New Modes of Encryption - A Perspective and a Proposal

Virgil D. Gligor* Pompiliu Donescu

VDG Inc
6009 Brookside Drive
Chevy Chase, Maryland 20815

{gligor, pompiliu}@eng.umd.edu

NIST Modes of Operation Workshop
Baltimore, Maryland
October 20, 2000

(*) Part of this work was performed while on sabbatical leave from the University of Maryland,
Department of Electrical and Computer Engineering, College Park, Maryland 20742
Outline

1. Security Claims

2. Operational Claims

3. Evidence

4. Examples: XCBC, XECB-MAC and PM-XOR

5. Proposal: Three* Distinct Mode Candidates

6. Intellectual Property Status
1. Security Claims for Modes of Encryption

1. **Claim** = a security notion supported by a mode or scheme of encryption

2. Security **Notion** = < security goal, attack characteristics>

3. Security **Goal**: confidentiality, integrity (authenticity), common
 - Examples:
 - confidentiality: indistinguishability (IND)
 - integrity: resistance to existential forgery (EF)
 - common: resistance to key searches (KS)
 - combinations

4. **Attack Characteristics** (models)
 - Examples:
 - Chosen (Known) Plaintext
 - Ciphertext-only
 - Chosen ciphertext
 - combinations
Example of a Chosen-Plaintext Attack

Distributed Service: S (S1, S2), shared key K; Clients: Client 1, … Adv, …, Client n
Adversary: Adv

In attack scenario:
S1 becomes an Encryption Oracle
S2 becomes a Decryption Oracle
Example of Ciphertext-only Attack

Distributed Service: S (S1, S2), shared key K; Clients: Client 1,…, Client n
Adversary: Adv is not a client

In attack scenario:
No Encryption Oracle: plaintext i is r.u.d
(Adv known absolutely nothing about plaintext i)
S2 becomes a Decryption Oracle
Example of Integrity Goals

Existential Forgery protection (EF): $\text{Pr}[D_K(\text{forgery}) /=\text{Null}]$ is negligible

Other Integrity Notions: constraints on $D_K(\text{forgery}) /=\text{Null}$

Examples:

Non-malleability (NM):
 given ciphertext challenge y whose plaintext x may be unknown, find forgery of the same length as y:
 $$\text{Pr}[D_K(\text{forgery}) /=\text{Null and Relationship}(D_K(\text{ forgery}), x)]$$ is negligible

Integrity of Plaintexts (PI):
 $$\text{Pr}[D_K(\text{forgery}) /=\text{Null and } D_K(\text{forgery}) /=\text{plaintexts encrypted before}]$$ is negligible

Assurance of Plaintext Uncertainty (PU):
 $$\text{Pr}[D_K(\text{forgery}) /=\text{Null } \Rightarrow D_K(\text{forgery}) /=\text{plaintexts encrypted before and is unknown}]$$ is close to 1

Protection against Chosen-Plaintext Forgery (CPF): given a chosen plaintext challenge x,
 $$\text{Pr}[D_K(\text{forgery}) /=\text{Null and } D_K(\text{forgery}) = x /=\text{plaintexts encrypted before}]$$ is negligible

Note: some constraints may be integrity counter-intuitive; e.g.,
assurance of *Known-Plaintext Forgery* (KPF)
 $$\text{Pr}[D_K(\text{forgery}) /=\text{Null } \Rightarrow D_K(\text{forgery}) \text{ is known}]$$ is close to 1.
Relationships among Integrity Notions

Legend: $A \rightarrow B$ iff $A \implies B$ and $B \neq A$ (``dominance'')

- $A \implies B$ iff mode is secure in A is also secure in B
- $B \neq A$ iff mode is secure in B is not secure in A

GD - 10/20/00
Examples of Modes Satisfying Different Integrity Notions

Encryption Mode - “redundancy” function or Encryption Mode + MAC Mode

EF - CPA

PI - CPA

``easy''

Conf. DES-CBC-CRC32 (K v5, DCE)

IGE-z₀

PU - CPA

VIL-CBC-nzg

NM - CPA

BIDGE-nzg

EF - CoA

CPF - CPA

CPF - CoA

XOC-XOR

Infinite Garble Extension (IGE)

