Advauth (A) ≤ Advprp (µ/128 + 3q + 1)2 n + m 1 1
(CA) + + (1)CWC-BC-tl BC 2129 +

2133 2125 + 2tl .

Furthermore, the experiments for BA and CA take the same time as the experiment for A and BA

and CA make at most µ/128 + 3q + 1 oracle queries.

The above theorem means that if the underlying block cipher is a secure pseudorandom function or a
secure pseudorandom permutation, then CWC-BC will preserve authenticity. If the underlying block
cipher is something like AES, then this initial assumption seems quite reasonable and, therefore,
CWC-AES will preserve authenticity.

Let us elaborate on this reasoning. Assume BC is a secure block cipher. This means that
Advprp(C) must be small for all adversaries C using reasonable reasonable resources and, in par-BC
ticular, this means that, for CA as described in the above theorem statement, Advprp(CA) must be BC
small assuming that A uses reasonable resources. And if Advprp(CA) is small and µ, q, m and n areBC
small, then, because of the above equations, Advauth (A) must also be small as well. I.e., any CWC-BC-tl

adversary A using reasonable resources will only be able to break the authenticity of CWC-BC-tl
with some small probability.

4.2 Privacy

Theorem 4.2 [Privacy of CWC.] Let CWC-BC-tl be as in Section 3. Then given a nonce-
respecting ind$-cpa adversary A against CWC-BC-tl one can construct a prf adversary BA and a
prp adversary CA against BC such that

Advpriv (A) ≤ Advprf (BA)CWC-BC-tl BC

and, if A makes at most q oracle queries totaling at most µ bits of payload message data,

Advpriv (µ/128 + 3q + 1)2

(A) ≤ Advprp (2)CWC-BC-tl BC (CA) +
2129 .

Furthermore, the experiments for BA and CA take the same time as the experiment for A and BA

and CA make at most µ/128 + 3q + 1 oracle queries.

We interpret Theorem 4.2 in the same way we interpreted Theorem 4.1. In particular, this theorem
shows that if BC is a secure pseudorandom function or pseudorandom permutation, then CWC-BC-tl
preserves privacy under chosen-plaintext attacks.

Chosen-ciphertext privacy. Since CWC-BC-tl preserves privacy under chosen-plaintext attacks
(Theorem 4.2) and provides integrity (Theorem 4.1) assuming that BC is pseudorandom, it also
provides privacy under chosen-ciphertext attacks. (See [1, 11] for a discussion of the relationship
between chosen-plaintext privacy, integrity, and chosen-ciphertext privacy; this relationship was
also used, for example, by [12].)

8

Acknowledgments

We would like to thank Peter Gutmann, David McGrew, and David Wagner for their comments.
Additionally, we would like to thank Brian Gladman for helping to validate our test vectors and for
providing us timing information for an optimized CWC implementation. T. Kohno was supported
by a National Defense Science and Engineering Fellowship.

References

[1] M. Bellare and C. Namprempre.	 Authenticated encryption: Relations among notions and
analysis of the generic composition paradigm. In T. Okamoto, editor, Advances in Cryptology
– ASIACRYPT 2000, volume 1976 of Lecture Notes in Computer Science, pages 531–545.
Springer-Verlag, Berlin Germany, Dec. 2000.

[2] M. Bellare, P. Rogaway, and D. Wagner. A conventional authenticated-encryption mode, Apr.
2003. Available at http://eprint.iacr.org/2003/069/.

[3] D. Bernstein. Floating-point arithmetic and message authentication, 2000. Available at	 http:
//cr.yp.to/papers.html#hash127.

[4] V. Gligor and P. Donescu. Fast encryption and authentication: XCBC encryption and XECB
authentication modes. In Fast Software Encryption 2001, Lecture Notes in Computer Science.
Springer-Verlag, Berlin Germany, 2001.

[5] C. Jutla.	 Encryption modes with almost free message integrity. In B. Pfitzmann, editor,
Advances in Cryptology – EUROCRYPT 2001, volume 2045 of Lecture Notes in Computer
Science, pages 529–544. Springer-Verlag, Berlin Germany, May 2001.

[6] J. Katz and M. Yung. Unforgeable encryption and chosen ciphertext secure modes of operation.
In B. Schneier, editor, Fast Software Encryption 2000, volume 1978 of Lecture Notes in
Computer Science, pages 284–299. Springer-Verlag, Berlin Germany, Apr. 2000.

