
Hawkes-Rose variant of IAPM and message integrity 

This note should be read in conjunction with 

http://csrc.nist.gov/encryption/modes/proposedmodes/iapm/integrityproofs.pdf 

In this note we show that the variant of IAPM proposed by Hawkes and 

Rose is secure for message integrity. In this variant, not all blocks need be sent 

encrypted. Without loss of generality, let all the plaintexts which need to be sent 

unencrypted be at the beginning of the message. We allow the adversary to pick 

for each message how many blocks are to be sent unencrypted. Let this random 

variable be called U i, i.e. U i of the Li blocks are to be sent unencrypted, and 

this includes the frst block (0th block) which is just the IV. 

The HR scheme works as follows. The blocks 1 to U i , 1 are encrypted 

anyway, to generate ciphertext blocks as usual (i.e. as in IAPM). However, only 

the plaintext is sent to the receiving party. In other words, for j in 1::U i , 1 

Cj
i = Pj

i 

But now a new checksum Ai is computed as follows 

iU ,1 X
Ai = Nj

i f Sj
i 

j=1 

In other words, this checksum is the xor sum of what used to be the ciphertext 

blocks upto block U i , 1. This is then xored to what used to be Ci . T hus,
Li 

,1

Ci = N i f Si f Ai 

Li 
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Proof (Message Integrity): We follow the proof idea of Johan Haastad as given 

in section 6.1. Note that section 6.1 inturn refers to section 6 (Theorem 1) for 

details. At some point, we hope to write this proof complete in itself. 

There are two diferent ways of proving this result. The proof of message 

integrity g o e s b y frst building the tree of computation paths, and labelling each 

leaf with C = c. N o w w e could include in C and c the blocks of �ciphertext" which 

the adversary does not see, but then we have to restrict the paths by forcing 

the adversary to take the same �next choice" when the part of C visible to it is 

same. In another proof, which w e prefer, we leave C and c to be exactly what it 

is , i.e. it doesn't include the Nj
i f Sj

i and its fxed values, for 0  j  : U i , 1. 

However, the defnition of event E6, and hence proof of lemma 4 needs to b e 

modifed. 

Each constant ciphertext c, n o w has an auxillary information u correspnding 

to U . Given C = c, and G = g, where c is a constant sequence of ciphertexts 

and g is a constant permutation, the M values are fxed, because Mj
i = Pj

i f Sj
i . 

The variable Pj
i is completely fxed by c, and Sj

i is fxed by g(c
0

i )'s. We will write 

Mj
i(c; g) for this value of Mj

i. Similarly, for Nj
i , j  U  

i , 1. So, for any c and g, 

and y : z, defne E6(y; c; g) to be 

0 i0 08i; i0 2 [1::y]; 8j; j0; j 2 [1::li , 1]; j 2 [1::li
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, 1]; (i; j) 6= ( ; j ) : 
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We add a pseudo round to the frst z rounds of queries made by the adversary. 

This pseudo rounds is built out of the query made by the adversary in the second 

stage, i.e. using C 0 . In the pseudo round z+1, for j 2 [U 0::L0 ,2], if Nj 

0 is not equal 

to any of the previous N values, then it is decrypted to yield the corresponding 

M value. Note that we do not decrypt the last block. 

Now w e generalize event E 6 a b o ve to round z + 1, where for round z + 1 we 

only consider those M and N blocks as in the previous paragraph (i.e. new Ns 

and their corresponding Ms). Recall that c 

0 is completely determined by c. 

Now w e can generalize lemma 4 of section 6.1 as follows: 

For every constant c, and for any permutation g such that E6(z + 1 ; c; g ), 

Pr[G = g]
Pr[G = gjC = c ^ E6(z + 1 ; c; G )] = 

Pr[E6(z + 1 ; c; G )] 

Proof: Let U be the universe of G. Under the condition C = c and E6(z +1 ; c; G ) 

we show that every g such that E6(z + 1 ; c; g ) holds, is equally likely to be G. 

Since c is fxed, fxing G to g, fxes the N variables to a single value for all 

i : j : lii; j : u , 1 (with all N 's diferent, for otherwise E6(z +1 ; c; g ) w ouldn't 

hold). This value of the N variables is not ruled out as all the M variables are 

diferent ( b y E6(z; c; G)), and F is a random permutation. 

For the other N values we h a ve the following condition (for each i) 

i il ,1 l ,2 X X
N i = Si i Si 

j 0 

f cli 

,1 

f j 

i ij=u j=u

Again, for each value of g (which fxes S), given E6(z + 1 ; c; g ), the numb er 

of possibilites for the remaining N variables is the same (one could actually 

calculate this expression, but that is not required), as F is a random permutation. 

Thus, 

Pr[G = gjC = c ^ E6(z; c; G)] 

1 

= 

#g : E6(z; c; g) 

Thus, 

Pr[G = gjC = c ^ E6(z; c; G)] 

1 

= 

jU j  Pr[E6(z; c; G)] 

Pr[G = g] 

= 

Pr[E6(z; c; G)] 
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Now for the main proof. Let's assume that c 

0 has the same C0 

as some frst 

stage message (query) Ck (case (b) claim 4), because the other case is routine� 

needs to be written though! There are three cases. 

(a) If in the second stage, the frst Uk blocks are the same in C 0 as in Ck 

(regardless of whether U 0 = Uk), and there is a ciphertext later than Uk , 1 

which is diferent, then the analysis is similar to original IAPM. 

In the other cases we can assume that U 0 = Uk , for it is unlikely for the 

adversary to fgure out unknown portions of ciphertexts. This needs to be written 

too. 

(b) If, the ciphertext is same in the latter half, i.e blocks U 0 to L0 , 1, but 

diferent in the frst half, then we show that N 0 is diferent from all previous L0 

,1 

N (i.e. upto round z + 1). First note, 

= Nk !Pr[N 0 j C = c ^ E6(z + 1 ; c; G ) ^ E3(,r )]L0 
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j C = c ^ E6(z + 1 ; c; G ) ^ 

!E3(,r )]=
 

x=1 x=1 

By E6(z + 1 ; c; G ), the M 's are all diferent and hence the probability of this 

event is (about) 2,n, given that there is at least one x such that Mx 

0 6 x 

.= Mk 

Next for 0  sU 

0 , 

!Pr[N 0 = N 0 j C = c ^ E6(z + 1 ; c; G ) ^ E3(,r )]L0 

,1 s 
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(N 0 f Sk f Sk = N 0 !) f c 

0 j C = c ^ E6(z + 1 ; c; G ) ^ E3(,r )]x x l0 
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If x = s is the only x such that Mx 

0 is diferent from Mx
k , then by uniformity o f 

Sk f Sk (by lemma 4) the probability a b o ve i s 2 

,n. Otherwise given E6, N 0 can s 0 x 

b e c hosen from a set of size almost 2n . 

If s U 

0, the proof is similar. Finally, a similar proof shows that N 0 isL0 

,1
 

diferent from all Ns
i, for all other i.
 

(c) If the ciphertext is diferent in both halves, the proof is same as in case (b),
 

except that it is possible that c 

0 6 k , in which case for the case
 = cL0 

,1 L0 

,1

Pr[N 0 = Nk ]L0 

,1 L0 

,1

we get another additive term c 

0 f c 

k , which doesn't make a n y diference L0 

,1 L0 

,1

to the analysis. 

Thus, by an equation similar to equation (1) we get that in all cases (a), (b) 

and (c), the checksum validates with negligible probability 2 
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