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Abstract 

We describe a MAC (message authentication code) which is deterministic, parallelizable, and uses only IIM I/nl 

block-cipher invocations to MAC a non-empty string M (where n is the blocksize of the underlying block cipher). 
The MAC can be proven secure (work to appear) in the reduction-based approach of modern cryptography. The MAC 
is similar to one recently suggested by Gligor and Donescu [5]. 

Introduction 

PMAC and its characteristics This note describes a new message authentication code, PMAC. Unlike customary 
modes for message authentication, the construction here is fully parallelizable. This will result in faster authentication 
in a variety of settings. 

The PMAC construction is stingy in its use of block-cipher calls, employing just IIM I/nl block-cipher invoca­
tions to MAC a nonempty string M using an n-bit block cipher. 

A MAC computed by PMAC can have any length from up to n bits. 
Unlike the CBC MAC (in its basic form), PMAC can be applied to any message M ; in particular, IM I need not be 

a positive multiple of n. Likewise, messages being MACed do not need to be of one fixed length; messages of varying 
lengths can be safely MACed. 

When using PMAC with AES, the key for PMAC is a single AES key, and all AES invocations are under that key. 
The name PMAC is intended to suggest Parallelizable MAC. 

Security Assuming that the underlying block cipher behaves as a pseudorandom permutation, PMAC achieves exis­
tential unforgeability under an adaptive chosen-message attack, the now standard notion of security for MACs [6, 3]. 
In joint work with Mihir Bellare and John Black, a proof to this effect is currently being prepared. Since this proof 
and its writeup is not complete, the current algorithm should be considered provisional. 

Prior work The PMAC construction is similar to the XOR MAC of Bellare, Guérin, and Rogaway [2] and the 
variant of this defined by Bernstein [4]. It is even more similar to the XECB MAC of Gligor and Donescu [5]. The 
latter work inspired our own. But PMAC is more efficient than either alternative. In particular, The XOR MAC is 
stateful or randomized, and it uses a constant fraction more block-cipher invocations than PMAC. The  XECB  MAC  
is stateful or randomized, and it uses one more block-cipher invocation. In either case, the consequence of being 
stateful or randomized is that the MAC itself is longer, since it must include a counter or random number. Being 
stateful or randomized also presents added operational difficulties—the sender needs a source of random bits, or needs 
to maintain a counter across MAC invocations. 

It is possible to view PMAC as (an optimized version of) yet another MAC construction falling under the Carter-
Wegman paradigm [8]. Other MACs which fall under that paradigm are parallelizable if they employ a parallelizable 
universal hash-function family. But specifying and implementing a (non-cryptographic) universal hash function (par­
ticularly a fast one) is more involved than the simple mechanism we give here. 
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2	 Notation 

Fix a block cipher E which enciphers an n-bit string X using a k-bit key K, obtaining ciphertext block Y = EK 

(X). 
For E = A  we have n = 128 and k E { 128, 192, 256}. 

The authentication tags we specify can have any number of bits, tagLen, from 1 to n. A standard should allow such 
tag-truncation since tags in excess of 80 bits, say, utilize extra bits but provide no meaningful increment to security. A 
default value of tagLen = 6 is probably good. 

By 0i and 1i we mean strings of i 0’s and 1’s, respectively. For A a string of length less than n, by  padn(A) we 
mean the string 0n- A -11 A: that is, prepend 0-bits and then a 1-bit so as to get to length n. (Appending a 1-bit and 
then 0-bits would also be fine.) 

If A is a binary string then IAI denotes its length, in bits. If A and B are strings then AB denotes their concatena­
tion. If A and B are strings of equal length then AE B is their bitwise XOR and AV B is their bitwise OR and A1 B is 
their bitwise AND. By A[bit i] we mean the i-th bit of A (regarded, where necessary, as the number 0 or the number 1), 
where characters are numbered left-to-right, starting at 1. By  A[bits £ to r] we mean A[bit £]A[bit £ + 1]   A[bit r]. 

3	 The PMAC Algorithm (in general, and PMAC/add) 

Addition, multiplication, and Final( ) We assume an addition operator + from {0, 1}n  {  0, 1}n to {0, 1}n and a 
multiplication operator (with no explicitly written symbol) from {1, 2, 3,  ,  } { 0, 1}

n to {0, 1}n. We also assume 
a map  Final : {0, 1}

n
 {  0, 1}

n. For concreteness, we now give these functions a particular instantiation. Later we 
will revise this instantiation to demonstrate a couple of further possibilities. 

PMAC/add For the addition modulo 2n version of PMAC, PMAC/add, instantiate + by computer addition of n-
bit words (ignoring any carry) and instantiate iL, for  i 2 1, by repeated addition. Let Final(L) be L, the bitwise 
complement of L. 