[7] T. Kohno, J. Viega, and D. Whiting. The CWC authenticated encryption (associated data)
mode, May 2003. Available at http://eprint.iacr.org/2003/106/.

[8] H. Krawczyk. The order of encryption and authentication for protecting communications (or:
How secure is SSL?). In J. Kilian, editor, Advances in Cryptology – CRYPTO 2001, volume
2139 of Lecture Notes in Computer Science, pages 310–331. Springer-Verlag, Berlin Germany,
Aug. 2001.

[9] D. McGrew. The truncated multi-modular hash function (TMMH), version two, Oct. 2002.
Available at http://www.ietf.org/internet-drafts/draft-irtf-cfrg-tmmh-00.txt.

[10] D. McGrew. The universal security transform, Oct. 2002. Available at	 http://www.ietf.
org/internet-drafts/draft-irtf-cfrg-ust-00.txt.

[11] P. Rogaway.	 Authenticated encryption with associated data. In Proceedings of the 9th Con­
ference on Computer and Communications Security, Nov. 2002.

[12] P. Rogaway, M. Bellare, J. Black, and T. Krovetz.	 OCB: A block-cipher mode of operation
for efficient authenticated encryption. In Proceedings of the 8th Conference on Computer and
Communications Security, pages 196–205. ACM Press, 2001.

9

http://www.ietf
http://www.ietf.org/internet-drafts/draft-irtf-cfrg-tmmh-00.txt
http://eprint.iacr.org/2003/106
http://eprint.iacr.org/2003/069

[13] P. Rogaway and D. Wagner. A critique of CCM, Apr. 2003. Available at	 http://eprint.
iacr.org/2003/070/.

[14] M. Wegman and L. Carter. New hash functions and their use in authentication and set equality.
Journal of Computer and System Sciences, 22:265–279, 1981.

[15] D. Whiting, N. Ferguson, and R. Housley.	 Counter with CBC-MAC (CCM). Submission to
NIST. Available at http://csrc.nist.gov/CryptoToolkit/modes/proposedmodes/, 2002.

A Summary of properties

In this appendix we summarize some of the properties of CWC. We include all of the properties
listed in the submission guidelines on the NIST Modes of Operation website. We also discuss some
additional properties that we feel are important.

Security function. CWC is a provably secure authenticated encryption with associated data
(AEAD) scheme. Informally, this means that the encapsulation algorithm, on input a pair of
messages (A, M) and some nonce N , encapsulates (A, M) in a way that protects the privacy of M
and the integrity of both A and M . Our formal security statements appear in Section 4 and the
proofs appear in [7].

Error propagation. Assuming that the underlying block cipher is a secure pseudorandom
function or permutation, any attempt, by an adversary using reasonable resources, to forge a new
ciphertext will, with very high probably, be detected. This follows from the fact that CWC is a
provably-secure AEAD scheme.

Synchronization. Synchronization is based on the nonce. As with other nonce-based AEAD
schemes, the nonce must either be sent with the ciphertext or the receiver must know how to derive
the nonce on its own.

Parallelizability. CWC is parallelizable. The amount of parallelism for the hashing portion can
be determined by the implementor without affecting interoperability.

Keying material required. CWC is defined to be a single-key AEAD scheme. However, CWC
does internally use two keys (the main block cipher key and a hash key which is derived using the
block cipher key). Implementors can decide whether to store the derived hash key in memory or
whether to re-derive it as needed.

Counter/IV/nonce requirements. CWC uses a 11-octet nonce. CWC is provably secure as
long as one does not query the encryption algorithm twice with the same nonce. Although it is
possible to instantiate the generic CWC paradigm with other nonce lengths, for CWC the nonce
size is fixed at 11-octets in order to minimize interoperability issues.

Memory requirements. The software memory requirements are basically those of the underlying
block cipher. For example, fast AES in software requires 4K bytes of table, and about 200 bytes of
expanded key material. In some situations, software implementations may precompute powers of
the hash subkey.

Pre-processing capability. The underlying CTR mode keystream can be precomputed. The
only block cipher input that cannot be precomputed is the output of CWC-HASH.

CWC can preprocess its associated data, thereby reducing computation time if the associated
data remains static or changes only infrequently.

