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Abstract 

We present the eXtended Ciphertext Block Chaining (XCBC) schemes or modes of encryption 

that can detect encrypted-message forgeries with high probability even when used with typical non-
cryptographic Manipulation Detection Code (MDC) functions (e.g., bitwise exclusive-or and cyclic re-
dundancy code (CRC) functions). These modes detect encrypted-message forgeries at low cost in per-
formance, power, and implementation, and preserve both message secrecy and integrity in a single pass 

over the message data. Their performance and security scale directly with those of the underlying block 

cipher function. We also present the XECB message authentication modes. These modes have all the 

operational properties of the XOR-MAC modes (e.g., fully parallel and pipelined operation, incremental 

updates, and out-of-order verifcation), and have better performance. They are intended for use either 

stand-alone or with encryption modes that have similar properties (e.g., counter-based XOR encryption). 

However, the XECB-MAC modes have higher upper bounds on the probability of adversary's success in 

producing a forgery than the XOR-MAC modes. 

Introduction 

No one said this was an easy game ! 

Paul van Oorschot, March 1999. 

A long-standing goal in the design of block encryption modes has been the ability to provide message-
integrity protection with simple Manipulation Detection Code (MDC) functions, such as the exclusive-or, 

cyclic redundancy code (CRC), or even constant functions [5, 7, 9]. Most attempts to achieve this goal in 

the face of chosen-plaintext attacks focused on diferent variations of the Cipher Block Chaining (CBC) 

mode of encryption, which is the most common block-encryption mode in use. To date, most attempts, 

including one of our own, failed [8]. 

*This work was performed while this author was on sabbatical leave from the University of Maryland, Department o f 

Electrical and Computer Engineering, College Park, Maryland 20742. 
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In this paper, we defne the eXtended Ciphertext Block Chaining (XCBC) modes that can b e used with 

an exclusive-or function to provide the authentication of encrypted messages in a single pass over the data. 

These modes detect integrity violations at a low cost in performance, p o wer, and implementation, and 

can be executed in a parallel or pipelined manner. They provide authentication of encrypted messages in 

real-time, without the need for an additional processing path over the input data. The performance and 

security of these modes scale directly with the performance and security of the underlying block cipher 

function since separate cryptographic primitives, such as hash functions, are unnecessary. 

We also present the XECB modes for message authentication (i.e., XECB-MAC modes) and their salient 

properties. These message authentication modes have all the operational properties of the XOR message 

authentication (XOR-MAC) modes (e.g., they can operate in a fully parallel and pipelined manner, and 

support incremental updates and out-of-order verifcation [2]), and have better performance; i.e., they use 

only about half the number of block-cipher invocations required by the XOR-MAC modes. However, the 

XECB-MAC modes have higher bounds on the adversary's success of producing a forgery than those of 

the XOR-MAC modes. The XECB modes are intended for use either stand-alone to protect the integrity 

of plaintext messages, or with encryption modes that have similar properties (e.g., counter-based XOR 

encryption [1] a.k.a "counter mode") whenever it is desired that separate keys b e used for secrecy and 

integrity modes. 

2 Integrity Modes for Encryption 

Preliminaries and Notation. In defning the encryption modes we adopt the approach of Bellare et 

al. (viz., [1]), who show that an encryption mode can be viewed as the triple (E;D;K G ), where E is the 

encryption function, D is the decryption function, and KG is the probabilistic key-generation algorithm. 

(Similarly, a message authentication (MAC) mode can be viewed as the triple (S; V; KG), where S is the 

message signing function, V is the message verifcation function, and KG is the probabilistic key-generation 

algorithm.) Our encryption (and authentication) modes are implemented with block ciphers, which are 

modeled with fnite families of pseudorandom functions (PRFs) or pseudorandom permutations (PRPs). 

In this context, we use the concepts of pseudorandom functions (PRFs), pseudorandom permutations 

L(PRPs), and super-pseudorandom permutations (SPRPs) ([1], [14]). Let Rl; the set of all functions 

Lf0; 1gl ! f0; 1g . We use F to denote either a family of pseudorandom functions or a family of super-
pseudorandom permutations, as appropriate (e.g., for the encryption schemes, F will be a family of super-
pseudorandom permutations, while for our MAC s c hemes, F can be a family of pseudorandom functions). 

Given encryption scheme I = (E;D;K G ) that is implemented with SPRP F , w e denote the use of the key 

R
K f KG in the encryption of a plaintext string x by EFK (x), and in the decryption of ciphertext string 

y by DFK (y). The most common method used to detect modifcations of encrypted messages applies a 

MDC function g (e.g., a non-keyed hash, cyclic redundancy code (CRC), bitwise exclusive-or function [15]) 

to a plaintext message and concatenates the result with the plaintext before encryption with EFK (x). A 

message thus encrypted can b e decrypted and accepted as valid only after the integrity check is passed; 

i.e., after decryption with DFK (y), the concatenated value of function g is removed from the plaintext, and 

the check passes only if this value matches that obtained by applying the MDC function to the remaining 

plaintext [5, 7, 15]. If the integrity c heck is not passed, a special failure indicator, denoted by N ull herein, 

is returned. This method1 has been used in commercial systems such as Kerberos V5 [17, 21] and DCE 

1 Note that other methods for protecting the integrity o f encrypted messages exist; e.g., encrypting the message with a 

secret key and then taking the separately keyed MAC of the ciphertext [15, 3]. These methods require two passes over the 
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[6, 21], among others. The encryption scheme obtained by using this method is denoted by I-g = (E-g,D-
g,KG), where I is said to be composed with MDC function g. In this mode, we denote the use of the key 

K in the encryption of a plaintext string x by ( EFK -g)(x), and in the decryption of ciphertext string y by 

(DFK -g)(y). 

A design goal for I-g = (E-g, D-g, KG) modes is to fnd the simplest encryption mode I = (E,D,KG) (e.g., 

comparable to the CBC modes) such that, when this mode is composed with a simple, non-cryptographic 

MDC function g (e.g., as simple as a bitwise exclusive-or function), message encryption is protected against 

existential forgeries. For any k ey K, a forgery is any ciphertext message that is not the output of EFK -g. 

An existential forgery (EF) is a forgery that passes the integrity c heck o f DFK -g upon decryption; i.e., for 

forgery y0, (DFK -g)(y') =6 N ull , where N ull is a failure indicator. Note that the plaintext outcome of an 

existential forgery need not be known to the forgerer. It is sufcient that the receiver of a forged ciphertext 

decrypt the forgery correctly. 

Message Integrity Attack: Existential Forgery in a Chosen-Plaintext Attack. The attack is 

defned by a protocol between an adversary A and an oracle O2 as follows. 

1.	 A and O select encryption mode I-g = (E-g,D-g,KG), and O selects, uniformly at random, a key K 

of KG . 

p2.	 A sends encryption queries (i.e., plaintext messages to be encrypted) x , p = 1 ;   ; q  e, to the encryp-
p	 ption function of O. Oracle O responds to A by returning y = ( EFK -g)(xp), p = 1 ;   ; q  e, where x

are A's chosen plaintext messages. A records both its encryption queries and O's responses to them. 

0i3. After receiving O's encryption responses, A forges a collection of ciphertexts y ; 1 : i : qv 

where 

0i p	 0iy	 6 y ; 8p = 1;   ; q  e, and sends each decryption query y to the decryption function of O.= O 

returns a success or failure indicator to A, depending on whether of (DFK -g)(y0i) 6 N ull .= 

Adversary A is successful if at least one decryption query y0i such that (DFK -g)(y 6 N ull for 1 : i : qv
0i) = ; 

i.e., y0i is an existential forgery. The mode I-g = (E-g,D-g,KG) is said to be secure in a message-integrity 

attack if the probability of an existential forgery in a chosen-plaintext attack is negligible. (We use the 

notion of negligible probability in the same sense as that of Naor and Reingold [16].) 

Attack Parameters. A is allowed qe 

encryption queries (i.e., queries to EFK -g), and qv 

decryption 

queries (i.e., queries to DFK -g) totaling {e 

+ {v 

bits, and taking time te 

+ tv. 

0	 0 0Parameters qe; { e; t e 

are bound by the parameters (q ; { ; t ; E 

0) which defne the chosen-plaintext security 

of I = (E,D,KG) in a secrecy attack (e.g., in the left-or-right sense [1], for instance), and a constant c0 

0 0determined by the speed of the function g. Since parameters (q ; { 

0; t ; E 

0) are expressed in terms of the 

given parameters (t; q; E) of the SPRP family F , the attack parameters can be related directly to those of 

the SPRP family F . 

Parameters qe; { e; t e; q v; { v; t v 

are also bound by the parameters (t; q; E) of the SPRP family F , namely 

{e 

+ {v 

: ql , and te 

+ tv 

: t. (The parameters qe; q v 

are determined by {e; { v.) These parameters can be 

set to specifc values determined by the desired probability of adversary's success. Note that qv 

> 0 since 

A must be allowed verifcation queries. Otherwise, A cannot test whether his forgeries are correct, since A 

does not know k ey K. 

message data, require more power, and are more complex to implement than the modes we e n vision for most common use. 

Nevertheless these methods are useful whenever key separation is desired for secrecy and integrity. 

2 O can be viewed as two oracles, the frst for the encryption function of O and the second for the decryption function of O. 
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The message-integrity attack defned above is not weaker than an adaptive one in the sense that the 

success probability of adversary A bounds from above the success probability of another adversary A0 that 

intersperses the qe 

encryption and qv 

verifcation queries; i.e., the adversary is allowed to make his choice 

of forgery after seeing the result of legitimate encryptions and other forgeries. (This has been shown for 

chosen-message attacks against MAC functions [2], but the same argument holds here.) To date, this is 

the strongest of the known goal-attack combinations against the integrity (authentication) of encrypted 

messages [3, 10]. 

3 Defnition of the XCBC and XCBC-XOR Modes 

We present three XCBC modes, namely (1) stateless, (2) stateful-sender, and (3) stateful modes, and 

some implementation options. In general, the fewer state variables the more robust the mode is in the 

face of failures (or disconnections) and intrusion. This might suggest that, in practice, stateless modes 

are preferable. However, this may not always b e the case because a g o o d , high-performance, source of 

randomness that can be used for each message may b e u n a vailable or may be hard to protect in terms of 

confdentiality, i n tegrity and availability. Further, the new random number used in each message encryption 

by the sender must be securely transmitted to the receiver, which usually costs at least an additional block-
cipher invocation. The stateful-sender mode (e.g., a counter-based mode) eliminates the need for a g o o d 

source of randomness but does not always eliminate the extra block-cipher invocation and the need to 

protect the extra sender state variables; e.g., the source of randomness is replaced by the enciphering of 

a message counter but the counter must be maintained and its integrity m ust be protected by the sender 

across multiple message authentications. (The other advantage of counter-based modes, namely the ability 

to go beyond the "birthday barrier" when used with pseudo-random functions, does not materialize in the 

context of the Advanced Encryption Standard (AES) since AES is modeled as a family of pseudo-random 

permutations.) 

Maintaining secret shared-state variables, as opposed to just sender-state, helps eliminate the extra block-
cipher invocations. Extending the shared keying state with extra, per-key, random variables shared by 

senders and receivers is a fairly straight-forward matter; e.g., these shared variables can be generated and 

distributed in the same way as the shared secret key, or can be generated using the shared key (at some 

marginal extra cost per message) by encrypting constants with the shared key. However, maintaining the 

shared state in the face of failures (or disconnections), and intrusion presents an extra challenge for the 

mode user; e.g., enlarging the shared state b e y ond that of a shared secret key may increase the exposure 

of the mode to physical attacks. The above discussion suggests that none of the three types of operational 

modes is superior to the others in all environments, and hence all of them should be supported in a general 

mode defnition. 