Encryption:

\[y_i = \text{Enc}_K(x_i / y_{i-1}) / x_{i-1} \]

Note: italics designate modes presented in NIST Workshop on AES Modes of Encryption
2. Operational Claims for Modes of Encryption

1. **Claim** = a operational notion supported by a mode or scheme of encryption
2. Operational **Notion** = < operational goals, mode characteristics >
3. Operational **Goal**: cost-performance, simplicity, others
 - Examples of (related) goals:
 - cost-performance:
 - low power consumption
 - high speed (e.g., throughput)
 - low implementation cost (e.g., hardware ``real-estate’’)
 - simplicity
 - single cryptographic primitive, key
4. **Mode Characteristics**
 - Examples:
 - State: stateless, stateful
 - Degree of parallelism
 - sequential
 - interleaved (apriori known or negotiated no. of proc. units)
 - fully parallel (independent of no. of processing units)
 - Separated Confidentiality and Integrity keys
 - Other: incremental, out-of-order processing
Examples of Operational Claims

Low- and High-End Goals

- cost-performance:
 - low power consumption
 - speed: moderate (e.g., < 100 MBS)
 - low implementation cost
- simplicity
 - single cryptographic primitive (AES), key

Low- and High-End Mode Characteristics

- State: stateful
- Degree of parallelism
 - sequential (single processor)
- Separated Confidentiality and Integrity keys: No
- Others: incremental, out-of-order processing: No

> 100 GBS
> hardware
single crypto prim.
3. Evidence for Claims

1. Mode specification

2. Security Claim
 - goal - attack pair(s)

3. “Proof“
 - formal: Mode spec. satisfies Security Claim
 • standing assumption: AES is secure w.r.t. all known attacks
 - peer review
 - other empirical evidence: known attacks

4. Operational Claim
 - goal - mode characteristics pair(s)

5. Operational evidence
 - implementation + performance tests
 - other empirical evidence
XCBC Encryption

Fact: Encryption is not intended to provide integrity

Motivation

- Encryption w/o integrity checking is all but useless [Bellovin 98]

- Define family of encryption modes to help provide integrity with non-cryptographic “redundancy” functions

- Security claims: IND-CPA confidentiality and EF-CPA integrity, reasonable bounds

- Operational claims: preferred for Low- to Mid-End op. environment

- Knowledge of operational environments:
 • apriori obtained
 • discovered via negotiation
Operational Claims
Preferred environments: low- to mid-end

Goals
- cost performance
 • low power consumption
 • speed: moderate to high (e.g., close to CBC-UMAC-MMX30)
 • low implementation cost
- simplicity
 • single cryptographic primitive (AES), key

Mode Characteristics
• State: stateful, stateless
• Degree of parallelism: sequential (single processor), interleaved (known no. procs.)
• Separated Confidentiality and Integrity keys: No
• Others: incremental, out-of-order processing: Yes (if interleaved)
Stateless CBC Scheme - Encryption of $x = x_1x_2x_3$

(single key is also possible)

Examples of S_i and op combinations ($+$ is mod 2^l; \oplus is bitwise exclusive-or)

$op = +$ \hspace{1cm} $S_i = S_{i-1} + r_0, S_0 = 0$ (written as $S_i = i \times r_0$)

Other S_i and op definitions exist (e.g., C.S. Jutla’s and P. Rogaway’s proposals)
Stateless XCBC-XOR Scheme - Encryption of \(x = x_1x_2x_3 \)

unpredictable function of message \(x \)

\(g(x) \)

Example: \(g(x) = x_1 \oplus x_2 \oplus x_3 \oplus z'_0 \); \(z'_0 = z_0 \)

Other examples of \(g(x) \) exist
Selection Criteria for S_i, op, g(x) ?