Message length requirements. The associated data and message can both be any string of
octets with length at most 128 · (232 −1) bits. Because there does not appear to be a need to handle

10

http://csrc.nist.gov/CryptoToolkit/modes/proposedmodes
http://eprint

--

strings of arbitrary bit-length, CWC as currently specified cannot encapsulate arbitrary bit-length
messages. (As discussed in [7], it is easy to modify CWC to handle arbitrary bit-length messages,
if desired.)

Ciphertext expansion. The ciphertext expansion is the minimum possible while still providing a
tl-bit tag. That is, on input a pair (A, M), a nonce N , and a key K, CWC-ENCK (N, A, M) outputs
a ciphertext C with length |C| = |M | + tl.

Block cipher invocations. If the hash subkey Kh is computed as part of the key generation
process and not during each invocation of the CWC encapsulation routine, then CWC makes one
block cipher invocation during key setup and I|M |/128l + 2 block cipher invocations during encap­
sulation and decapsulation. If the hash subkey Kh is not computed as part of the key generation
process, then CWC makes no block cipher invocations during key setup and I|M |/128l + 3 block
cipher invocations during encapsulation and decapsulation.

Provable security. CWC is a provably-secure AEAD scheme assuming that the underlying block
cipher (e.g., AES) is a secure pseudorandom function or permutation. The proofs of security do
not require the block cipher to satisfy the strong notion of super-pseudorandomness required by
some other block cipher modes of operation.

Number of options and interoperability. CWC uses a minimal number of options. The only
options are the choice of the underlying block cipher and the tag length. Having fewer options
makes interoperability easier.

On-line. The CWC encryption algorithm is on-line. This means that CWC can process data as it
arrives, rather than waiting for the entire message to be buffered before beginning the encryption
processes. This may be advantageous when encrypting streaming data sources. (Note, however,
that, like any other AEAD scheme, the decryptor should still buffer the entire message and check
the tag τ before revealing the plaintext and associated data.)

Patent status. To the best of our knowledge CWC is not covered by any patents.

Performance. CWC is efficient in both hardware and software. In hardware, CWC can process
data at 10 Gbps.

Simplicity. Although simplicity is a matter of perspective, we believe that CWC is a very simple
construction. It combines standard CTR mode encryption with the evaluation of a polynomial
modulo 2127−1. Because of its simplicity, we believe that CWC is easy to implement and understand.

B Intellectual property statement

The authors hereby explicitly release any intellectual property rights to CWC mode into the public
domain. Further, the authors are not aware of any patent or patent application anywhere in the
world that cover this mode.

C Test vectors

Vector #1: CWC-AES-128
AES KEY: 00 01 02 03
PLAINTEXT: 00 01 02 03
ASSOC DATA: <None>
NONCE: FF EE DD CC

04 05 06 07
04 05 06 07

BB AA 99 88

08 09 0A 0B

77 66 55

0C 0D 0E 0F

11

--

--

--

HASH KEY: 34 AE 6A 6F
HASH VALUE: 2B 9E AE BE
AES(HVAL): FC DC 06 4C
MAC CTR PT: 80 FF EE DD
AES(MCPT): AB 89 DD E9
CIPHERTEXT: 88 B8 DF 06

60 04 44 97

Vector #2: CWC-AES-192
AES KEY: 00 01 02 03

F0 E0 D0 C0
PLAINTEXT: 00 01 02 03
ASSOC DATA: <None>
NONCE: FF EE DD CC

E9 51 78 94
67 3F AE 03
CD CA FE E3
CC BB AA 99
C4 55 C1 FE
28 FD 51 CC
DE 89 33 A9

04 05 06 07
B0 A0 90 80
04 05 06 07

BB AA 99 88

AC CC BB 9E BA E7 20 8C
6B 16 EA 31 DC A7 AE 6B
DE 7A A3 CF 5C 5D B9 7B
88 77 66 55 00 00 00 00
BE 7E E7 58 82 D4 8A D2
57 55 DB A5 09 9F 3F 1D

08 09 0A 0B 0C 0D 0E 0F

77 66 55

HASH KEY: 4F A8 88 AF
HASH VALUE: 40 E6 24 83
AES(HVAL): 69 CC 0E 3D
MAC CTR PT: 80 FF EE DD
AES(MCPT): C6 B6 F4 33
CIPHERTEXT: F0 DB A9 74