In the encryption modes presented below, the key generation algorithm, KG , outputs a random, uniformly 

distributed, k-bit string or key K for the underlying SP R P family F, thereby specifying f = FK 

and 

f,1 F 

,1 = of l-bits to l-bits. If a separate second key is needed in a mode, then a new string or key K 

K 0 is generated by KG identifying f 0 = FK0 and f 0,1 = FK
,
0 

1 . The plaintext message to b e encrypted is 

partitioned into a sequence of l-bit blocks (padding is done frst, if necessary), x = x1 

xn. Throughout 

this paper, E is the exclusive-or operator and + represents modulo 2l addition. 

Stateless XCBC Mode (XCBC$) 

The encryption and decryption functions of the stateless mode, 

E, XCBC $FK (x) and D, XCBC $FK (y), are defned as follows. 
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function E, XCBC$f (x) 

l 

y
r0 

f f 0; 1g

0 

= f(r0); z0 

= f 0(r0) 

for i = 1 ; ; n do f 

zi 

= f(xi 

E zi,1) 

yi 

= zi 

+ i x r0 

g 

return y = y0jjy1y2 

yn 

r

function D, XCBC$f (y) 

Parse y as y0jjy1 

yn 

0 

= f,1(y0); z0 

= f 0(r0) 

for i = 1 ; ; n do f 

zi 

= yi 

, i x r0 

xi 

= f,1(zi) E zi,1 

g 

return x = x1x2 

xn 

Stateful-Sender XCBC Mode (XCBCC) 

The encryption and decryption functions of the stateful-sender mode, 

E, XCBCC 

FK (x; ctr) and D, X 

r
function E, XCBCCf (x; ctr) 

0 

= f(ctr); z0 

= f 0(r0) 

for i = 1 ; ; n do f 

zi 

= f(xi 

E zi,1) 

yi 

= zi 

+ i x r0 

g 

ctr0 f ctr + 1 

y = ctrjjy1y2 

yn 

return y 

CBCC 

FK (y), are defned as follows. 

r

function D, XCBCCf (y) 

Parse y as ctrjjy1 

yn 

0 

= f(ctr); z0 

= f 0(r0) 

for i = 1 ; ; n do f 

zi 

= yi 

, i x r0 

xi 

= f,1(zi) E zi,1 

g 

return x = x1x2 

xn 

Note that in the XCBCC mode the counter ctr can b e initialized to a known constant such as ,1 by 

the sender. ctr0 represents the updated ctr value. In both of the above modes the complexity is n + 2 

block-cipher invocations, where n in the length of input string x in blocks. 

Stateful XCBC Mode (XCBCS) 

Let IV be a random and uniformly distributed variable that is part of the keying state shared by the sender 

and receiver.
 

E, XCBCS $FK (x) and D, XCB
 

function E, XCBCS$f (x) 

l 

y
r0 

f f 0; 1g


0 

= f(r0); z0 

= IV + r0
 

for i = 1 ; ; n do f
 

zi 

= f(xi 

E zi,1)
 

yi 

= zi 

+ i x r0 

g
 

return y = y0jjy1y2 

yn
 

CS $FK (y), are defned as follows. 

r

function D, XCBCS$f (y) 

Parse y as y0jjy1 

yn 

0 

= f,1(y0); z0 

= IV + r0 

for i = 1 ; ; n do f 

zi 

= yi 

, i x r0 

xi 

= f,1(zi) E zi,1 

g 

return x = x1x2 

xn 

Note that in the XCBCS mode the shared IV value can b e generated randomly by KG and distributed 

to the sender and receiver along with key K thereby saving one block cipher invocation, or can b e can 

b e generated using key K by standard key-separation techniques thereby requiring an additional block 

encryption operation per key. In the former case, the complexity of the mode is exactly n + 1 block-cipher 

invocations and, in the latter, is asymptotically n + 1 block-cipher invocations. 

Chaining Sequence. The block chaining sequence is that used for the traditional CBC mode, namely 

zi 

= f(xi 

E zi,1), where z0 

is the initialization vector, xi 

is the plaintext and zi 

is the ciphertext of 
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block i; i = 1; ; n . In contrast with the traditional CBC mode, the value of zi 

is not revealed outside 

the encryption modes, and, for this reason, zi 

is called a hidden ciphertext block. The actual ciphertext 

output, yi, of the XCBC modes is defned using extra randomization, namely yi 

= zi 

+ i x r0, where 

i x r0 

is the modulo 2l addition of the random, uniformly distributed, variable r0, i times to itself; i.e., 

def 

i x r0 

= r0 

+ + r0. | vz ' 

i times 

Examples for why the randomization is necessary include those which show that, without randomization, 

the swapping of two zi 

blocks of a ciphertext message, or the insertion of two arbitrary but identical blocks 

into two adjacent positions of a ciphertext message, would cause the decryption of the resulting forgery 

with probability one whenever an bitwise exclusive-or function is used as the MDC (which is what we 

intend to use, since these functions are among the fastest known). Correct randomization sequences, such 

as i x r0, ensure that, among other things, collisions between any t wo zi 

values is negligible regardless of 

whether these values are obtained during message encryption, forgery decryption, or both. Note that this 

probability is negligible even though the randomization sequence ix r0 

allows low-order bits of some zi's to 

become known. (A detailed account o f w h y such collisions contribute to an adversary's success in breaking 

message integrity is provided in the proof of the XCBC$ mode; viz., Appendix A.) Examples of incorrect 

randomization sequences can be readily found; e.g., the sequence whereby each element i is computed as 

an bitwise exclusive-or of i instances of r0. 

Initialization. In stateless implementations of the XCBC modes r0 

f f0; 1gl ; i.e., r0 

is initialized to 

a random, uniformly distributed, l-bit value for every message. The value of r0 

is sent by the sender 

to the receiver as y0 

= f(r0). In contrast, in stateful-sender implementations, which avoid the use of a 

random number generator, a counter, ctr, is initialized to a new l-bit constant (e.g., -1) for every key K, 

and incremented on every message encryption. In stateful implementations, a random initialization-vector 

value IV that is shared by the sender and receiver is generated for every key K, and used to create a 

per-message random initialization vector z0. 

In all XCBC modes, the initialization vector z0 

is independent of r0. While non-independent z0 

and r0 

values might yield secure initialization, simple relationships between these values can lead to the discovery 

of r0 

with non-negligible probability, and integrity can be easily broken.3 Since we use z0 

in the defnition 

of function g(x) (see below), z0 

should also be unpredictable so that g(x) has a per-message unpredictable 

value. 

The choice of encrypting r0 

with a second key K 0 to obtain z0 

(i.e., z0 

= f 0(r0)) is made exclusively 

to simplify the both the secrecy [1] and the integrity proofs; e.g., such a z0 

is independent of r0 

and is 

unpredictable. To eliminate the use of the second key and still satisfy the requirements for z0 

suggested 

above, we can compute z0 

= f(r0 

+ 1) in stateless and stateful sender implementations, whereas in stateful 

implementations we compute z0 

= IV + r0, where the per-message r0 

can be generated as a random value, 

or as an encryption of ctr in the XORC mode. This eliminates the additional block-cipher invocations 

necessary in the stateless and stateful-sender modes at the cost of maintaining an extra shared state variable 

(IV). This choice still satisfes the requirements for z0. 

Generalization. The above method for protecting message integrity against existential forgeries in chosen-
plaintext attacks can be generalized as follows. Let the output ciphertext yi 

be computed as yi 

= zi 

op Ei, 

where op is the randomization operation, Ei 

are the elements of the randomization sequence, and zi 

the 

hidden ciphertext. The encryption mode I (1) must be secure in adaptive chosen-plaintext attacks with 

respect to secrecy, and (2) must use the input plaintext blocks xi 

to generate the input to f . The PCBC 

3 As a simple example illustrating why this is the case, let z0 

= r0 

+ 1, choose x1 

such that z0 

f x1 

= r0 

with non-negligible 

probability, and then compute y1 

, y0 

= r0. With a known r0 

, one can cause collisions in the values of zi 

and break integrity. 
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[12, 15], and the "infnite garble extension" [5] modes are suitable, but counter-mode/XORC and XOR$ 

are not (since they fail condition (2)). Operation op must b e invertible, so E, modular 2l addition and 

subtraction are appropriate. Elements Ei 

must be unpredictable such that collisions among zi's (discussed 

iabove) could only occur with negligible probability. Other sequences can be used. For example Ei 

= a xr0 

can b e used, where Ei 

is a linear congruence sequence with multiplier a, where a can b e chosen so that 

the sequence passes spectral tests to whatever degree of accuracy is deemed necessary. (Examples of good 

multipliers are readily available in the literature [11].) 

XCBC-XOR Modes. To illustrate the properties of the XCBC modes in integrity attacks, we choose 

g(x) = z0 

E x1 

E E xn 

for plaintext x = x1 

xn, where z0 

is defned as the initialization vector of the 

mode. In this example, block g(x) is appended to the end of a n-block message plaintext x, and hence 

block xn+1 

= z0 

E x1 

E E xn. For this choice of g(x), the integrity check performed at decryption 

becomes z0 

E x1 

E E xn 

= f,1(zn+1) E zn, where zn+1 

= yn+1 

, (n + 1) x r0; and zn 

= yn 

, n x r0. 

Message Padding. Standard padding methods (e.g., ASN.1), which typically require that a bit pattern 

and its length be added to the last block of a message to obtain an integer number of (padded) plaintext 

blocks, have the undesirable consequence that an additional block cipher invocation is required for the extra 

block of padding added for plaintexts of an integer numb e r of blocks. Alternatives that avoid standard 

padding are known [4], but they require use of an extra (shared secret) key  a somewhat less desirable 

alternative when maintaining the unpredictability of the redundant padding information added by a m o d e 

is not an operational goal. 

Known Padding Pattern. The goal of the frst padding option for the XCBC modes is two-fold: (1) 

avoid extra block-cipher invocations, and (2) avoid the use of extra keying material. Padding with a 

known pattern is performed as follows: (1) use a pattern that always starts with a "1" bit followed by 

the minimum numb e r o f "0" bits necessary to fll the last block o f plaintext [4]; (2) if the last block of a 

message is unpadded, use block g0(x) = z0 

E x1 

E E xn 

as the xn+1 

plaintext block, where z0 

is the 

bitwise complement o f z0; otherwise, use g(x) = z0 

E x1 

E E xn. 

0 0At decryption, the integrity check performs the exclusive-or of f,1(zn+1) E zn 

with x1 

E E xn, where 

x1
0 ; ; x n 

0 are the plaintext blocks obtained at decryption, and then compares the result with the z0 

computed during decryption; if this check fails, the result is compared with z0, the complement of z0 

computed at decryption, and only if this second comparison for equality fails the ciphertext-message 

decryption returns failure. If the the comparison check with z0 

passes, meaning that the message was 

padded at encryption, the padding pattern is checked, extracted (providing some extra confdence, if 

found) and removed. It follows that the decryption of unpadded (but unforged) messages would fail frst 

the frst equality c heck but not the second. Of course, the extra check w ould be required only for unpadded 

messages and forgeries. This padding scheme satisfes our goals at a modest cost; i.e., that of including 

padding bits in the ciphertext and an extra check for equality. 

Unpredictable Padding Pattern. The goal of the second padding option for the XCBC modes, in addition 

to (1) above, is to retain the unpredictability of the redundant information added by these modes to user 

input. This goal is set for pragmatic reasons, since these modes are secure with respect to chosen-plaintext 

attacks. It stems from the long-standing belief that a mode of encryption should avoid adding redundant 

information that provides an adversary additional conditions to verify the success of his attacks (e.g., 

key guessing) b e y ond those already available to him from knowledge of user input; e.g., in a ciphertext-
only attack, the adversary who knows nothing about the plaintext would beneft from added predictable 

redundancy by padding and integrity c hecks. 

