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Abstract 

In many applications, such as encryption of credit card numbers, it is 
desirable to encrypt items from an arbitrarily sized set onto that same set. 
Unfortunately, conventional cipher modes such as ECB, CBC, or CTR are 
unsuitable for this purpose. Feistel Finite Set Encryption Mode (FFSEM) 
allows encryption of a value ranging from 0..n with resultant ciphertext 
in that same range. This mode can be used to encrypt fields where the 
expansion associated with a block cipher is undesirable or the format of 
the data must be preserved. 

Introduction 

Conventional block ciphers are fundamentally algorithmic permutations from a 
specific range (typically 264 or 2128) onto values in that same range. In some 
applications, it is valuable to be able to encrypt values in a smaller range in the 
same way. For example, many financial or e-commerce databases contain credit 
card numbers or social security numbers. For both practical and regulatory 
reasons, it is important to encrypt these values, however encrypting the entire 
database is impractical. A better approach is to encrypt only the sensitive 
values, but in many cases, the fields to be encrypted are fixed format and naively 
encrypting (for instance, with AES-ECB) produces ciphertexts which violate the 
format constraints. An encryption algorithm which works for these applications 
must be a permutation from valid values onto other valid values. 

In 2002, Black and Rogaway [2] described a practical way of building such 
a construction. Their Cycle Following scheme uses a block cipher to produce a 
secure permutation for sets of size less than but near to 22m where 2m is the size 
of the cipher block. Unfortunately, cycle following becomes progressively more 
expensive as the set gets smaller and thus is not practical for use with AES in 
cases such as credit cards where there are approximately 240 possible values. 
The effect is that cycle following is only practical if there is a block cipher with 
a block size of approximately the same size as the set to be encrypted, which is 
generally not the case. 

The Luby-Rackoff construction [7] (LR) can be used to produce a block 
cipher with any even bit width 2m. Black and Rogaway describe Generalized 
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Feistel Mode which combines LR with cycle following to allow the the encryption 
of sets of any size. Black and Rogaway show a reduction to the base block 
cipher when the attacker has less than 2m/2 plaintext/ciphertext pairs. This 
reduction is sufficient for the encryption of large sets, but provides an insufficient 
level of confidence for some cases, such as credit card numbers (CCNs) where 
22m ≈ 1016 . 

In 2004, Patarin [4] proved that a straightforward extension of Black and 
Rogaway’s method (running six or more rounds instead of the three rounds 
used originally) reduces to the underlying block cipher for a computationally 
unbounded attacker with less than 2m ciphertext/plaintext pairs. This allows 
use of this construction for a much wider range of sets. In particular, it allows 
encryption of sets around the size of the CCN space, in addition to enabling a 
number of other applications. 

This paper specifies Feistel Finite Set Encryption Mode (FFSEM), a concrete 
instantiation of the Black and Rogaway method with an increased round count 
as suggested by Patarin, using AES as the underlying cipher. This mode is 
used to encrypt items smaller than the block size of the underlying cipher to 
ciphertext of the same size. We also describe appropriate parameter choices for 
implementation of the mode. 

2 Overview of FFSEM 

FFSEM consists of two basic components: 

Cycle Following used to encrypt sets of approximately the same size as a 
given cipher’s block size. 

Feistel Method used to produce a block cipher of approximately the right 
size. 

When used together, these components allow the construction of efficient 
pseudo-random permutations over sufficiently large arbitrary sets. 

2.1 Cycle Following 

Cycle following is a general method for using an q-bit block cipher to encrypt 
and decrypt sets of size n where n < 2q. We treat the cipher block as an q-bit 
integer with the first n values mapped directly onto our set 0..n − 1 and and 
the remaining 2q − n values marked invalid. 

In order to encrypt a value i in 0..n −1, we simply construct the correspond­
ing cipher block, padding with zeroes as appropriate. If the resulting ciphertext 
is valid (in the range 0..n − 1) we output that as our result. Otherwise, we 
encrypt again using the block cipher, as shown in Figure 1. Black and Rogaway 
show that this repetition, which they call cycle-following, will always terminate 
and does not degrade the security of the underlying cipher. 
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2m-bit permutation

Test index > n ?

index in 0..n

index in 0..22m index in n..22m

index in 0..n

Figure 1: Overall cycle structure 

Decryption follows the same procedure, starting with a ciphertext which (by 
construction) is in the range 0..n − 1 and iterating the underlying block cipher 
until a valid value is returned. 

Because the underlying block cipher is a PRP over the space 2q, the prob­
nability that any given cycle will produce a valid value is . If n << 2q, the 2q 

cycle following algorithm will have very poor average behavior. It is therefore 
important to start with a block cipher of approximately the right size. Al­
though standard block ciphers only come in a few inconvenient sizes, we can use 
the-Luby Rackoff construction to produce such a block cipher. 