75 8A 1C 43

Vector #3: CWC-AES-256
AES KEY: 00 01 02 03

F0 E0 D0 C0
PLAINTEXT: 00 01 02 03
ASSOC DATA: <None>
NONCE: FF EE DD CC

06 83 60 0C
4B 27 9A 7B
96 98 EB 75
CC BB AA 99
F9 12 39 4F
12 30 01 B0
69 B9 43 28

04 05 06 07
B0 A0 90 80
04 05 06 07

BB AA 99 88

AB 35 75 EF 0A E6 01 A5
15 42 C7 FE 29 EB 29 A3
1F 06 A5 90 9B C2 4F 5A
88 77 66 55 00 00 00 00
6A 8C B9 D3 F2 7B 0C 72
AF 7A FA 0E 6F 8A D2 3A

08 09 0A 0B 0C 0D 0E 0F
70 60 50 40 30 20 10 00

77 66 55

HASH KEY: 35 8F 2B 0C
HASH VALUE: 18 99 E1 A6
AES(HVAL): 1C 56 65 0A
MAC CTR PT: 80 FF EE DD
AES(MCPT): 92 0A 3B 46
CIPHERTEXT: 7B CF 73 BE

F6 50 D1 8A

Vector #4: CWC-AES-128
AES KEY: 00 01 02 03
PLAINTEXT: 00 01 02 03
ASSOC DATA: 54 68 69 73

65 78 74 20
NONCE: FF EE DD CC

FF E9 84 BE
1E 6E 37 65
22 BC B5 94
CC BB AA 99
82 25 16 F1
46 9C 46 0B
CB E8 CA FE

04 05 06 07
04 05 06 07
20 69 73 20
68 65 61 64
BB AA 99 88

F9 EE EE 55 85 36 BC E5
C6 3A 41 99 56 8C D1 BF
AC F3 CA 24 46 03 B8 5E
88 77 66 55 00 00 00 00
5A A3 1B AE 8D EB 72 A0
8E 5C 5E 4C A0 99 A3 65

08 09 0A 0B 0C 0D 0E 0F

61 20 70 6C 61 69 6E 74
65 72 2E 00
77 66 55

HASH KEY: 34 AE 6A 6F E9 51 78 94 AC CC BB 9E BA E7 20 8C
HASH VALUE: 2E A9 2A A5 28 B1 1C 08 1C C8 2F 24 9B E4 19 8D
AES(HVAL): EA 54 F8 3D 56 7F 53 05 88 B1 EA 96 36 79 CD AC

12

--

--

--

MAC CTR PT: 80 FF EE DD
AES(MCPT): AB 89 DD E9
CIPHERTEXT: 88 B8 DF 06

36 CF 0D CE

Vector #5: CWC-AES-192
AES KEY: 00 01 02 03

F0 E0 D0 C0
PLAINTEXT: 00 01 02 03
ASSOC DATA: 54 68 69 73

65 78 74 20
NONCE: FF EE DD CC

CC BB AA 99 88 77 66 55 00 00 00 00
C4 55 C1 FE BE 7E E7 58 82 D4 8A D2
28 FD 51 CC 41 DD 25 D4 92 2A 92 FB
B4 AD 47 7E

04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
B0 A0 90 80
04 05 06 07
20 69 73 20 61 20 70 6C 61 69 6E 74
68 65 61 64 65 72 2E 00
BB AA 99 88 77 66 55

HASH KEY: 4F A8 88 AF
HASH VALUE: 60 3F FC 24
AES(HVAL): D8 39 86 2A
MAC CTR PT: 80 FF EE DD
AES(MCPT): C6 B6 F4 33
CIPHERTEXT: F0 DB A9 74

A2 9A 63 94

Vector #6: CWC-AES-256
AES KEY: 00 01 02 03

F0 E0 D0 C0
PLAINTEXT: 00 01 02 03
ASSOC DATA: 54 68 69 73

65 78 74 20
NONCE: FF EE DD CC

06 83 60 0C
71 64 2E D9
33 5A 54 68
CC BB AA 99
F9 12 39 4F
12 30 01 B0
9B D9 1C 99

04 05 06 07
B0 A0 90 80
04 05 06 07
20 69 73 20
68 65 61 64
BB AA 99 88

AB 35 75 EF 0A E6 01 A5
57 E1 B1 EA F2 F8 B0 34
C8 16 DA 47 69 A2 10 EB
88 77 66 55 00 00 00 00
6A 8C B9 D3 F2 7B 0C 72
1E 8F 72 19 CA 48 6D 27