In the XCBC modes, padding with an unpredictable pattern is performed as follows. Let Mask b e a 
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random and uniformly distributed block that that is part of the keying state shared by the sender and 

receiver. The Mask can b e generated and distributed along with the key or is can b e generated by any 

of the available standard methods (e.g., encrypt a constant with the shared secret key to initialize Mask). 

For each plaintext input whose last block is incomplete, fll the last block with the known bit pattern used 

in the Known-Padding-Pattern option above (i.e., the pattern that always starts with a "1" bit followed by 

the minimum number of "0" bits necessary to fll the last block of plaintext) Perform the bitwise exclusive-
or operation b e t ween the Mask and the flled last plaintext block. Use the result as the plaintext block 

xn 

in the computation of the xn+1 

= g(x) block. Use z0 

to compute g(x) for padded messages and z0 

for unpadded ones as in the Known-Padding-Pattern option above. At decryption, use the same integrity 

check as that used in the Known-Padding-Pattern option (defned above), and if the check for padded 

messages passes, perform the bitwise exclusive-or of the Mask and the recovered block x0 , and check and n

extract the known padding bit pattern from x0 before returning the plaintext to the user. n 

The stateless and stateful encryption modes I-g obtained by the use of schemes I = XCBC$, I = XCBCC, 

o r I = X CBCS with function g(x) = z0 

E x1 

E  E xn 

are denoted by X CBC$-XOR , X CBCC-XOR , and 

XCBCS-XOR respectively. 

Examples of Other Encryption Modes that Preserve Message Integrity. 

Recently, C.S. Jutla [13] proposed an interesting scheme in which the output blocks zi 

of CBC encryption 

are modifed by (i.e., bitwise exclusive-or operations) with a sequence Ei 

of pairwise independent elements. 

In this model, Ei 

= (i x IV 1 

+ IV 2)mod p, where IV 1; IV 2 

are random values generated from an initial 

random value r, and p is prime, and the complexity i s n + 3, where n is the length of the plaintext input 

in blocks. In contrast with C.S. Jutla's scheme, the elements of the XCBC sequence, Ei 

= ( i x r0)mod 2l , 

are not pairwise independent, and the complexity i s n + 2 for the stateless and stateful-sender cases, and 

n + 1 for the stateful case. Also, the performance of the required modular 2l additions is slightly better 

than that of mod p additions, where p is prime. However, the pairwise independence of C.S. Jutla's Ei 

sequence should yield a slightly tighter bound on the probability of successful forgery illustrating, yet again, 

a fundamental tradeof b e t ween performance and security. (The bound is tighter by a fraction of a lo g 2 

factor depending on the value of p, which w ould mean that the attack complexity is within the same order 

of magnitude of the XCBC bound viz., Section 5). 

More recently, P . Rogaway [19] has proposed other schemes that use interesting variations of non-independent 

and pairwise-independent elements for the Ei 

sequence, similar to the sequences presented in this paper 

and C.S. Jutla's, to achieve n + 1 complexity. Under the same assumptions regarding stateful and stateless 

implementations, C.S. Jutla's modes require an extra block enciphering over the XCBC and P. Rogaway's 

modes. We note that all modes for authenticated encryption include an extra block cipher operation for 

the enciphering of the exclusive-or MDC. 

Interleaved-Parallel or Pipelined Encryption. The choice of g(x) = z0 

E x1 

E E xn, allows 

the interleaved-parallel or pipelined implementation of the XCBC modes. Other non-cryptographic MDC 

functions g(x) would also allow such implementation, since they b e executed in a parallel or a pipelined 

manner (by defnition). This mode is useful when the numb e r of processors available for encryption and 

decryption in parallel is a priori known or negotiated. For example, for interleaved-parallel execution using 

(1)g(x), each plaintext message x is partitioned into L segments, x x(L) each of length ns, s = 1 ; ; L , 

after customary block-level padding (n.b., this L should not be confused with the output length of a PRF, 

(s)which i s t ypically denoted by L, also). Each segment, x ; s = 1 ; ; L , consists of one or more l-bit blocks, 

(s) (s) (s) (s)
and if g(x ) = z0 

E x1 

E E xns 

is used, then an additional l-bit block is included in each segment. 

Each segment is encrypted/decrypted in parallel on a separate processor. 
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In interleaved-parallel or pipelined implementations of the XCBC modes, the initialization and computation 

of the block chaining sequence is performed on a per-segment basis starting with a common value of r0, 

which is a random, uniformly distributed, l-bit value for every message. Also, the per-message value 

0 

is computed as y0 

f f(r0) in stateless implementations. The initialization of the block chaining 

(s) (s) (s)
sequence for message segment s can be r = r0 

+ s; z = f 0(r ), and the encryption sequence can be 0 0 0 

(s) (s) (s) (s) (s) (s)
z = f(x E z ); y = z + i x r . In stateful implementations ctr is updated to ctr + L after the i i i,1 i i 

0 

encryption of each message. (Other functions, not just addition modulo 2l, can be used for the computation 

(s) (s)
of the per-segment, block c haining sequence, and initialization sequence can be used for r0 

and z0 

.) 

The encrypted segments of a message are assembled to form the message ciphertext. Segment assembly 

encodes the numb e r of segments L, the length of each segment ns 

and, implicitly, the segment sequence 

in the message (e.g., all can be found in the ASN.1 encoding). If the segments of a message have diferent 

lengths, segment assembly is also synchronized with the end of each segment encryption or decryption 

within a message. 

At decryption, the parsing of the message ciphertext yields the message length, L, segment sequence 

number, s, and the length of each segment, ns. Message integrity is maintained both on a p e r segment 

and per message basis by performing the per-segment integrity c heck; if g(x) = z0 

E x1 

E E xn, the 

(s) (s) (s) (s) (s) (s) (s) (s)
per-segment check is z E x E E xns 

= f,1(z ns 

where z = y + 1) x r0 1 ns+1) E z ns+1 ns+1 

, (ns 0 

(s) (s) (s)
and zns 

= yns 

, ns 

x r0 

. Failure of any per-segment i n tegrity c heck, which also detects out-of-sequence 

segments and message-length modifcations, signals a message integrity violation. 

We illustrate an interleaved- parallel implementation of the stateless XCBC mode below. Stateful parallel 

schemes can b e implemented in a similar manner, using the same methods as those illustrated for the 

sequential implementation. 

Stateless Parallel XCBC Mode (ipXCBC$) 

The encryption and decryption functions of the stateless mode,
 

E, ipX CBC $FK (x) and D, ipX CBC $FK (y), are defned as follows.
 

function E, ipXCBC$f (x) 

(s)partition x into L segments x
each of length ns; 

lr0 

f f 0; 1g ; y0 

= f(r0) ; 

for segment s; s = 1 ; ; L; do f 

(s) (s) (s)
r = r0 

+ s; z = f 0(r )0 0 0 

for i = 1 ; ; n s 

do f 

(s) (s) (s)
z = f(x E z )i i i,1
(s) (s) (s)
y = z + i x r gi i 

0 

(s) (s)(s)y = y y gns1 

(1) (L)assemble y = y0jjy y ; 

return y. 

function D, ipXCBC$f (y) 

(s) 

r

parse y into y0 

and L segments y


each of length ns;
 

0 

= f,1(y0)
 

for segment s; s = 1 ; ; L do f
 

(s) (s)(s)Parse y as y1 

yns 

(s) (s) (s)
r = r0 

+ s; z = f 0(r )0 0 0 

for i = 1 ; ; n s 

do f 

(s) (s) (s)
z = y , i x ri i 

0 

(s) (s) (s)
x = f,1(z ) E z gi i i,1 

(s) (s)(s)x = x x gns1 

(1) (L)assemble x = x x ; 

return x. 

Incremental Updates of Encrypted Data. The segmentation of a message used for parallel and pipelined 

implementation of the XCBC modes can also b e used in sequential encryption of data structures (e.g., 

a fle, a message) whenever incremental updates of data structures are anticipated. Such segmentation 

enables the localization of the decryption, plaintext update, and encryption to single segments saving the 
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decryption and encryption of other segments unafected by the updates. Note that message integrity is 

retained after such incremental updates. 

Architecture-Independent Parallel Encryption. C.S. Jutla's recent parallel mode [13] requires that both the 

input to and output of the block cipher are randomized using a sequence of pairwise-independent random 

blocks. Our fully parallel modes achieve the same efect without using a sequence pairwise-independent 

random blocks. For these modes, it is sufcient t o randomize the input and output blocks of f using the 

same type of sequence. In this case, the probability of input or output collisions, which w ould be necessary 

to break security and integrity respectively, w ould remain negligible. An example is the stateful Extended 

Electronic Codebook-XOR encryption (XECBS-XOR ) mode, in which for index i; 1 : i : n + 1 ; n = jxj, 

the ciphertext block yi 

is obtained through the formulae: 

yi 

= f(xi 

+ ctr x R + i x R 

* ) + ctr x R + i x R 

* ; 8i; 1 : i : n; ctr : qe 

yn+1 

= f(xn+1 

+ ctr x R) + ctr x R + ( n + 1) x R 

* ; 

*where R;R  are two random, uniformly distributed and independent blocks each of l bits in length that 

are part of the keying state shared by the sender and receiver, and ctr is the counter that serves as message 

identifer. The counter ctr is initialized to 1 and increased by 1 on every message encryption up to qe, 

which is the bound of the number of allowable message encryptions (viz., Theorem 5 below). Note that the 

sequence of elements Ei 

= ctr x R + i x R* can be precomputed for multiple messages, can be computed 

incrementally, and in an out-of-order manner. 

To provide authentication, the last block is computed using the following formula for the function g: 

xn+1 

= g(x) = x1 

E E xn: 

This authenticated encryption mode achieves optimal performance, i.e., n + 1 parallel block cipher invoca-
tions, and has a throughput of a single block cipher invocation. The security of the XECBS-XOR mode 

with respect to confdentiality in an adaptive chosen-plaintext attack can b e demonstrated in the same 

manner as that used for the CBC mode [1]. 

For the XECBS-XOR encryption scheme proposed above, padding follows the similar conventions as those 

the XCBC-XOR modes to distinguish b e t ween padded and unpadded messages; i.e., use the following 

formula for the enciphering of the last block. 

yn+1 

= f(xn+1 

+ ctr x Z) + ctr x R + ( n + 1) x R 

* ; 

where Z = R is the bitwise complement of R and is used for unpadded messages and Z = R for padded 

messages. 

Stateless architecture-independent parallel modes and stateful-sender architecture-independent parallel 

modes can be specifed in the same manner as those for the XCBC modes; for example, R and R* can be 

derived from the l-bit random numb e r numb e r r0 

(e.g., R = f(r0 

+ 1) and R* = f(r0 

+ 2)), and, in the 

stateful-sender r0 

= f(ctr), where ctr is an l-bit counter initialized to a constant such a s ,1. 

In the modes thus obtained (and other related variants), there would not be any ciphertext chaining, and 

a priori knowledge of the number of processors would be unnecessary. 

As noted earlier, the sequence Ei 

= ctrxR+ixR* does not completely hide the low order bits of xi 

thereby 

enabling verifcation of key guesses by an adversary. Resistance to such attacks can b e implemented in 

a similar manner as that of DESX [18], if deemed necessary. However, adoption of modern block ciphers 

with long keys should reduce the need for this. 
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4 Defnition of the XECB Authentication Modes 

In this section, we introduce new Message Authentication Modes (MACs) that counter adaptive chosen-
message attacks [2]. We call these MACs the eXtended Electronic Codebook MACs, or XECB-MACs. The 

XECB-MAC modes have all the properties of the XOR MACs [2], but they do not waste half of the block 

size for recording the block identifer thereby a void doubling the number of block cipher invocations. Many 

variants of XECB-MACs are possible, and here we present stateless version, XECB$-MAC, a stateful-sender 

version XECBC-MAC, and a stateful version, the XECBS-MAC. 