2.2 Feistel Mode 

As described by Black and Rogaway, we can use a Luby-Rackoff construction to 
turn a standard, fixed-width block cipher into a block cipher of arbitrary width 
using the block cipher as the basis for the round-specific PRF. 

2.2.1 Luby-Rackoff 

Luby and Rackoff [7] show how to construct a block cipher using a specified 
PRF in a repeated Feistel network, as shown in Figure 2. 

The Feistel round structure, when repeated some number of times, yields a 
Pseudo-Random Permutation. A single round simply divides the input bitvector 
into a right half and a left half, runs the right half through the PRF, XORs it 
with the left half, then swaps the right with the left. 
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I[m...2m-1] I[0...m-1]

PRFXOR

O[m...2m-1]O[0...m-1]

Figure 2: A single Feistel round 

2.2.2 Forming the PRF 

The L-R construction simply assumes the existence of a PRF, but any concrete 
instantiation requires actually instantiating one. The L-R PRF operates on half 
of the block size and so we want a PRF of width m bits for a cipher 2m bits 
wide. The natural PRF to use here is simply the base block cipher. Hall et al. [6] 
show that bitwise truncation of a PRP yields a PRF as long as the resultant 
PRF is significantly smaller than the PRP. So we can simply use a truncated 
version of the base block cipher as our PRF provided that the block size of the 
resultant L-R cipher is smaller than the base cipher, since then the PRF is less 
than half the width of the base cipher. 

It is desirable to use a different PRF at each round of the L-R construction. 
A “tweakable” PRF [3] will give a different PRF at each round if the round 
count is used as the tweak. We accomplish this tweak by incorporating the 
round number into the input of the block cipher. This tweaking method is also 
used in the OMAC procedure used in EAX mode [5]. Bellare and Impagliazzo [8] 
and Lucks [1] show a construction that uses two invocations of the block cipher 
to derive a PRF that would be suitable if the needed PRF was closer to the size 
of the underlying block cipher. Since we only need a PRF of maximum one half 
the block size, the truncation construction suffices. 

2.2.3 Security of this Construction 

The Luby-Rackoff construction was first published in [7], with security bounds 
established for the three and four round versions. The security bounds in [7] 
and subsequent papers show a reduction to the strength of the underlying PRF 
by showing that an attacker with unbounded computational ability cannot dis­
tinguish the L-R permutation from a random permutation with less than some 
number of plaintext/ciphertext pairs, assuming that a fully random function is 
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used for the PRF. Any attack more efficent than this would then need to exploit 
properties of the underlying PRF, not the overall L-R structure. 

The best bounds for the L-R construction at the time of the Black-Rogaway 
paper were only for three and four rounds. They established that an 2m bit L-R 
cipher using a random function in place of the PRF could be distinguished from 
a random permutation after 2m/2 queries. These were hard limits, as there are 
demonstrated practical attacks against the construction at these limits. With 
these limits, the L-R construction has questionable security for sets significantly 
smaller than the AES blocksize. In their paper, Black and Rogaway conjectured 
that extending the construction to more rounds would improve security, but 
these bounds were unknown at that time. 

In 2005, Patarin [4] showed that increasing the round count to 5 against 
CPA-2 attacks, and 6 against CPCA-2 attacks, increases the required queries 
to 2m . Significantly, the practical attack against the 3 and 4 round versions no 
longer works. The security bounds shown are for a computationally unbounded 
attacker capable of guessing the inputs and outputs of the internal PRF. Patarin 
shows the best known realizable attack against these constructions requires more 
plaintext/ciphertext pairs than are generated by a single permutation. 

3 FFSEM Encryption and Decryption 

Using the building blocks described in the previous section, we can now provide 
a concrete description of FFSEM using AES as our base block cipher. 

To specify FFSEM, we define two subfunctions, FFSEM-PRF, which is a 
Pseudo-Random Function based on some block cipher, and FFSEM-ROUND, 
which is an individual Feistel round. The FFSEM-ENCRYPT and FFSEM­
DECRYPT functions are defined to take a maximum value n, a value i that is 
between 0 and n-1, and a round count. 

3.1 FFSEM PRF Specification 

An FFSEM encryption of 2m bits requires a PRF over m bits. Since FFSEM 
is limited to encryptions of less than block size of the underlying cipher, we 
will always need a PRF that is less than half the size of the underlying cipher. 
Bellare and Impagliazzo show [8] a more general method of PRF generation 
using the sum of two PRPs, but this is not needed for the size of PRF we require. 