08 09 0A 0B 0C 0D 0E 0F
70 60 50 40 30 20 10 00

61 20 70 6C 61 69 6E 74
65 72 2E 00
77 66 55

HASH KEY: 35 8F 2B 0C
HASH VALUE: 0A C6 B1 39
AES(HVAL): 4B A5 AD 1E
MAC CTR PT: 80 FF EE DD
AES(MCPT): 92 0A 3B 46
CIPHERTEXT: 7B CF 73 BE

F1 73 C1 E3

Vector #7: CWC-AES-128
AES KEY: 00 01 02 03
PLAINTEXT: 00 01 02 03
ASSOC DATA: <None>
NONCE: FF EE DD CC

FF E9 84 BE
57 7F 26 DA
74 A2 C5 BE
CC BB AA 99
82 25 16 F1
46 9C 46 0B
79 C2 F1 AC

04 05 06 07
04 05 06 07

BB AA 99 88

F9 EE EE 55 85 36 BC E5
94 16 42 E1 6D 73 EC B5
AB D0 DA 4D F4 29 83 0C
88 77 66 55 00 00 00 00
5A A3 1B AE 8D EB 72 A0
D9 AF 96 58 F6 87 D3 4F

08 09 0A 0B 0C 0D 0E 0F
08 09 0A 0B 0C 0D 0E

77 66 55

HASH KEY: 34 AE 6A 6F E9 51 78 94 AC CC BB 9E BA E7 20 8C
HASH VALUE: 79 00 74 72 E1 C8 36 96 ED 7A B1 F9 03 6E 94 8B
AES(HVAL): 2B 0F 24 69 B1 2B BE 39 C9 40 67 BA F1 25 E2 5B
MAC CTR PT: 80 FF EE DD CC BB AA 99 88 77 66 55 00 00 00 00
AES(MCPT): AB 89 DD E9 C4 55 C1 FE BE 7E E7 58 82 D4 8A D2

13

--

--

--

CIPHERTEXT: 88 B8 DF 06
86 F9 80 75

Vector #8: CWC-AES-192
AES KEY: 00 01 02 03

F0 E0 D0 C0
PLAINTEXT: 00 01 02 03
ASSOC DATA: <None>
NONCE: FF EE DD CC

28 FD 51 CC
7E 7F C7 77

04 05 06 07
B0 A0 90 80
04 05 06 07

BB AA 99 88

31 E6 6E 57 0B 0F 77 80
3E 80 E2 73 F1 68 89

08 09 0A 0B 0C 0D 0E 0F

08 09 0A 0B 0C 0D 0E

77 66 55

HASH KEY: 4F A8 88 AF
HASH VALUE: 2C 5E 3A A4
AES(HVAL): 48 6E 9C E5
MAC CTR PT: 80 FF EE DD
AES(MCPT): C6 B6 F4 33
CIPHERTEXT: F0 DB A9 74

D8 68 D6 3A

Vector #9: CWC-AES-256
AES KEY: 00 01 02 03

F0 E0 D0 C0
PLAINTEXT: 00 01 02 03
ASSOC DATA: <None>
NONCE: FF EE DD CC

06 83 60 0C
37 1C 27 D6
C3 16 3E A6
CC BB AA 99
F9 12 39 4F
12 30 01 B0
04 07 E9 F6

04 05 06 07
B0 A0 90 80
04 05 06 07

BB AA 99 88

AB 35 75 EF 0A E6 01 A5
E8 6B 76 DC 3D 93 BC 87
9C D4 D7 E2 7C 9D 92 D2
88 77 66 55 00 00 00 00
6A 8C B9 D3 F2 7B 0C 72
E1 42 B7 58 87 C9 00 8E
58 6E 31 8E E6 9E A0

08 09 0A 0B 0C 0D 0E 0F
70 60 50 40 30 20 10 00
08 09 0A 0B 0C 0D 0E

77 66 55

HASH KEY: 35 8F 2B 0C
HASH VALUE: 4A 70 29 CC
AES(HVAL): 2B 64 0E 02
MAC CTR PT: 80 FF EE DD
AES(MCPT): 92 0A 3B 46
CIPHERTEXT: 7B CF 73 BE