Message Signing. In both the stateless and stateful-sender implementation, we generate a per-message 

random value y0 

that is used to randomize each plaintext block of a message x, namely xi; 1 : i : n; n = jxj, 

before it is fed to the block cipher function f , where f = FK 

is selected from a PRF family F by a key 

K, which is random and uniform. The result of the randomization is xi 

+ i x y0, and the result of 

block enciphering with f is yi 

= f(xi 

+ i x y0). The stateless mode initialization requires a random 

l 

y

numb e r generator to create the random block r0; i.e., r0 

f f0; 1g . Then y0 

= f(r0). Stateful-sender 

implementations avoid the use of the random number generator, and instead, uses a counter ctr, to create 

0 

directly, namely y0 

= f(ctr). The counter ctr is initialized by the sender on a per-key basis to a constant, 

such as ,1, and is maintained across consecutive signing requests for the same key K. 

For the purposes of simplifying the proofs, we made the following choices for the generation and use 

of random vector z0 

in both implementations: (1) an additional per-message unpredictable block z0 

is 

generated and treated as an additional last block of the message plaintext before it is also randomized and 

enciphered by f , namely xn+1 

= z0 

and yn+1 

= f(z0 

+ ( n + 1) x y0); and (2) we set z0 

= f 0(r0), where 

f 0 = FK0 is a PRF selected with the second key K 0 . Clearly, the generation of z0 

can be performed with 

the same key, K, by block enciphering a simple function of r0 

(e.g., f(r0 

+ 1)), and use of K 0 becomes 

unnecessary. 

y
The block cipher outputs, y1; ; y n; y n+1, are exclusive-or-ed to generate the authentication tag w = 

1 

E E yn 

Eyn+1. Alternative implementation options include the ones whereby the block cipher outputs, 

y1; ; y n; y n+1, are added modulo 2l , 1, or subtracted modulo 2l , 1, to generate the authentication tag. 

The modes output the pair (r0; w ) in the stateless mode, and (ctr; w ) in the stateful-sender mode. 

We include the stateless version and the stateful-sender version of the XECB modes below. 

Stateless XECB-MAC Mode (XECB$-MAC) 

function Sign-XECB$-MACf (x) 

lr0 

f f 0; 1g


y0 

= f(r0); z = f 0(r0)
0 

xn+1 

= z0 

for i = 1 ; ; n + 1 do f 

yi 

= f(xi 

+ i x y0) g 

w = y1 

E E yn 

E yn+1 

return (r0; w ) 

y
function Verify-XECB$-MACf (x; r0; w ) 

0 

= f(r0); z 0 

= f 0(r0) 

xn+1 

= z0 

for i = 1 ; ; n + 1 do f 

yi 

= f(xi 

+ i x y0) g 

w0 = y1 

E E yn 

E yn+1 

if w = w0 then return 1 

else return 0. 

Stateful-Sender XECB-MAC Mode (XECBC-MAC) 
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function Sign-XECBC-MACf (ctr; x ) 

0 

= f(ctr); z = f 0(y0)0 

xn+1 

= z0 

for i = 1 ; ; n + 1 do f 

yi 

= f(xi 

+ i x y0) g 

w = y1 

E E yn 

E yn+1 

ctr0 f ctr + 1 

return (ctr; w ) 

y
function Verify-XECBC-MACf (x; ctr; w ) 

0 

= f(ctr); z 0 

= f 0(y0) 

xn+1 

= z0 

for i = 1 ; ; n + 1 do f 

yi 

= f(xi 

+ i x y0) g 

w0 = y1 

E E yn 

E yn+1 

if w = w0 then return 1 

else return 0. 

Note that ctr0 represents the updated ctr value. 

The following stateful variant of the XECB modes (whose proof is presented in Appendix C) comes close to 

the optimal performance of any parallel MAC, namely n parallel block-cipher invocations and throughput 

equivalent of a single block-cipher invocation. 

Stateful XECB-MAC Mode (XECBS-MAC) 

*Let R;R  b e t wo random, uniformly distributed and independent blocks that are part of the keying state 

shared by the sender and receiver. 

function Sign-XECBS-MACf (ctr; x ) 

for i = 1 ; ; n do f 

yi 

= f(xi 

+ ctr x R + i x R*) g 

w = y1 

E E yn 

ctr0 f ctr + 1 

return (ctr; w ) 

function Verify-XECBS-MACf (x; ctr; w ) 

if ctr > qs 

then return 0 

for i = 1 ; ; n do f 

yi 

= f(xi 

+ ctr x R + i x R*) g 

w0 = y1 

E E yn 

if w = w0 then return 1 

else return 0. 

Note that ctr is initialized to 1, and ctr0 represents the updated ctr value. 

Message Tag Verifcation. For verifcation, an adversary submits a forgery x = x1 

xn 

and a forged 

pair (r0; w ) or (ctr; w ) depending upon the mode.4 Message x is then signed and an authentication tag 

w0 = y1 

E E yn 

E yn+1 

is generated. The algorithm outputs a bit that is either 1, if the forged 

authentication tag is correct, namely w = w0, or 0, otherwise. 

Message Padding. For the stateless and stateful-sender XECB-MAC schemes, padding follows the same 

conventions as those the XCBC-XOR modes to distinguish between padded and unpadded messages; i.e., 

the authentication tag generation and verifcation use z0 

for unpadded messages and z0 

for padded messages. 

For the stateful XECB-MAC scheme, padding follows the similar conventions as those the XCBC-XOR 

modes to distinguish between padded and unpadded messages; i.e., the authentication tag generation and 

verifcation use R for unpadded messages and R for padded messages. For all schemes, the padding pattern 

is the typical one; i.e., the pattern that always starts with a "1" bit followed by the minimum numb e r o f 

"0" bits necessary to fll the last block of plaintext. 

Properties of the XECB Authentication Modes 

1. Security. The XECB authentication modes are intended to b e secure in adaptive chosen-message 

attacks [2], and Theorems 3 and 4 below show the security bounds for the stateful-sender mode. The 

4 The forgery (x; r0; w ) or ( x; ctr; w ) are not a previously signed queries. Note also that the length n of the forged message 

need not be equal to the length of any signed message. 
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XECB modes, as well as all the other modes that use similar types of randomization sequences, have 

higher, but still negligible, upper bounds on the adversary's success in producing a forgery than those of 

the XOR-MAC modes. 

2. Concurrent Block-Cipher Invocations and Mode Throughput. The goal of the XECB-MAC modes is 

to allow the block-cipher (e.g., AES) computations on diferent blocks to b e made in a fully parallel or 

pipelined manner; i.e., to exploit any degree of parallelism or pipelining available at the sender or receiver 

without apriori knowledge of the number of processors available. 

We note that despite the fact that the throughput of a mode depends on the numb e r of block cipher 

invocations, and hence on the availability of enough parallel processing units, throughput also depends on 

how a mode uses those units. For example, the numb e r of block-cipher invocations in the stateless and 

stateful-sender XECB modes can b e reduced from n + 3 to n + 2 simply by eliminating the enciphering 

of block xn+1; e.g., the enciphering of the last plaintext block (i.e., n-th block) can b e changed to yn 

= 

f(xn 

E z0 

+ n x y0) (without afecting the proofs signifcantly). Nevertheless, the throughput of these 

modes is close to that of two sequential block cipher invocations, since the enciphering of y0 

precedes the 

parallel enciphering of the input plaintext blocks. In contast, in the stateful XECB mode, the numb e r o f 

block-cipher invocations is n, just as in the case of the PMAC [20] which is also a stateful mode. However, 

the throughput of the XECB modes is close to that of a single block-cipher invocation, as opposed to that 

of PMAC, which corresponds to that of two sequential block-cipher invocations since the tag is computed 

after n , 1 block cipher invocations regardless of the numb e r of processors available. The performance 

goal of n block-cipher parallel invocations and a throughput equivalent of a single block-cipher invocation 

appears to be a achievable with stateful MAC modes. 

3. Incremental Updates. The XECB-MAC modes are incremental with respect to block replacement; e.g., 

0a block xi 

of a long message is replaced with a new value xi. For instance, let us consider the stateful-
sender mode. Let the two messages have the same counter ctr; hence, the authentication tag of the new 

message, w0, is obtained from the authentication tag of the previous message, w, b y the following formula: 

0 0w = w E f(xi 

+ i x y0) E f(xi 

+ i x y0). The replacement property can be easily extended to insertion and 

deletion of blocks, and to the modes that use modular 2l , 1 addition or subtraction in the place of the 

exclusive-or of the block cipher outputs. 

4. Out-of-order Verifcation. The verifcation of the authentication tag can proceed even if the blocks of 

the message arrive out of order as long as each block is accompanied by its index and the frst block has 

been retrieved. 

5 Security Considerations 

In this section, we provide evidence for the security of the XCBC modes against both adaptive chosen-
plaintext and message-integrity attacks. We also present the security of the XECB modes in adaptive 

chosen-message attacks. 

We frst address the security (i.e., secrecy) of the XCBC$ mode against adaptive c hosen-plaintext attacks. 

The theorems and proofs that demonstrate that the stateful mode (XCBC) and the two-key variations are 

secure in a left-or-right sense [1] are similar to that for the XCBC$ mode and, therefore, will be omitted. 

The Lemma and Theorem below, which establish the security (i.e., secrecy) of the XCBC$ mode are 

restatements of Lemma 16 and Theorem 17 respectively, which are presented for the CBC mode in the full 

version of the Bellare et al. paper ([1]). The proof of the Lemma and Theorem are similar to those for the 
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CBC mode and hence are omitted. 

Lemma 1 [Upper bound on the security of the XCBC$ mode in random function model] 

Let XCBC $R b e the implementation of the XCBC$ mode with the family of random functions R(l; l ). 

Let A b e a n y adversary attacking XCBC $R in the left-or-right sense, making at most q0 queries, totaling 

at most {0 bits. Then, the adversary's advantage is  ! 

{02 {0 

def 

1 

AdvA
lr  : 6XCBC $ 

=
l2 

, 

l 2l 

: 

The following theorem defnes the security of the XCBC$ mode against an adaptive chosen-plaintext 

attack when the XCBC$ mode is implemented with a (q; t; E)-pseudorandom function family F . F is 

(q; t; E)-pseudorandom, or (q; t; E)-secure, if an adversary (1) spends time t to evaluate f = FK 

at q input 

points via adaptively chosen queries, and (2) has a negligible advantage bounded by E over simple guessing 

in distinguishing the output of f from that of a function chosen at random from R. 

Theorem 1 [Security of XCBC$ in Adaptive Chosen-Plaintext Attacks] 

Suppose F is a (t; q; E)-secure PRF family with block length l. There is a constant c > 0 such that for any 

t0 0 0number of queries qe 

totaling {0 bits of memory and taking time t0, the XCBC $(F ) is ( ; q ; { ; E 

0)-secure   
def /02 /0 

in the left-or-right sense, for {0 = q0l, t0 = t , c{0, and E0 = 2 E + 6XCBC $ 

where 6XCBC $ 

=
l2 

, 

l 2
1 

l 

. 

The XCBC$ and XCBC modes can easily be analyzed assuming F is a SPRP family (not a PRF family), 

since AES is an intended block cipher for these modes. Hence only needs to apply the results of Proposition 

8 of Bellare et al. [1] to the result of Theorem 1. A similar lemma and theorem hold for chosen-plaintext 

attacks in a real-or-random sense, as defned by Bellare et al. [1]. 