A tweak is used to insure that a different PRF is used at each round. We 
introduce the tweak as the upper byte of the input to the block cipher. For a 
k-bit wide PRF using an m-bit wide block cipher, the input to the block cipher 
then looks like the following: 

0..k − 1 k..m − 9 m − 8..m − 1 
input 0 round count 

The output of the blockcipher is then trimmed to k bits. 
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Function FFSEM-PRF( 
bitvector a, 
integer length, 
key k, 
integer tweak) 

bitvector b[0...block_length] 

b[0..length(a)-1] = a[0..length(a)-1]
 
b[length(a)..length(b)-8] = 0
 
b[length(b)-8...length(b)-1] = byte_representation(tweak)
 

return E(k, b) & 2^(length+1)-1; 

3.2 FFSEM Round 

The FFSEM-ROUND function describes a single Feistel round, as shown in 
Figure 1. The Feistel round structure, when repeated some number of times, 
yields a Pseudo-Random Permutation. Here the FFSEM-PRF function is used 
as the required PRF. THe FFSEM-ROUND function simply divides the input 
bitvector into a right half and a left half, runs the right half through the FFSEM­
PRF function, XORs it with the left half, then swaps the right with the left. 

Function FFSEM-ROUND( 
bitvector b, 
integer length, 
key k, 
integer tweak) 

right = b[0..length/2-1]
 
left = b[length/2..length]
 

return right << length/2 | left
 
XOR FFSEM-PRF(right, length/2, k, tweak)
 

3.3 FFSEM Encryption 

FFSEM-ENCRYPT uses FFSEM-ROUND and FFSEM-PRF to encrypt a value 
in the range 0..n onto the same range. The function takes the following inputs: 

• A key for the underlying block cipher 

• The maximum value of the range of plaintexts 

• A round count 
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The minimum value of the round count is six, which provides security bounds 
shown by Patarin. The security considerations section contains more details on 
the relationship between round count and values of n. 

The initial step in FFSEM-ENCRYPT and FFSEM-DECRYPT is to find 
the smallest bitvector of even length that will take an encoding of n-1. The 
input value is then encoded into a bitvector of that length, and the cycling 
Feistel structure is used to encrypt that bitvector. 

Function FFSEM-ENCRYPT( 
index i, 
integer n, 
key k, 
integer rounds) 

width = (lg(n) + 1) & 0xffffffffe 
do 

t = bit-encode(i) 
for j = 1 to rounds 

t = FFSEM-ROUND(t, width, k, j) 
i = bit-decode(t) 

while(i > n-1) 

return i 

Note that encrypting any specific type of data requires a function to map 
it onto the set 0..n − 1. For some sets, this is straightforward, but others are 
sparse. For instance, it may be desirable to limit credit card numbers to only 
strings that start with a five or a six. In these cases it may be necessary to first 
produce a function to map the sparse valid values onto the non-sparse set of 
sequential integers. 

3.4 FFSEM Decryption 

Decryption is similar to encryption, using the Feistel rounds and terminating 
when the Feistel output represents an integer smaller than n. It uses the same 
cycling construction, terminating and returning its output when the output of 
the Feistel rounds is in the proper range. 

Function FFSEM-DECRYPT( 
index i, 
integer n, 
key k, 
integer rounds) 

width = (lg(n) + 1) & 0xffffffffe
 
do
 

t = bit-encode(i)
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for j = 1 to rounds
 
t = FFSEM-ROUND(t, width, k, rounds-j)
 

i = bit-decode(t)
 
while(i > n-1)
 

return i 

4 Summary of Properties 

FFSEM is a somewhat unusual mode in that it does not encrypt multiple blocks 
of data. However, the standard tools for reasoning about the security of a cipher 
mode work in this case. The mode is not a substitute for a standard mode, but 
allows for AES encryption of data in applications where data expansion is not 
acceptable, or protocol security requirements dictate that plaintext contains no 
redundancy. 

4.1 Advantages of FFSEM 

No Ciphertext Expansion FFSEM encrypts values from a given range back 
into that same range. In applications where this is required, FFSEM 
allows use of an established block cipher in a mode with proven security 
bounds. 

4.2 Disadvantages of FFSEM 

Performance FFSEM requires multiple invocations of the block cipher to en­
crypt a single data item. Depending on the size of the item to be en­
crypted, anywhere from six to several hundred invocations may be re­
quired. 

Non-deterministic Performance Due to the cycling construction of FFSEM, 
different data items can take more or less time to encrypt or decrypt. Note 
that in some applications, it is conceivable that this may require counter­
measures to prevent timing attacks. 

Encrypt only FFSEM does not provide integrity or authentication properties, 
only encryption. 

5 Security Considerations 

FFSEM is used to encrypt values smaller than the block size of the underlying 
cipher, and this creates the need to use some care when designing protocols 
with this mode. While there are no known practical attacks against the FFSEM 
permutation, encrypting small ranges creates the risk of exploitable attacks if 
an encrypt or decrypt oracle is available to the attacker. Small ranges (210 < 
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n < 240) appear to be safe from the best known attack against the construction, 
but applications can specify a larger round count to provide a safety margin if 
desired. 