6E 35 44 4C

Vector #10: CWC-AES-128
AES KEY: 00 01 02 03
PLAINTEXT: 00 01 02 03
ASSOC DATA: 54 68 69 73

65 78 74 20
NONCE: FF EE DD CC

FF E9 84 BE
58 25 52 CB
CE 51 DE 22
CC BB AA 99
82 25 16 F1
46 9C 46 0B
74 C8 D3 E8

04 05 06 07
04 05 06 07
20 69 73 20
68 65 61 64
BB AA 99 88

F9 EE EE 55 85 36 BC E5
75 AD C9 60 FF B3 F7 55
B2 0F 2A 8D C4 23 CD C0
88 77 66 55 00 00 00 00
5A A3 1B AE 8D EB 72 A0
9B C6 2D DE 26 DD 47 B9
AC 31 23 49 C8 BF 60

08 09 0A 0B 0C 0D 0E 0F
08 09 0A 0B 0C 0D 0E
61 20 70 6C 61 69 6E 74
65 72 2E 00
77 66 55

HASH KEY: 34 AE 6A 6F
HASH VALUE: 51 AE 9D 7E
AES(HVAL): DF 48 30 BD
MAC CTR PT: 80 FF EE DD
AES(MCPT): AB 89 DD E9
CIPHERTEXT: 88 B8 DF 06

C1 ED 54 D9

E9 51 78 94
86 BD E0 B2
1D DC E0 59
CC BB AA 99
C4 55 C1 FE
28 FD 51 CC
89 21 A7 0F

AC CC BB 9E BA E7 20 8C
AA 18 2C 91 87 0A 9C A5
B1 C2 0B 29 01 4F 80 10
88 77 66 55 00 00 00 00
BE 7E E7 58 82 D4 8A D2
31 E6 6E 57 0B 0F 77 74
BC EC 71 83 9B 0A C2

14

--

--

--

Vector #11: CWC-AES-192
AES KEY: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

F0 E0 D0 C0 B0 A0 90 80
PLAINTEXT: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E
ASSOC DATA: 54 68 69 73 20 69 73 20 61 20 70 6C 61 69 6E 74

65 78 74 20 68 65 61 64 65 72 2E 00
NONCE: FF EE DD CC BB AA 99 88 77 66 55

HASH KEY: 4F A8 88 AF
HASH VALUE: 51 60 E7 81
AES(HVAL): A0 30 58 13
MAC CTR PT: 80 FF EE DD
AES(MCPT): C6 B6 F4 33
CIPHERTEXT: F0 DB A9 74

86 AC 20 DB

Vector #12: CWC-AES-256
AES KEY: 00 01 02 03

F0 E0 D0 C0
PLAINTEXT: 00 01 02 03
ASSOC DATA: 54 68 69 73

65 78 74 20
NONCE: FF EE DD CC

06 83 60 0C
DC 64 F9 CD
22 B6 80 53
CC BB AA 99
F9 12 39 4F
12 30 01 B0
A4 B9 1C 0E

04 05 06 07
B0 A0 90 80
04 05 06 07
20 69 73 20
68 65 61 64
BB AA 99 88

AB 35 75 EF 0A E6 01 A5
54 BA 02 40 A2 E8 EE 99
64 B0 3E 52 41 D2 2D 0A
88 77 66 55 00 00 00 00
6A 8C B9 D3 F2 7B 0C 72
E1 42 B7 58 87 C9 00 66
3C 87 81 B3 A9 21 78

08 09 0A 0B 0C 0D 0E 0F
70 60 50 40 30 20 10 00
08 09 0A 0B 0C 0D 0E
61 20 70 6C 61 69 6E 74
65 72 2E 00
77 66 55

HASH KEY: 35 8F 2B 0C
HASH VALUE: 3F F5 0C 60
AES(HVAL): 3E EF A2 E4
MAC CTR PT: 80 FF EE DD
AES(MCPT): 92 0A 3B 46
CIPHERTEXT: 7B CF 73 BE

E5 99 A2 15

Vector #13: CWC-AES-128
AES KEY: 00 01 02 03
PLAINTEXT: 00 01 02 03

80 81 82 83
ASSOC DATA: <None>
NONCE: FF EE DD CC

FF E9 84 BE
E6 01 7A 3C
97 91 82 86
CC BB AA 99
82 25 16 F1
46 9C 46 0B
B4 94 77 29

04 05 06 07
04 05 06 07
84 85 86 87

BB AA 99 88

F9 EE EE 55 85 36 BC E5
A1 BB B3 54 65 02 85 7C
73 0C F6 E9 46 2C CA 15
88 77 66 55 00 00 00 00
5A A3 1B AE 8D EB 72 A0
9B C6 2D DE 26 DD 47 AC
AF ED 47 CB C7 B8 B5