In establishing the security o f the XCBC$ mode against the message-integrity attack, let the parameters 

used in the attack b e bound as follows: qe 

: q0, since the XCBC$ mode is also chosen-plaintext secure, 

te 

+ tv 

: t, and {00 = {e 

+ {v 

: ql . Let the forgery verifcation parameters qv; { v; t v 

b e c hosen within the 

constraints of these bounds and to obtain the desired Pr [Succ].R 

f+F 

Theorem 2 [Security of XCBC$-XOR in a Message-Integrity Attack] 

Suppose F is a (t; q; E)-secure SPRP family with block length l. The mode XCBC$-XOR is secure against 

a message-integrity attack consisting of qe 

+ qv 

queries, totaling {e 

+ {v 

: ql bits, and taking at most 

te 

+ tv 

: t time; i.e., the probability of adversary's success is 

{v({v 

, l) qe(qe 

, 1) (qe 

+ 1) {v 

{v 

{v 

qv{e 

{e
Pr [Succ] : E + + + + (log2 

+ 3) + (log2 

+ 3) :R 

l22l+1 2l+1 l2l+1f+F l2l l l2l l 

(The proof of Theorem 2 can be found in Appendix A.) Note that parameters qe; { e; t e 

can be easily stated 

in terms of secrecy parameters (t0; q 

0; { 

0; E 

0) above by introducing a constant c0 defning the speed of the 

XOR function. 

Theorem 2 above allows us to estimate the complexity of a message-integrity attack.5 In a successful attack, 

R
Pr R 

[Succ] 2 (negligible; 1]. To estimate complexity, we set the probability o f success when f f P 

l to 

f+F 

5 Technically, the complexity of a successful integrity attack, and the bound of Theorem 2, should account for the success of 

a secrecy attack; i.e., the secrecy bound shown of Lemma 1 above (adjusted for the use of PRPs) should be added to the bound 

in Theorem 2. This is the case because, in general, in modes using the same key for both secrecy and integrity, a successful 

secrecy attack can break integrity and, vice-versa, a successful integrity attack can break secrecy. (This can be shown using the 

secrecy and integrity properties of the IG E mode; viz., http://csrc.nist.gov/encryption/modes/propos  e  dm  o  des.)  As suggested 

below, the addition of the secrecy bound would not afect the complexity of a successful integrity attack. 
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/the customary 1/2, and assume that the attack parameters used in the above bound, namely 

/e ; 

v , are of 

l l 

the same order or magnitude, namely 2ol, where 0  a  1. Also, since the shortest message has at least 

2ulthree blocks, qe; q v 

: b 3 

c. 

In this case, by setting 

qe(qe , 1) {v({v , l) (qe + 1) {v 

{v 

{v 

qv{e 

{e 

+1 

+ 

+1 

+ + (log2 

+ 3) + (log2 

+ 3) = 1 /2;
2l l22l l2l l2l+1 l l2l l 

+34 ol 3ol+11 we obtain (by ignoring the b:c function) the equation 22ol 6ol9 

+ 2 3 

= 2l , which allows us to 

estimate a for diferent v alues of l. (In this estimate, we can ignore the term in 2ol since it is insignifcant 

29 61compared to the other term of the sum.) For example, for l = 64 ; a � 64 

, for l = 128; a � 128 

, and for 

l = 256; a � 

124 Hence, this attack is very close to a square-root attack (i.e., a ! 

1 as l increases),256 

. 2 

and remains this way e v en is the secrecy bound of Lemma 1 (adjusted for PRPs) is added to the integrity 

bound. Thus the security p a yof of improved bounds is limited when using families of SPRPs. 

A variant of Theorem 2 can b e proved for the stateful modes. Furthermore, similar theorems hold for 

single-key stateless modes. The statement and proof for such theorems are similar to the statement and 

proof for the integrity theorem for the stateless mode, and hence, are omitted. 

The XECB-MAC modes are intended to be secure against adaptive c hosen-message attacks [2] consisting of 

up to qs signature queries totaling at most {s bits and using time up to ts, and qv verifcation queries totaling 

at most {v 

bits and using time at most tv. The security of the XECBC-MAC mode, when implemented 

with a PRF family, is established by the following theorem. (The restatement of this theorem in terms of 

a family of PRPs, such as AES, and the corresponding proof modifcations are pretty m uch standard.) 

Theorem 3 [Security of XECBC-MAC in an Adaptive Chosen-Message Attack] 

Suppose F is a (t; q; E)-secure PRF family with block length l. The message authentication mode (Sign-
XECBCf , Verify-XECBCf , KG) is secure against adaptive chosen-message (qs; q v) attacks consisting of 

qs + qv 

queries totaling {s + {v 

: ql bits and taking at most ts + tv 

: t time; i.e., the probability of 

adversary's success is   
{v 

{v 

qs{v 

{s 

{s 

{s
Pr [Succ] : E + (log2 

+ 3) + + qs + 2 qv + (log2 

+ 3) :R +1f+F l2l l l2l 2l l2l l 

The proof of this theorem is similar to that of Theorem 2 and is presented in Appendix B. 

We also present a theorem for the security of the XECBS-MAC mode. (The restatement of this theorem 

in terms of a family of PRPs, such as AES, and the corresponding proof modifcations are pretty much 

standard.) 

Theorem 4 [Security of XECBS-MAC in an Adaptive Chosen-Message Attack] 

Suppose F is a (t; q; E)-secure PRF family with block length l. The message authentication mode (Sign-
XECBCf , Verify-XECBCf , KG) is secure against adaptive chosen-message (qs; q v) attacks consisting of 

qs+ qv 

queries (qv 

: qs) totaling {s+ {v 

: ql bits and taking at most ts+ tv 

: t time; i.e., the probability 

of adversary's success is   
qv 

{v 

{v 

{s 

qs
Pr [Succ] : E + + (log2 

+ 3) + qv + (log2 

qs + 3) +R 

2l l 

+1f+F l2l+1 l 2l  
{s 

{s 

{s 

qv + (log2 

+ 3) : 

l l2l+1 l 

The proof of this theorem is similar to that of Theorems 2 and 3 and is presented in Appendix C. 
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A similar theorem can b e provided for the stateless message authentication mode. The complexity of an 

attack against XECB-MAC modes can be determined in a similar manner as that of an attack against the 

XCBC$-XOR mode. 

The security of the XECBS-XOR mode in a message-integrity attack is shown by the theorem bellow. 

Theorem 5 [Security of XECBS-XOR in a Message-Integrity Attack] 

Suppose F is a (t; q; E)-secure SPRP family with block length l. The mode XECBS-XOR is secure against 

a message-integrity attack consisting of qe 

+ qv 

queries (qv 

: qe), totaling {e 

+ {v 

: ql bits, and taking at 

most te 

+ tv 

: t time; i.e., the probability of adversary's success is 

{v({v 

, l) qv 

{v 

{v
Pr [Succ] : E + + + (log2 

+ 3) +R 

f+F l22l+1 2l l2l+1 l 

{e 

qe 

{e 

{e 

{e 

{e({e 

, l) 

qv 

+ (log2 

qe 

+ 3) + qv 

+ (log2 

+ 3) + : 

2l+1	 l2l+1 l22l+1l	 l l 

(The proof of Theorem 5 can be found in Appendix D). Note that maximum allowable values for qs 

and 

qe 

in Theorems 4 and 5 can be determined by setting the probability of successful forgery to a desired value. 
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Appendix A - Proof [Security of the XCBC$-XOR in a Message-Integrity Attack] 

pp	 p pNotation: Throughout this proof, the superscripts of variables x ; z ; y , and r0 

denote the plaintext, 

hidden ciphertext, ciphertext, and initial random value of a queried message p; 1 : p : qe, whereas the 

0i	 0i 0i(primed) variables x , z , y0i, and r0 

denote the plaintext, hidden ciphertext, ciphertext, and the initial 

random value of the i-th forged (i.e., unqueried) message, 1 : i : qv. The length of the plaintext of 
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0i 0message p is denoted by np 

= jxpj and that of forgery y by n = jx0ij blocks. (These lengths do not i 

include the last plaintext block that holds the value of the XOR function.) 

To fnd an upper bound on the probability of an adversary's success we (1) defne four types of events 

on which we condition the adversary's success, (2) express the upper bound in terms of the conditional 

probabilities obtained, and (3) compute upper bounds on these probabilities. Our choice and numb e r of 

conditioning events is motivated exclusively by the need to obtain a (good) upper bound for the probability 

of the adversary's success. Undoubtedly, other events could be used for deriving alternate upper bounds. 

To provide some intuition for the choice of conditioning events defned, we give examples of events that 

cause an adversary's success. (The reader can skip these examples without loss of continuity.) 

Examples of Adversary's Success. A way for the adversary to fnd a forgery y0 that passes the 

0integrity check g(x0) = xn+1, is to look for collisions in the input of f,1 , namely collisions of the (1) 

hidden ciphertext blocks generated during the decryption of a forgery, z0 ; 1 : s : n + 1 , and (2) ini-s

tialization block y0 (i.e., block 0 of the forged ciphertext). These blocks could collide either with blocks 0 

p py ; z ; 1 : p : qe; 1 : k : ni 

+1 obtained at encryption or among themselves. The following four examples 0 k

illustrate why such collisions cause an adversary's success. Other such examples, and other ways to fnd 

forgeries, exist. 

pExample 1  Collisions between blocks z0 and zs k 

Suppose that all hidden ciphertext blocks z0 obtained during the decryption of forgery y0 collide with s 

psome hidden ciphertext blocks z obtained at encryption. If this event occurs during forgery decryption, k 

we declare pessimistically that the adversary is successful. Why is the adversary successful? Among the 

forgeries that make this event true, some will decrypt correctly with probability one. For example, if any 

two of the hidden ciphertext blocks b e t ween position 1 and np 

of a queried message p are swapped, the 

decryption of the resulting hidden ciphertext will pass the integrity check g(x0) = x0 

n+1 

with probability 

one (viz., [15], Example 9.89, pp. 367-368, for a similar example). Thus, any forgery that generates such 

hidden ciphertext at decryption will pass this integrity c heck with probability one. 

Why is our criterion for adversary's success based on such a collision event pessimistic? Among the forg-
eries that make this event true, some will decrypt correctly with negligible probability. These forgeries 

include truncations of the ciphertext of already queried messages.6 For truncations, the integrity check 

cannot pass with probability greater than 1/2l (and for this reason we can focus on other types of forgeries 

for the rest of this proof). 

Example 2  Collisions among the z0 blocks s 

Suppose that two hidden ciphertext blocks z0 and z0 obtained during forgery decryption do not collide with s t 

any hidden ciphertext blocks obtained during encryption, but collide with each other. If this event occurs 

during forgery decryption, we declare pessimistically that the adversary is successful. Why is the adversary 

successful? Among the forgeries that make e v ent true, some will decrypt correctly with probability one. For 

6 0 p 0 p 0 0Let the forged ciphertext y be a truncation of ciphertext y obtained at encryption; i.e., ys 

= ys 

; 8s; 0 : s : n +1 ; jy j = 

0 0 0 0 n + 1 and n  n  p, i.e., n + 1 : np. The condition n + 1 : np 

(due to truncation) implies that all the plaintext blocks 

p p 0 p 0 p 0 x ;   ; x  are constants. In this case, zs 

= zs 

; 8s; 0 : s : n 

0 + 1 and thus xs 

= xs 

; 8s; 0 : s : n + 1 . The integrity c heck, 1 n0 +1 

p p p p 0 0 

p p
z0 

f x1 

f   f  x
n0 

f x
n0 +1 

= 0 ; is the exclusive-or of a random and uniformly distributed variable z0 

= f 

0(r0) = f 

0(r0 

) = z0 

, 

� Rl;l p p p p p p 1where f 

0 R , and constant plaintexts x ;   ; x  . Hence, Pr [z f x f   f  x f x = 0] = 1 n0 +1 0 1 n0 n0 +1 2l 

: 
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example, if any t wo identical blocks never seen among the hidden ciphertext blocks obtained at encryption 

are inserted into two adjacent positions b e t ween 1 and np 

of the hidden ciphertext of message p (i.e., 

s s+1; 1 : 

= x
s n p 

, 1), the decryption of the resulting hidden ciphertext will pass the integrity c heck z = z
g(x0) with probability one (viz., [15], Example 9.89, pp. 367-368, for a similar example). Thus, n+1 

any forgery that generates such hidden ciphertext blocks at decryption will pass this integrity c heck with 

probability one. 