5.1 Exhaustion Attacks 

Like any cipher, if FFSEM is used in a deterministic mode (no tweak or key 
change between items), an attacker with access to an encryption or decryption 
oracle can potentially build a dictionary which maps ciphertexts to plaintexts. 
If the space of possible plaintexts is small, this attack may result in a dictionary 
that spans some significant fraction of the the entire plaintext space. 

There are two defenses against this attack: randomization and eliminating 
oracle access. To randomize the encryption process, keys can be changed per 
data item or FFSEM can be utilized in conjunction with a tweaking process 
like Liskov-Rivest XEX [3]. This document does not describe a full tweaked 
mode specific to FFSEM. In some applications, it may be desirable to have a 
deterministic permutation, which preserves the identity of plaintexts in the cor­
responding ciphertexts. In this case, protocol or operational mechanisms should 
be used to prevent arbitrary attacker access to keyed encryption or decryption 
operations. 

5.2 Determining Round Count 

Patarin [4] shows that for a computationally unbounded attacker, distinguishing 
the FFSEM permutation from a random permutation requires a minimum of 
O(2lg(n)/2) plaintext/ciphertext pairs. Due to the fairly small set sizes involved, 
the required number of pairs is not necessarily prohibitive. For example, if 
n = 40, 220 plaintext-ciphertext pairs would be required. 

While O(2lg(n)/2) represents the theoretical bound on the number of plain­
text/ciphertext pairs, the best known actual attack, due to Patarin, requires 
O(k2m) ciphertext/plaintext pairs, and O(2km2m 

) computations for a cipher 
with block width 2m and k rounds. For even small values of m, these values 
get large quite quickly. For instance, an 8 round and 10 bit wide permutation 
would require O(21280) computational steps. Note that increasing the number 
of rounds provides a defense here, which restores lg(k) bits of security against 
this attack. 

We do not recommend the use of FFSEM on sets smaller than 232 . The 
prefix technique shown by Black and Rogaway [2] is practical for sets slightly 
smaller than this, and is indistinguishable from a random permutation (modulo 
flaws in the underlying block cipher used) even with the entire permutation 
available to the attacker. 

While using six rounds satisfies the Patarin security bounds, implementors 
may desire to use additional rounds to insure that the theoretic attack is not 
conceivably implementable. We do not specify a defined set of allowable rounds, 
other than requring that six or more rounds are used. As a general guideline, 
for values of n > 40 bits, the standard six rounds should be sufficient. For 
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32 < n < 40, additional rounds should be used to compensate for the small 
number of ciphertext/plaintext pairs required for the theoretic attack. Using 
128 rounds adds 7 bits of work to the theoretic attack, providing an ample 
security margin. 

Acknowledgements 

Thanks to Hovav Shacham, Luther Martin, Xavier Boyen and Dan Boneh for 
valuable technical input and review during the development of this paper. Also, 
thanks to Eric Rescorla and Steve Haas for extensive advice on the presentation 
of the material and editorial comments. 

References 

[1] Stefan Lucks. The sum of PRPs is a secure PRF. Lecture Notes in Computer 
Science, 1807:470–??, 2000. 

[2] John Black and Phillip Rogaway.	 Ciphers with arbitrary finite domains. In 
CT-RSA, pages 114–130, 2002. 

[3] Moses Liskov, Ronald L. Rivest, and David Wagner.	 Tweakable block ci­
phers. In CRYPTO ’02: Proceedings of the 22nd Annual International Cryp­
tology Conference on Advances in Cryptology, pages 31–46, London, UK, 
2002. Springer-Verlag. 

[4] Jacques Patarin. Security of random feistel schemes with 5 or more rounds. 
In Matthew K. Franklin, editor, CRYPTO, volume 3152 of Lecture Notes in 
Computer Science, pages 106–122. Springer, 2004. 

[5] M.	 Bellare, P. Rogaway, and D. Wagner. A conventional authenticated-
encryption mode, 2003. 

[6] Chris Hall, David Wagner, John Kelsey, and Bruce Schneier. Building PRFs 
from PRPs. Lecture Notes in Computer Science, 1462:370–??, 1998. 

[7] M.	 Luby and C. Rackoff. How to construct psuedorandom permutations 
from psuedorandom functions. SIAM J. Computing, 17(2):373–386, 1988. 

[8] M. Bellare and R. Impagliazzo. A tool for obtaining tighter security analyses 
of pseudorandom function based constructions, with applications to prp to 
prf conversion. Cryptology ePrint Archive, Report 1999/024, 1999. http: 
//eprint.iacr.org/. 

10 

http:eprint.iacr.org