08 09 0A 0B 0C 0D 0E 0F
08 09 0A 0B 0C 0D 0E 0F
88 89 8A 8B 8C 8D 8E 8F

77 66 55

HASH KEY: 34 AE 6A 6F
HASH VALUE: 58 D5 28 89
AES(HVAL): A3 9E F3 6F
MAC CTR PT: 80 FF EE DD
AES(MCPT): AB 89 DD E9
CIPHERTEXT: 88 B8 DF 06

48 5B 82 64
08 17 2E 86

E9 51 78 94
4F 1F 6A 52
67 1F FA F8
CC BB AA 99
C4 55 C1 FE
28 FD 51 CC
6E CF B9 F9
A3 4A 3B 06

AC CC BB 9E BA E7 20 8C
A6 44 FA 69 65 C0 73 A6
71 0C 83 BB 49 A6 6E BC
88 77 66 55 00 00 00 00
BE 7E E7 58 82 D4 8A D2
31 E6 6E 57 0B 0F 77 0F
A0 B0 75 4F D5 94 36 5A
CF 72 64 E3 CB 72 E4 6E

15

--

--

--

Vector #14: CWC-AES-192
AES KEY: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

F0 E0 D0 C0 B0 A0 90 80
PLAINTEXT: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F
ASSOC DATA: <None>
NONCE: FF EE DD CC BB AA 99 88 77 66 55

HASH KEY: 4F A8 88 AF
HASH VALUE: 0D 0A D2 78
AES(HVAL): 5A 05 AA 45
MAC CTR PT: 80 FF EE DD
AES(MCPT): C6 B6 F4 33
CIPHERTEXT: F0 DB A9 74

A4 C4 70 6D
9C B3 5E 76

Vector #15: CWC-AES-256
AES KEY: 00 01 02 03

F0 E0 D0 C0
PLAINTEXT: 00 01 02 03

80 81 82 83
ASSOC DATA: <None>
NONCE: FF EE DD CC

06 83 60 0C
1E 8F E8 47
88 06 A9 C1
CC BB AA 99
F9 12 39 4F
12 30 01 B0
40 41 F4 F9
71 14 90 8E

04 05 06 07
B0 A0 90 80
04 05 06 07
84 85 86 87

BB AA 99 88

AB 35 75 EF 0A E6 01 A5
00 85 31 28 B1 E3 49 3A
DC 5A F6 AF 6F 8F EC F6
88 77 66 55 00 00 00 00
6A 8C B9 D3 F2 7B 0C 72
E1 42 B7 58 87 C9 00 A3
58 E1 3F D0 D7 60 4D 1E
B6 D6 4F 7C 9D F4 E0 84

08 09 0A 0B 0C 0D 0E 0F
70 60 50 40 30 20 10 00
08 09 0A 0B 0C 0D 0E 0F
88 89 8A 8B 8C 8D 8E 8F

77 66 55

HASH KEY: 35 8F 2B 0C
HASH VALUE: 02 F2 DA E9
AES(HVAL): B7 F6 AE DE
MAC CTR PT: 80 FF EE DD
AES(MCPT): 92 0A 3B 46
CIPHERTEXT: 7B CF 73 BE

D2 41 06 CA
25 FC 95 98

Vector #16: CWC-AES-128
AES KEY: 00 01 02 03
PLAINTEXT: 00 01 02 03

80 81 82 83
ASSOC DATA: 54 68 69 73

65 78 74 20
NONCE: FF EE DD CC

FF E9 84 BE
83 72 0E BC
A3 95 35 FE
CC BB AA 99
82 25 16 F1
46 9C 46 0B
5D EB 80 A7
21 B0 23 0F

04 05 06 07
04 05 06 07
84 85 86 87
20 69 73 20
68 65 61 64
BB AA 99 88

F9 EE EE 55 85 36 BC E5
DC 77 89 3B 67 CB 3D B7
03 93 08 DF E0 C7 F1 78
88 77 66 55 00 00 00 00
5A A3 1B AE 8D EB 72 A0
9B C6 2D DE 26 DD 47 B5
B5 71 0A 38 A4 39 8D BA
59 30 13 71 6D 2C 83 D8