Why is our criterion for adversary's success based such a collision event pessimistic? Among the forgeries 

that make this event true, some will decrypt correctly with negligible probability. For example, consider 

forgeries that cause an odd number of identical hidden ciphertext blocks to be generated during decryption. 

Suppose these blocks have the following properties: (1) they do not collide with any hidden blocks obtained 

iat encryption, (2) they do not collide with any initialization blocks y0; 1 : i : qe, obtained at encryption, 

(3) they do not collide with the initialization block y0 

of the forgery, and (4) they appear between positions 

1 and np 

+ 1 of the hidden ciphertext of queried message p obtained at encryption. Forgeries that produce 

such blocks during decryption cannot pass the integrity c heck with probability greater than 1/2l . This is 

the case because the decryption of these identical hidden blocks produces random, uniformly distributed 

0 

plaintext blocks that are independent o f any other plaintext blocks in g(x0) 0 and can only cancel = xn+1 

each other out in pairs under the exclusive-or operation. 

0 

0.The next two examples refer to collision events of the initialization block y These can lead to forgeries 

that satisfy the conditions of the events defned in Examples 1 and 2 above, and hence such collisions 

contribute to an adversary's success. 

Example 3 Collisions between blocks y0 

0 

and zp 

k+1 

Suppose that, during the decryption of forgery y0, block y0 

0 

collides with some hidden ciphertext block 

0 

0 

= zp 

k+1obtained during encryption. Let y ; 1 : p : qe; 1 : k : np. This means that the lower order bits 

0) 

chosen. In (pessimistic) case the entire r

00 f,1(y p p p pE z can b e predicted (at least) to the same extent as those of z , since xof r is=
 = x0 k+1 k+1k k
0 

0 

is predicted, the adversary's forgeries can satisfy the collision 

events of Examples 1 and 2 above. 

piExample 4 Collisions between blocks y and y0 0 

Suppose that an adversary fnds a collision b e t ween the initialization blocks of two ciphertext messages 

ii and p obtained at encryption, namely y0 

and yp, and chooses the initialization block of the forgery y0 

e y0 

0 

= yi 

0. If the adversary can fnd such a collision event at encryption, the adversary can also fnd bto 

forgeries that satisfy the collision events of Example 1 at decryption. For example, the adversary can 

create a ciphertext message that has not been seen before (i.e., a forgery) by mixing the blocks of two 

ciphertext messages obtained at encryption whose initial ciphertext blocks collide; e.g., ciphertext block 

0pi i= y pi6
 6
of messages i replaces ciphertext y of message p, where y i ; 1 : i; p : qe,= p; ni 

: np
1 : k : ni. 

Conditioning Events. To compute an upper bound on the probability of successful forgery, w e c hoose 

four conditioning events based on collisions in the input of f,1 . Intuition for the choice of events is provided 

by Examples 1 4 above. 

For each verifcation query (or forgery) y0i , 1 : i : qv, w e defne two t ypes of collision events, Ci 

and Di, 

that refer to the hidden ciphertext blocks z0i obtained during forgery decryption. s 

;
y = y = y0 0 0k kk 
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0iEvent Ci 

includes all the instances when the hidden blocks z of forgery y0i collide either with initialization s 

p pblocks y or with some hidden ciphertext blocks z generated during encryption, where 1 : p : qe; 1 :k 

k : np 

+ 1 . To defne event Ci 

formally, let S b e the the union of all the yp 

0 blocks and all the hidden 

pciphertext blocks z produced at encryption: k 

p pS = fy ; 1 : p : qeg  f  ; 1 : p : qe; 1 : k : np 

+ 1 g:z0 k

Also let Zi 

be the collection of hidden ciphertext blocks z0i generated during the decryption of the arbitrary 

0i

The second type of collision event defned for the arbitrary forgery y ; 1 : i : qv, refers to collisions 

forgery y ; 1 : i : qv, that do not collide with blocks of S: 

Zi 

= fzs 

0i; 1 : s : ni 

0 + 1 ; z 

0i 

s 

2/ Sg: 

Hence, event Ci 

(Collision) is defned by: 

Ci 

: Zi 

= ;; 

i.e., Zi 

is empty; or, equivalently, Ci 

: Zi 

� S. 

0i

0i 0i 0 0iamong blocks y ; z ; 1 : s : n + 1 where z 2 Zi, and is denoted by Di 

(not distinct) below. This event 0 is s 

is defned in terms of its complementary event Di 

(distinct), which states that there is at least a hidden 

0i 0i 0i 72 Zi 

that does not collide with any other hidden block z 2 Zi 

or with yblock z It is clear that this .
0ts 

defnition makes sense only when Zi 

6 Formally i Zi 

6= ;. , f = ;, 

0i 0 0i 0i 0i 0 0i 0i = z = s; 1 : t : n = yDi 

: 9z 2 Zi; 1 : s : n 6
 ; 8z 2 Zi; t 6 6
1
 1 and z+
 :
 +
 :
z 0i it ts s s 

The third type of collision event for the arbitrary forgery y0i; 1 : i : qv, which is denoted by Ii 

below, 

0iincludes all the instances when the initialization block y collides with some hidden ciphertext blocks 0
pgenerated during encryption (i.e., z ; 1 : p : qe; 1 : k : ni 

+ 1). Formally, e v ent Ii 

is defned by: k

0i p2 S , fIi 

: y ; 1 : p : qeg;y0 0

or, equivalently, 

0i p2 fIi 

: y ; 1 : p : qe; 1 : k : np 

+ 1 g;z0 k

The fourth type of collision event, denoted by E below, defnes collisions among the initialization blocks 

(i.e., block 0 of the ciphertext) generated at encryption. (Hence, this collision event is independent of the 

forgery y0i.) Formally, this event is defned as 

i pE : y ;
= y0 0

where i 6= p; 1 : i; p : qe. 

Note 0: Events denoting collisions in the inputs to f during encryption, such a s those used in the proofs 

of Lemma 1 and Theorem 1, can also allow an adversary to produce a successful forgery. For example, 

collisions in the input to f during the encryption of a message p; 1 : p : qe, cause hidden ciphertext 

pblocks generated during encryption to collide, thereby leading to the discovery of r ; 1 : p : qe. This0

would break both integrity and secrecy. To account for these events, we could condition on them (in a 

similar manner as that used for event E below) and add the bound provided by Lemma 1 (adjusted for the 

R
use of f f P 

l) to the fnal bound. Technically, this would enable us to assume that an adversary could 

7 0i 0i 

p pRecall that hidden ciphertext blocks zs 

; z t 

2 Zi 

do not collide with any zk 

or with any y0 

obtained during encryption, 

where 1 : p : qe; 1 : k : np 

+ 1. 
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p pnot discover r0 

; 1 : p : qe, and that r0 

are random, uniformly distributed and independent of each other. 

For the sake of brevity, w e make this assumption below without actually conditioning on collision events in 

R 

the input to f at encryption (for the reasons discussed in the estimation of the complexity of a successful 

integrity attack following the statement of Theorem 2). 

Note 1: Other events than the four defned above could cause an adversary's forgery y0i to pass the integrity 

check g(x0i) = x0i However, Claim 1 below makes it clear that the success of such a forgery could only ni+1. 

occur with probability no greater than 1/2l . 

p0iNote 2: Another collision event in the input of f,1 , y0 

= y0 

; 1 : i : qv; 1 : p : qe, can b e caused 

simply by the adversary's choice of the initial forgery block. Unlike the four events defned above (and 

illustrated by Examples 1 4), the occurrence of this collision event cannot cause an adversary's success 

in the absence of other collision events. Nevertheless, the occurrence of this event is accounted for in the 

proof; viz., Proof of Claim 3 below. 

Upper bound on the Probability of Successful Forgery. Let F b e a SPRP family, P 

l be the set 

Rl, and f f P 

l denote the random selection of f and f,1 from P 

l 

+P l
of all permutations on f0; 1g . Let S 

f 

represent all the ciphertext blocks produced at the encryption of the qe 

queries (viz., the defnition of S 

R
used for collision events above) when the XCBC$-XOR scheme is implemented with f f P 

l; i.e., 

p p p 

0 

); 1 : p : qe
+P l
RS
 = ff(r f f(x E z ); 1 : p : qe; 1 : k : np + 1 g:g ,1k kf 

R
f P 

l and S 

k l le defne the fnite family of random functions GS 

: f0; 1g x f 0; 1g ! f 0; 1gFor any f , w 

+P l 

whose members are f; f , with f defned as: 

R 

f 

f =
 

8{
: 

f,1(t); t 2 S R 

+P l 

v(t); t 2 f 0; 1g

f 

;
Rl f Rl;l  , S
 ; vR 

f+P l 

Rl l lwhere Rl; is the set of all functions from f0; 1g to f0; 1g

R 

f GS 

the random selection of 

f and f from GS. 

The family of functions GS 

behaves exactly like P 

l when the plaintext blocks input to f and ciphertext 

blocks input to f,1 are those generated during the encryption of any adversary's qe 

chosen-plaintext 

+P l 

. We denote by f 

lqueries, and behaves exactly like Rl; during the decryption of any ciphertext block not in S .
 

f 

Note that the family GS 

is well-defned for any message-integrity attack because, by defnition (viz., Section 

2), in any such attack, all qe 

encryption queries precede all qv 

forgery verifcation queries. Thus S andR 

+P l 

f are completely determined before any o f t h e qv 

forgery verifcation queries are possible, whose processing 

f 

would require block decryption with f . (Also note that we allow qe 

= 0 and, in this case, S = ; andR 

R 

+P l 

f = v.)
 

For the balance of this proof, we use the result of Fact 1 below (whose proof can be found at the end of
 

R R
this appendix) that provides the reduction from f f F to f f GS. 

Fact 1 

(a) 

+P l 

f 

P
 r R [Succ] : E + P r [Succ]: 

f+F f 
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(b) 

{v({v 

, l) 

+P 

l
RP
 [Succ] : P [Succ] + :
r r R

l22l+1f f+GS 

Fact 1 reduces the problem to fnding an upper bound for P [Succ]. Unless we state otherwise, as-r 

f 

R 

+GS 

R
sume that f f GS 

(and drop this subscript from P r 

f 

[Succ].)R 

+GS 

To compute an upper bound for the probability o f successful forgery, Pr [Succ], we condition on event E 

frst, since this event does not depend on the forgery y0i . Using standard conditioning, we obtain 

Pr [Succ] : Pr [E] + Pr [Succ j E]: 

Since event E is equivalent to the event that at least a collision happens when qe 

balls are thrown at 

random in 2l buckets [2], 

P r [E] : 

qe(qe 

, 1) 

2l+1 

: 

To fnd an upper bound for P r [Succ j E], we use the defnition of adversary's success (viz., the attack 

defnition), which states that at least one forgery (and verifcation query) y0i succeeds; i.e., there exists an 

index i; 1 : i : qv 

such that g(x0i) = x0i Hence, by union bound, +1.0 

i
n

qv X 

[Succ j E] : Pr [g(x 

0i) = x 

0i 

0 

i
+1 

j E]:P
 r n
i=1 

To fnd an upper bound for the probability o f decrypting a single, arbitrary (non-truncation) forgery y0i 

0i) 

0i= x 0 

i
+1 

j E], we condition on event (Cicorrectly given E, namely for Pr [g(x or Di). Using the total 

n

probability formula we obtain: 

0i 0i 0i 0ij E] j E and (Ci 

or Di)]Pr [Ci 

or Di 

j EPr [g(x )
 Pr [g(x )
 ] +
= x n0 

i
+1 

=
 = x 0 

i

0 

i

+1n

0i 0i j E and (Ci 

and Di)]Pr [Ci 

and Di 

j E]:P r [g(x )
 = x +1n

Hence,8 

0i 0i 0i 0ij E] : Pr [Ci 

or Di 

j E 0 

i
+1 

j E and Ci 

and Di]:P r [g(x )
 ] + Pr [g(x )
= x n0 

i
+1 

= x n

However, both event Ci 

and event Di 

depend on the event Ii 

(viz., Example 3 above). Hence, to compute 

Pr [Ci 

or Di 

j E] w e condition on event Ii 

and, using the total probability formula, we obtain: 

Pr [Ci 

or Di 

j E] = Pr [Ci 

or Di 

j E and Ii]Pr [Ii 

j E] + Pr [Ci 

or Di 

j E and Ii]Pr [Ii 

j E] 

: Pr [Ii 

j E] + Pr [Ci 

or Di 

j E and Ii]: 

Furthermore, 

Pr [Ci 

or Di 

j E and Ii] = Pr [Ci 

or Di 

j Ci 

and E and Ii]Pr [Ci 

j E and Ii] 

+Pr [Ci 

or Di 

j Ci 

and E and Ii]Pr [Ci 

j E and Ii] 

: Pr [Ci 

or Di 

j Ci 

and E and Ii] + Pr [Ci 

j E and Ii] 

= Pr [Ci 

j E and Ii] + Pr [Di 

j Ci 

and E and Ii]; 

8 This also follows from our pessimistic assumption that if event ( Ci 

or Di) is true, then the adversary has broken integrity. 
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since event [ Ci 

or Di 

j Ci 

and E and Ii] is equivalent t o e v ent [ Di 

j Ci 

and E and Ii]. 