(A more formal definition follows. Let A,B E {0, 1}
n. By  str2num(A) we mean the nonnegative integer that �nis represented by A, that  is,  2n-iA[bit i]. If  a is an integer then num2strn(a) is the unique n-bit string A

i 1 

such that str2num(A) = a mod 2n. By  A + B we denote num2strn(str2num(A) + str2num(B))  . By  iA, where  
i 2 0 is a positive integer, we mean the string num2strn(i  str2num(A))  . The  symbol in the last expression means 
multiplication in the integers.) 

Given a k-bit key K, derive from it a key L by way of L = EK 

(0n) V 0n-11. This ensures that L is odd. 

Definition of PMAC We now define PMAC. When addition and multiplication are as just given, we are defining 
PMAC/add. Given a string M , its MAC is computed as illustrated in Figure 1 and as specified below. 

Algorithm PMAC 

Let m = max{1, IIM I/nl}
 

Let M [1], ,M [m] be strings s.t. M [1]   M [m] = M and IM [i]I = n for 1 : i  m 
  

for i = 1 to m - 1 do 
C[i] = EK 

(M [i] + iL) 

if IM [m]I = n then preTag = C[1] E C[2] E   E  C[m - 1] E M [m] 

Tag = EK 

(preTag + Final(L)) 

else	 � = padn(M [m]) 

preTag = C[1] E C[2] E   E  C[m - 1] E � 

Tag = EK 

(preTag) 

T = Tag[bits 1 to tagLen] 

return T 

As the MAC is deterministic, a separate MAC verification algorithm need not be given: the algorithm is to compute 
the MAC that should accompany the message, and see if it matches the MAC received. 
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Figure 1: PMAC, illustrated on top for a message M = M [1] M [2] M [3] M [ ] where each block has n bits, and 
illustrated on the bottom for a message M = M [1] M [2] M [3] M [ ] where the last block has fewer than n bits. The 
value L is determined from the underlying key K. The MAC is  Tag, or a prefix of  Tag. 

3 



 

   

   

Scheme Meaning of A + B Meaning of iL, for  i 2 1 Meaning of Final(L) Definition of L 

PMAC/add Add 128-bit numbers. 
Ignore any carry 

Repeated addition (as de­
fined in the prior column) 

L EK 

(0128) V 1 

PMAC/mod Add 128-bit numbers 
mod p. 

Repeated addition (as de­
fined in the prior column) 

L EK 

(0128) 

PMAC/xor XOR Multiply r(i) by L in 
GF(2128), where  r(i) is 
the ith word in canonical 
Gray-code ordering 

L(127),  which  is  
2127 L, this arith­
metic in GF(2128). 

EK 

(0128) 1 Const 

128 and iFigure 2: Three instantiation possiblities for PMAC. Here A, B E { 0, 1} E { 1, 2, 3, }. The underlying key 
is K and L is derived from K as specified in the rightmost column. 

4 Comments 

The algorithm is defined as using an underlying k-bit key K, but that key is mapped into (K,L  ), where  L is an n-bit 
key. In a typical implementation, L would be computed only once, and saved. 

The specification may make it appear as though an implementation would employ mutliplications. It would not. 
Successive additions of L would be used instead, as in: 

Offet = L
 

for i = 1 to m - 1 do
 
C[i] = EK 

(M [i] + Offet) 

Offet = Offet + L 

The chain of additions used above might seem to imply that PMAC (without multiplies) is actually sequential. 
This again is not correct. To illustrate what goes on in a parallel implementation, suppose one has two processors, P1 

and P2 

, and one wants to MAC M = M [1] M [m]. Start processor P with Offet = 0 

n, and start processor P21 

with Offet = L. Processor P1 

will be responsible for odd-indexed words while P2 

will handle even-indexed ones. 
Each increments its own Offet by 2L, not by L. Processor P will encipher M [1],M [3],M [5], and XOR the 
ciphertexts. Processor P2 

will encipher M [2] E M [ ] E M [6] E and XOR the ciphertexts. Given the XOR’ed 
ciphertexts, the final MAC can then be computed by one of the processors. 

Note that neither MAC generation nor MAC verification requires use of the function E-1 . Thus E-1 needn’t be  
implemented. 

Note that PMAC is incremental with respect to block substitutions [1]. In particular, if a message should change 
by replacing some r blocks, it takes time proportional to r to compute a revised MAC for it, assuming that one has 
kept around the old (n-bit) MAC. 

Since n = 128 for us, n-bit additions are not completely trivial, especially in high-level programming languages. 
See Section 6 for an alternative. 

Give a block cipher F , what we have called  E can be either F or F-1; one should let E be whichever is faster to 
compute. 

1 

5 PMAC/mod: Trading the Ring �/2n� for the Field �p 

This section gives a slight variant of PMAC. 
A better security bound for PMAC can be obtained by computing iL modulo p, instead of computing iL modulo 2n . 