08 09 0A 0B 0C 0D 0E 0F
08 09 0A 0B 0C 0D 0E 0F
88 89 8A 8B 8C 8D 8E 8F
61 20 70 6C 61 69 6E 74
65 72 2E 00
77 66 55

HASH KEY: 34 AE 6A 6F
HASH VALUE: 05 EE B6 CB
AES(HVAL): 62 E5 23 FE
MAC CTR PT: 80 FF EE DD
AES(MCPT): AB 89 DD E9
CIPHERTEXT: 88 B8 DF 06

E9 51 78 94
DF A6 E5 B8
48 8F BC 14
CC BB AA 99
C4 55 C1 FE
28 FD 51 CC

AC CC BB 9E BA E7 20 8C
4C 65 DD F4 8C C8 25 23
E3 77 15 6C 4D 0F D0 8B
88 77 66 55 00 00 00 00
BE 7E E7 58 82 D4 8A D2
31 E6 6E 57 0B 0F 77 0F

16

--

--

48 5B 82 64
C9 6C FE 17

Vector #17: CWC-AES-192
AES KEY: 00 01 02 03

F0 E0 D0 C0
PLAINTEXT: 00 01 02 03

80 81 82 83
ASSOC DATA: 54 68 69 73

65 78 74 20
NONCE: FF EE DD CC

6E CF B9 F9
8C DA 7D EA

04 05 06 07
B0 A0 90 80
04 05 06 07
84 85 86 87
20 69 73 20
68 65 61 64
BB AA 99 88

A0 B0 75 4F D5 94 36 5A
5D 09 F2 34 CF DB 5A 59

08 09 0A 0B 0C 0D 0E 0F

08 09 0A 0B 0C 0D 0E 0F
88 89 8A 8B 8C 8D 8E 8F
61 20 70 6C 61 69 6E 74
65 72 2E 00
77 66 55

HASH KEY: 4F A8 88 AF
HASH VALUE: 10 E1 48 E2
AES(HVAL): 23 0A 37 C3
MAC CTR PT: 80 FF EE DD
AES(MCPT): C6 B6 F4 33
CIPHERTEXT: F0 DB A9 74

A4 C4 70 6D
E5 BC C3 F0

Vector #18: CWC-AES-256
AES KEY: 00 01 02 03

F0 E0 D0 C0
PLAINTEXT: 00 01 02 03

80 81 82 83
ASSOC DATA: 54 68 69 73

65 78 74 20
NONCE: FF EE DD CC

06 83 60 0C
D0 68 39 EC
48 7C 9F 76
CC BB AA 99
F9 12 39 4F
12 30 01 B0
40 41 F4 F9
B1 6E A6 39

04 05 06 07
B0 A0 90 80
04 05 06 07
84 85 86 87
20 69 73 20
68 65 61 64
BB AA 99 88

AB 35 75 EF 0A E6 01 A5
C4 0A 6C A3 D6 8B 47 54
05 B9 5D 1A 21 D5 D5 FD
88 77 66 55 00 00 00 00
6A 8C B9 D3 F2 7B 0C 72
E1 42 B7 58 87 C9 00 A3
58 E1 3F D0 D7 60 4D 1E
6F 35 E4 C9 D3 AE D9 8F

08 09 0A 0B 0C 0D 0E 0F
70 60 50 40 30 20 10 00
08 09 0A 0B 0C 0D 0E 0F
88 89 8A 8B 8C 8D 8E 8F
61 20 70 6C 61 69 6E 74
65 72 2E 00
77 66 55

HASH KEY: 35 8F 2B 0C
HASH VALUE: 09 4D C5 21
AES(HVAL): E9 69 49 47
MAC CTR PT: 80 FF EE DD
AES(MCPT): 92 0A 3B 46
CIPHERTEXT: 7B CF 73 BE

D2 41 06 CA
7B 63 72 01

FF E9 84 BE
94 79 E0 58
09 07 62 3B
CC BB AA 99
82 25 16 F1
46 9C 46 0B
5D EB 80 A7
8B 22 74 CA

F9 EE EE 55 85 36 BC E5
4E E9 C1 2C 29 6A E3 A4
A9 8D AD 51 9F D5 D1 F7
88 77 66 55 00 00 00 00
5A A3 1B AE 8D EB 72 A0
9B C6 2D DE 26 DD 47 B5
B5 71 0A 38 A4 39 8D BA
F3 2E B6 FF 12 3E A3 57

17