Combining the results of the last three inequalities, we obtain: 

0i 0i 0i 0ij E] j E and Ci 

and DiPr [g(x )
 Pr [g(x )
 ]
:
 +
= x = x0 0+1 +1n n
i i

Pr [Ii 

j E] + Pr [CijE and Ii] + Pr [Di 

j Ci 

and E and Ii]: 

The probabilities that appear at the right side of this inequality are bounded as shown in the following 

four claims whose proofs are included below. (Note again that forgeries based on truncations of ciphertext 

messages obtained at encryption are not included in any of the claims below. All these claims refer to a 

0isingle, arbitrary (non-truncation) forgery y ; 1 : i : qv.) 

Claim 1 

0i 0i 

1 

Pr [g(x )
 j E and Ci 

and Di] : :
= x 0+1n 2li

Claim 2 

P r [Ii 

j E] : 

1 

2l 

{e 

2l 

log2 

{e 

l 

+ 3 : 

Claim 3 

P r [CijE and Ii] : 

(n0 

i 

+ 1 

2l 

) qe 

+ 

1 

2l 

{e 

2l 

log2 

{e 

l 

+ 3 : 

Claim 4 

P r [Di 

j Ci 

and E and Ii] : 

n0 

i 

2l+1 

(log2 

n 

0 

i 

+ 3 ) + 

n0 

i 

+ 

2l 

1 

: 

Note that if the maximum length m of the encrypted messages is known, the log2 

/e 

l 

term of Claims 2 and 

3 can be replaced with log2 

m. 

Further in this proof as well as in the proofs of Claims 2 4, we use the following three facts, whose proofs 

can be found at the end of this appendix. 

Fact 2 

For any 1 : i : 2l , 1, let m b e defned by i = d x 2m, where d is odd. If r0 

is random and uniformly 

distributed, then for any constant a, 

1 

Pr [i x r0 

= a] : : 

2l,m 

Fact 3 

For any N > 1, let m be defned by a = d x 2m, where 1 : a : N , 1 and d is odd. Then 

N,1 X N , 1 

2m : (log2(N , 1) + 3): 

2 

a=1 

Fact 4 Pqe 

/eIf for any p; 1 : p : qe; n p 

> 0, and if p=1(np 

+ 1) : 

l 

, then, 

qe X {e 

{e
(np 

+ 1) log2(np 

+ 1) : log2 

;
l l 

p=1 
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and, further, if m = max(np 

+ 1), then 

qe X {e
(np 

+ 1) log2(np 

+ 1) : log2 

m: 

l 

p=1 

Note that a similar relation is obtained if the summation is done for the verifcation queries, i.e., 

qv X {v 

{v
(ni 

+ 1) log2(n 

0 0 1)
 :
 log2+
 ;
i l l 

i=1 

and, further, if m0 = max(n0 

i 

+ 1), then 

qv X {v 

0 

i 

+ 1) log2(n 

i=1 

By Claims 1 4, the probability of success given E for a single, arbitrary (non-truncation) forgery is 

n +i 

0 0 0:(n 1)
 log2 

m:
+
i l 

0 

Hence, the probability of adversary's success when he has up to qv 

verifcation queries totaling at most {v 

bits and using up to tv 

time is bounded by 

qv X 

0i 0i 

(n + 1) qei: + + 

01
 1 {e 

{e 

3{e 

n0i 0i 0ij E]Pr [g(x )
 log2 

(log2 

n 3)
+
 +
 +
 +
= x 0 i+1 2l+12l 2l 2l 2ln l l li

0(n + 1)(qe 

+ 1)i 

0 1 {e 

{e 

3{en 0i (log2 

n 3)
 log2+
 +
 +
 +
 :
=
 i2l+12l 2l l l l 

j E]Pr [Succ] : Pr [E] + Pr [g(x )
 = x 0+1n
i

i=1 

qv qe(qe 

, 1) 

X 00(n + 1)(qe 

+ 1)i 

1 {e 

{e 

3{en 0i (log2 

n 3)
 log2:
 +
 +
 +
 +
 +
i2l+1 2l+12l 2l l l l 

i=1 

: 

qe(qe 

, 1) 

2l+1 

+ 

{v(qe 

+ 

l2l 

1 ) 

+ 

{v 

l2l+1 

(log2 

{v 

l 

+ 3 ) + 

qv 

2l 

{e 

l 

log2 

{e 

l 

+ 

3{e 

l P
qvbecause i=1(n
/v0 

i 

1)
 and:
+
 

l 

qv X 

qv X0 0n + 1i3 ) (log2(n 

{v 

{vn 0 0i (log2 

n 1) + 3)
 :
 (log2 

3)
+
 +
 +
i i2l+1 2l+1 l2l+1 l 

i=1 i=1 

by F act 4. 

R
f F is bounded by: 

{v({v 

, l) qe(qe 

, 1) {v(qe 

+ 1) {v 

{v 

qv 

{e 

{e 

3{e 

Furthermore, by using Fact 1, the probability of adversary's success when f

P
 r 

f 

R 

+F 

[Succ] : E + (log2 

3)
 log2+
 +
 +
 +
 +
 +
 :
 

l22l+1 2l+1 l2l+1l2l 2l ll l l 

Also, if the maximum length m of the encrypted messages is known, the last term of the above bounds can 

/e 

3/ebe replaced with 

qv log2 

m + , and if the maximum length m0 of the decryption queries is known, 

2l l l 

the next to the last term of the above bounds can be replaced with 

/v (log2 

m0 + 3). 

l2l+1 
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The parameters of the attack are bounded as follows: qe 

: q0, since the scheme is also supposed to b e 

chosen-plaintext secure, te + tv 

: t, and {00 = {e + {v 

: ql . The forgery verifcation parameters qv; { v; t v 

can be chosen within the constraints of these bounds and the desired Pr [Succ]. utR 

f+F

Proofs of Claims 1-4 

0i; 1 : i : qvNotation: Recall that Claims 1 4 a b o ve refer to a single, arbitrary (non-truncation) forgery y . 

Hence, to simplify notation in the proof of these claims, we drop the forgery index i from the events 

Di; C i; I i, and simply use D ; C ; I for these events. We also drop the forgery index i from the collection Zi 

and use Z instead. Furthermore, we drop the prime and forgery index i from the ciphertext y0i, hidden 

0i 0i 0ciphertext, z0i, plaintext x , r0 

, and the length n . Hence, when we refer to the (single) forgery, we use i

the variables y, for forgery ciphertext, x for forgery plaintext, z for the hidden blocks of forgery y, y0 

for 

the initialization block of forgery y (and r0 

for the decryption of the initialization block y0), and n for the 

length of x. Superscripts continue to identify encryption queries. In the proof of Claims 1 4, we use the 

notation Pr A[ : ] = Pr [ : jA], where A is an arbitrary event. 

Proof of Claim 1 

If C is true, then Z is not empty. For any zs 

2 Z, 

xs 

= f(zs) E zs,1 

Since zs 

does not collide with any hidden blocks obtained at encryption, and event ( C and D) is true (i.e., 

there is at least one hidden block zs 2 Z by event C that does not collide with another hidden ciphertext 

block zt 

2 Z; s  6= t or with y0 

by event D), then f(zs) = v(zs) is uniformly distributed and independent o f 

f Rl;lanything else (since v 

R
); i.e., independen o f a n y other f(zk); z 6 t of ant k 

2 Z, k = s, and independen y 

zk; 0 : k : n + 1 . Hence, the corresponding plaintext block xs 

is uniformly distributed and independent 

of anything else. Thus, 

g(x) E xn+1 

= z0 

E x1 

E E xn E xn+1 

is random and uniformly distributed, and hence: 

1 

Pr [g(x) E xn+1 

= 0 j E and C and D] = Pr [g(x) = xn+1 

j E and C and D] : : 

2l 

ut 

Proof of Claim 2 

p pEvent I : y0 

2 S , f y0 

; 1 : p : qeg = fz ; 1 : p : qe; 1 : k : np + 1 g is equivalent to the union of all k
ppossible events y0 

= z ; 1 : p : qe; 1 : k : np + 1 . Hence, by union bound, k

n +1qe pX X 

pPr [I j E] : Pr [y0 

= z j E]:k 

p=1 k=1 

pWe determine an upper bound for Pr [y0 

= z j E] based on k 

p p p p py0 

= z , y0 

= yk , k x r , k x r = yk , y0:k 

0 0 
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pIn this expression, r0 

is random and uniformly distributed, and from the defnition of event E, if E is true, 

p	 pthen r0 

is random and uniformly distributed. Hence, since yk 

, y0 

is a known constant, by F act 2, 

1p	 p pPr [y0 

= z j E] = Pr [k x r = yk 

, y0 

j E] : ;k 

0	 2l,m 

where the exponent m is defned by k = d x 2m and d is odd. Hence, for each p; 1 : p : qe, from this and 

Fact 3 with N , 1 = np 

+ 1 and a = k, 

np+1	 np+1 X 

p 

1 

X 1 np 

+ 1 

Pr [y0 

= z j E] : 2m : (log2(np 

+ 1) + 3) :k 2l 2l 2 

k=1	 k=1 

Since 

Pq
p
e 

=1(np 

+ 1) : 

/
l 

e by the defnition of n + p and of the attack, we obtain 

qe 

np+1	 qe X X 

p 

1 

X np 

+ 1	 1 {e 

{e
Pr [I j E] : Pr [y0 

= z j E] : (log2(np 

+ 1) + 3) : log2 

+ 3 ;k 2l 2	 2l 2l l 

p=1 k=1	 

p=1 

by F act 4. Further, if m = max(np 

+ 1), then Pr [I j E] : 

1 

/e (log2 

m + 3), also by F act 4. ut
2l 2l 

Proof of Claim 3 

Below w e use the notation that Pr A[ : ] = Pr [ : jA], where A is an arbitrary event.
 

C is equivalent to the event that every hidden ciphertext block obtained during decryption is found among
 

pthe hidden ciphertext blocks obtained during encryption or among the y0 

blocks obtained at encryption. 