Satisfy Security Claims:
- Proof for integrity goal: EF-CPA
 (must be able to do the proofs for selected S_i, op, g(x)):
 • integrity: [GD 00]

Satisfy Operational Claims:
- Goals: low- to mid-end environments

Performance Example (by Jason S. Papadopoulos)

PC: 366 MHz Intel Celeron; OS: Red Hat Linux 5.2;
Compiler: egcs; optimization: -o3-mcpu = I686 - fomit - frame - pointer
Block Enc/Dec : openSSL DES

in-cache timing : 64B, 256B, 512B, 1KB, 2KB, 4KB, 8KB, 16KB, 64KB, 256 KB

- aligned data on 8 byte boundary
 CBC-UMAC-MMX30 42.86 - 46.48 clocks / byte; and for 8B - 77.23 clocks/byte
 XCBC-XOR 43.38 - 44.62 clocks / byte; and for 8B - 49.57 clocks/byte

- unaligned data (8 byte boundary +1)
 CBC-UMAC-MMX30 44.13 - 47.35 clocks / byte; and for 8B - 80.85 clocks/byte
 XCBC-XOR 44.38 - 45.00 clocks / byte; and for 8B - 49.58 clocks/byte
XECB - MAC

Motivation

- Stand-alone, fully parallel family of MACs, like the XOR-MAC
 • with better throughput
 • reasonable security bounds for EF- CPA

- XORC (and ctr-mode) needs a MAC with similar mode characteristics using the same cryptographic primitive

[XORC, and ctr-mode, does not allow non-cryptographic “redundancy” function g(x)]

Preferred Operational Environment: High-End

- XORC (ctr-mode) + XECB (or any other similar MAC) requires two keys
 => two separate passes in single processor, sequential implementations
 => approx. twice the power consumption and half speed of XCBC-XOR

GD - 10/20/00
Stateful XECB - MAC: Example $x = x_1x_2x_3$

(single key mode is also possible)

$S_i =$ sequence
$op =$ operation

Examples of S_i and op combinations ($+$ is mod 2^l; \oplus bitwise exclusive-or)

$op = + \quad S_i = S_{i-1} + r_0\ , \ S_0 = 0$ (written as $S_i = i \times r_0$)

$op = \oplus \quad S_i = S_{i-1} \times a\ , \ S_0 = r_0$ (written as $S_i = a^i \times r_0$; a is a lcs constant)

Other S_i and op definitions exist (e.g., P. Rogaway’s PMAC)
Parallel Mode

Motivation

- Fully Parallel Mode like C.S. Jutla’s IAPM using a different S_i
 (S_i elements are not pairwise independent)

- Define family of parallel encryption modes to help provide integrity
 with non-cryptographic “redundancy” functions

- Security Claims (w/o proof) : IND-CPA confidentiality and EF-CPA integrity,
 reasonable bounds

Preferred Operational Environment: Mid- to High-End

- Single key for both Confidentiality and Integrity
Stateless Parallel Mode - Encryption of $x = x_1x_2x_3$

(single key mode is also possible)

$y_0 = \text{Enc}_K(r_0)$
$z_0 = \text{Enc}_K(r_0)$
$z_1 = \text{Enc}_K(r_0+1)$

Example: $g(x) = x_1 \oplus x_2 \oplus x_3 \oplus z_0$

$y_i = \text{Enc}_K(x_i + S'_i) + S_i$
$S'_i = i \times z_1$
$S_i = i \times r_0$

Also use DESX if necessary

Other examples of $S'_i, S_i, g(x)$ exist (e.g., C.S. Jutla’s and P. Rogaway’s proposals)
Proposal: Three* Distinct Modes of Operation
and Candidates (as of 10-18-2000)

• based on preferred environments of operation

1. Low- to Mid-End (very simple extensions of the venerable CBC)
 - XCBC-XOR
 - (possibly) interleaved mode
 - IACBC
 - XIGE-\(z_0\) / XABC -\(z_0\) (XCBC-like extensions of IGE / ABC)

2. Mid- to High-End (single confidentiality and integrity key)
 - IAPM
 - PM-XOR
 - OCB

3. High-End (separate or independent key for confidentiality and integrity modes)
 - ctr-mode for encryption
 - XECB-MAC, PMAC for integrity
 - (*) ctr-mode + XECB-MAC, ctr-mode + PMAC for both

(*) the third mode of operation requires two separate AES modes
Intellectual Property Status

3 patent applications filed