Here p = 2n - Æ is prime, for some small number Æ. When addition/multiplication is defined under this revised 
semantics, L need not be odd; select L = EK 

(0n) instead. See Figure 2. 
Slightly more efficient still, we change the semantics of addition to be that one drops the carry bit but increments 

the sum by Æ whenever a carry is generated. Multiplication by a positive number i means repeated addition. 
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6 PMAC/xor: A Gray-Code Trick and the Field GF(2n) 

In this section we describe yet another method of offsetting the blocks M [1],M [2], ,M [m - 1]: we will change 
the semantics of + to be XOR (that is, addition in GF(2n)) and we will change the semantics of iL as well. When 
mod 2128 additions are inconvenient, this approach may be preferred. We assume in this section that n = 128 . 

Notation If i is a positive integer then ntz(i) is the number of trailing 0’s in the binary representation of i. So,  for  
example, ntz(1) = ntz(3) = 0, ntz(2) = 1 , and  ntz(2 ) = 3 . If  L is an n-bit string, then L 1 means a left shift of L 

by one bit (msb disappearing, and a zero coming into the lsb). Similarly, L  1 means a right shift of L by one bit (lsb 
disappearing, and a zero coming into the msb). 

Algorithm Given a key K for E derive from it an n-bit key L by way of L = EK 

(0n) 1 02 130 02 130 02 130 02 130 . This  
ensures that the top two bits of every 32-bit word are zero, allowing for some pleasant implementation optimizations. 
Now define L(0) = L and, for i 2 0, define 

� 

L(i) 1 if msb(L(i)) = 0 

L(i + 1) = 

1) E 0120 104 13(L(i) if msb(L(i)) = 1 

Now given a string M , the PMAC algorithm proceeds as we have defined already, but with addition being defined as 
bitwise XOR, and iL being defined by 

� 

0n if i = 0 

iL =
(i - 1)L E L(ntz(i)) if i 2 1 

The value Final(L) is defined as L(127). This can be computed directly by (L  1) E L(6) E L(1) if lsb(L) = 0 , and  
(L  1) E L(6) E L(1) E L E 10120 104 11 if lsb(L) = 1 . Note that each offset is obtained from the previous one by 
XORing it with the appropriate L(i). The  L(i) values can be computed once, in advance, or they can be computed on 
the fly with the specified bit twiddling. 

Explanation The following explanation assumes more mathematical background than the rest of this document. 
Understanding this explanation is not needed for understanding the algorithm’s definition. 

The algorithm just given is identical to the earlier ones except that (1) addition is done in the field GF(2128 ); and  
(2) the ith offset is r(i) L, where  r is a particular (convenient) permutation on {1, 2, 3, , 2n - 1} and j L 

denotes the number j, treated as a field element, multiplied (in this field) by L. Let us elaborate. 
We have constructed the L(i) values in such a manner that L(i) is the string that represents 2i L, where  2i and 

L are regarded as points in the field GF(2128 ) and refers to multiplication in the field. Here we are are representing 
x128points using the irreducible polynomial p(x) = + x7 + x2 + x + 1 . A  string  a127 

a1 

a0 

corresponds to the 
formal polynomial a127 

x127 + + a1 

x + a0 

. 
A Gray code on {0, 1}

n is a permutation of {0, 1}
n , say  (g0 

, g1 

, , g2� 

-1 

), such that gi 

and gii1 

differ (in 
the Hamming sense) by just one bit. Also, g0 

and g2� differ in just one bit. We implicitly make use of the 
Gray code Q(n) constructed as follows: Q (1) = (0, 1), and, for i 2 0, if  Q (i) = (g0 

, , g2� 

-1 

) then Qii1 

= 

(0g0 

, 0g1 

, , 0g2� 

-2 

, 0g2� 

-1 

, 1g2� 

-1 

, 1g2� 

-2 

, , 1g1 

, 1g0 

). This is easily seen to be a Gray code, and it is not hard 
to prove that, in this code, gii1 

= gi 

E 1 ntz(i). Thus it is easy to compute the successive words of this code. 
Moving from strings to numbers, the Gray code that we are using is r(1) = 1, r(2) = 3, r(3) = 2, r( ) = 6, 

r(5) = 7, r(6) = 5, r(7) = , r(8) = 12, and so forth. The ith offset has been defined as iL = r(i) L. 

-1 

Comment We defined L in a way that ensures that the top two bits of every 32-bit word are 0-bits. This means that 
one can change L to 2L, or change L to L, or change L to 2L, and so forth, using either two or four shift operations 
(on a 64-bit machine or a 32-bit machine, respectively). This means that only one time in eight does one have to obtain 
a new  L(i) value by going to memory or doing bit twiddling; the rest of the time one shifts the current aL-value to get 
the a'L value that you want. The more zero-bits one sets aside at the beginning of each word the fewer times one has 
to go to memory or do bit-twiddling. But one quickly gets a diminishing return, and the security bound degrades with 
the number of forced zero-bits. So two or three 0-bits on the top of each word is probably a good choice. 
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