This implies that for any s; 1 : s : n + 1 : Pr [C] : Pr [zs 

2 S] by union bound. Since,
I and E I and E

p	 pS = fy0 

; 1 : p : qeg f z ; 1 : p : qe; 1 : k : np 

+ 1 g, it follows that, by union bound, k

pPr [zs 

2 S] :	 Pr [zs 

2 f y0 

; 1 : p : qeg]I and E	 I and E
p+ Pr 

I	 and E
[zs 

2 f zk; 1 : p : qe; 1 : k : np 

+ 1 g]: 

pFor the frst term, for any s; 1 : s : n + 1 , the event zs 

2 fy0 

; 1 : p : qeg is the union of all collision 

pevents zs 

= y0 

; 1 : p : qe. Hence, 

qe X 

p	 pPr [zs 

2 f y0 

; 1 : p : qeg] : Pr [zs 

= y0 

]:
I and E	 I and E

p=1 

pBut zs 

= ys 

, s x r0 

by the scheme defnition, and hence s x r0 

= ys 

, y0 

. To compute Pr [s x r0 

= 

I and E
pys 

, y0 

], we use the following claim, whose proof can be found at the end of this appendix: 

Claim 3.1 

p p pLet y y b e a queried message, and y = y0y1 

b e a forged ciphertext. If event I is true, 0 

y1 np+1	 

yn+1 

p	 pthen r0 

is random and uniformly distributed. Furthermore, if y0 

6= y0 

, then r0 

is also independent o f r0 

. 

Since event I is true, it follows that r0 

is random and uniformly distributed (by Claim 3.1 above). Also, 

event I and E implies that r0 

is random and uniformly distributed by the defnition of event E. Hence, by 

Fact 2, 

1p[s x r0 

= ys 

, y0 

] : ;P r I and E	 2l,m 
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where m is defned by s = d x 2m and d is odd. Furthermore, m : log2 

s : log2(n + 1), since s : n + 1. 

Hence, 2m : n + 1, and 

n + 1pPr [s x r0 

= ys 

, y0 

] : :I and E 2l 

Hence, for any s; 1 : s : n + 1: 

qe 

p 

X n + 1 (n + 1) qe
Pr [zs 

2 f y0 

; 1 : p : qeg] : = :
I and E 2l 2l 

p=1 

pTo compute an upper bound for the second term, namely on Pr [zs 

2 fz ; 1 : p : qe; 1 : k :
I and E k

np 

+ 1 g], we are free to choose a hidden ciphertext block a t index j of forgery y, namely zj , and then we 

ponly need to show that Pr [zj 

2 fz ; 1 : p : qe; 1 : k : np 

+ 1 g], is bounded. (This is the case I and E k

because the bound must be true for any s; 1 : s : n + 1.) 

Thus, the balance of the proof of Claim 3 consists of two parts. In the frst part, we partition the space 

of forgeries that are not truncations into three complementary types and choose a zj 

(and hence, index 

pj) for each type. In the second part, we fnd an upper bound for the probability Pr 

I and E
[zj 

2 f zk; 1 : 

p : qe; 1 : k : np 

+ 1 g] for each of the chosen zj's. Hence, the maximum of these three upper bounds 

prepresents the upper bound for Pr 

I and E
[zj 

2 f zk; 1 : p : qe; 1 : k : np 

+ 1 g] for all forgeries that are 

not truncations. 

Part 1. Finding index j depends on the type of forgery. A forgery can be such that a ciphertext obtained 

at encryption is the prefx of the forgery; we call this the prefx case. The complementary case for the 

prefx case, which w e call non-prefx, includes two separate subcases, namely when y0 

is diferent from any 

i iy of any ciphertext obtained at encryption, or when there is an index i such that y0 

= y0. Hence, in the 0 

latter case, there must be at least a block in the forged ciphertext y that is diferent from the corresponding 

iblock o f the ciphertext of a queried message i, namely y . Further, the length of the forged ciphertext y, 

denoted by n, m a y be diferent from the length of the message plaintext defned by ni. 

This partition of forgery types shows that a forged ciphertext y = y0y1 

yn+1, which is not a truncation, 

can be in one of the following three complementary types: 

i(a) 9i; 1 : i : qe 

: n > n i; 8k; 0 : k : ni 

+ 1 : yk 

= y ; i.e., the forged ciphertext is an extension of the k

ciphertext yi (the prefx case). The non-prefx case consists of the following two forgery types: 

i(b1) y0 

6 0; 8i; 1 : i : qe= y ; i.e., the forged ciphertext and all queried-message ciphertexts difer in the frst 

block. 

i i(b2) 9i; 1 : i : qe 

: y0 

= y0; 9k; 1 : k : min(ni 

+ 1 ; n + 1) : yk 

6= y ; i.e., the forged ciphertext is k

obtained by modifying a queried message ciphertext starting with some block b e t ween the second and last 

iblock of that queried-message ciphertext. In this case, let j be the smallest index such that yj 

6 (i.e.,= yj 

8k; 0 : k : j , 1 : yk 

= yi ).k

Let us choose index j (and hence zj) as follows. For forgeries of type (a), j = ni 

+ 2 (or j > ni 

+ 1); 

for forgeries of type (b1), j = 1; and for forgeries of type (b2), j is the smallest index such that 

iyj 

6 yj; 1 : j : minfni 

+ 1 ; n + 1 g. In all cases j : 1, and hence, the chosen ciphertext block zj 

is= 

well defned. 

pPart 2. For the index j chosen in Part 1, we fnd an upper bound for Pr [zj 

2 fzk; 1 : p :
I and E

pqe; 1 : k : np 

+ 1 g]. Event zj 

2 fz ; 1 : p : qe; 1 : k : np 

+ 1 g is the union of all possible events k
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pzj 

= z ; 1 : p : qe; 1 : k : np 

+ 1 . Hence, union bound leads to: k

qe 

np+1 X X 

p pPr [zj 

2 f z ; 1 : p : qe; 1 : k : np 

+ 1 g] : Pr [zj 

= z ]:
I and E k I and E k

p=1 k=1 

pNow we fnd an upper bound for Pr
 [zj 

= z ] for each of the three forgery types. In determining
 

I and E k

this upper bound, we use the following claim, whose proof can be found at the end of this appendix: 

Claim 3.2 

pLet z ; 1 : p : qe, b e the hidden ciphertext blocks generated at the encryption of a queried message k
p p py0 

y y +1, and zj 

b e the chosen hidden ciphertext block generated during the decryption of forgery 1 np

y = y0; y 1; yn+1. Then 8k; 1 : k : np 

+ 1, 

1p[zj 

= z ] : ;P r 

I and E k 2l,m 

where 

p(a) if y0 

6 0 

, then m = min(m1;m 2), with m1 

and m2 

being defned by j = d1 

x 2m1 , k = d2 

x 2m2 , where = y
d1; d 2 

are odd; and 

p(b) if y0 

= y0 

, where m is defned by k , j = d x 2m if k > j , or by j , k = d x 2m if j k , and d is odd. 

pClaim 3.2 provides upper bounds for Pr [zj 

= z ], where p; k are arbitrary values that satisfy the 

I and E k

hypotheses of parts (a) or (b) and zj 

is the chosen hidden ciphertext block defned in Part 1. These hy-
potheses are verifed for the chosen j of each forgery type as shown below. 

Upper bound for forgeries of type (a). 

Let the ciphertext of queried message i b e the prefx of forgery y. To fnd the upper bound in this case, Pqe 

Pnp+1 pwe partition the sum Pr [zj 

= z ] i n to two sums, for p =6 i and p = i, respectively. For p=1 k=1 I and E k
pp 6 , w e use Claim 3.2(a), and for p = i we use Claim 3.2(b), to fnd an upper bound for Pr [zj 

= z ].= i
I and E k

Then we fnd individual upper bounds for each of these two sums, and add these upper bounds. 

qe 

np+1 qe 

np+1 ni+1 X X X X X 

p p iPr [zj 

= z ] = Pr [zj 

= z ] + Pr [zj 

= zk]:I and E k I and E k I and E


p=1 k=1 p=1;p 6 k=1
=i k=1 

For the frst sum, note that p 6 i, and recall that for forgeries of type (a) y0 

= y0
i .= Since E is true, 

i p p 1 y0 

= y 6= y Hence, by Claim 3.2(a), Pr [zj 

= z ] : , where m : m2 

with m2 

being defned 0 0 

. 

I and E k 2l,m 

by k = d2 

x 2m2 and d2 

is odd. Thus, 

qe 

np+1 qe 

np+1 X X 1 

X X 

pPr [zj 

= z ] : 2m2 :I and E k 2l 

p=1;p 6 k=1 p=1;p 6 k=1=i =i 

But, by F act 3 with N , 1 = np 

+ 1 and a = k, 

np+1 X np 

+ 1 

2m2 : (log2(np 

+ 1) + 3) : 

2 

k=1 

Hence, 

qe 

np+1 qe X X 

p 

1 

X np 

+ 1 

Pr [zj 

= z ] : (log2(np 

+ 1) + 3) :
I and E k 2l 2 

p=1;p 6 k=1 6=i p=1;p=i 
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piFor the second sum, we note that p = i, which means that y0 

= y0 

= y0 

, and that j = ni 

+ 2 > k; 8k; 1 : 

p 1k : ni 

+ 1 . Hence, by Claim 3.2(b) Pr [zj 

= z ] : 

2l,m 

, where j , k = d x 2m and d is odd. Since I and E k

j = ni 

+ 2, in follows that j , k = ni 

+ 1 ; ; 1, and thus, 

ni+1 ni+1 ni+1 X X 1 

X 

i i 2mPr [zj 

= z ] : Pr [zj 

= z ] :
I and E k I and E k 2l 

k=1 j,k=1 j,k=1 

But, by F act 3 with N , 1 = ni 

+ 1 and a = j , k, 

ni+1 X ni 

+ 1 

2m : (log2(ni 

+ 1) + 3) ;
2 

j,k=1 

and hence, 

ni+1 X 

i 

1 ni 

+ 1 

Pr [zj 

= z ] : (log2(ni 

+ 1) + 3) :
I and E k 2l 2 

k=1 

Adding the two upper bounds, we obtain 

qe 

np+1 qe X X 

p 

1 ni 

+ 1 1 

X np 

+ 1 

[zj 

= z ] : (log2(ni 

+ 1) + 3) + (log2(np 

+ 1) + 3)Pr 

I and E k 2l 2l2 2 

p=1 k=1 6p=1;p=i 

qe1 

X np 

+ 1 

= (log2(np 

+ 1) + 3) : 

2l 2 

p=1 Pqe 

/eSince + 1) : , b y F act 4, it follows that p=1(np l 

pPr I and E[zj 

2 f zk; 1 : p : qe; 1 : k : np 

+ 1 g] : 

Xqe 

np+1 X 

p 

1 {e 

{e
Pr [zj 

= z ] : log2 

+ 3 :
I and E k 2l 2l l 

p=1 k=1 

Further, if m = max(np 

+ 1), then 

p 

1 {e
Pr [zj 

2 f z ; 1 : p : qe; 1 : k : np 

+ 1 g] : (log2 

m + 3) ;I and E k 2l 2l 

also by F act 4. 

Upper bound for forgeries of type (b1). 

p pFor this type of forgery, y0 

6 0 

; 8p; 1 : p : qe. Hence, by Claim 3.2(a), Pr = z ] : 

1 , where = y [zj 2l,mI and E k

m : m2 

with m2 

being defned by k = d2 

x 2m2 and d2 

is odd. By following the same derivation as that 

for forgeries of type (a), we obtain: 

qe 

np+1 X X 

p pPr [zj 

2 f z ; 1 : p : qe; 1 : k : np 

+ 1 g] : Pr [zj 

= z ] :
I and E k I and E k

p=1 k=1 

qe 

np+1 qe1 

X X 1 

X np 

+ 1 1 {e 

{e
2m2 : (log2(np 

+ 1) + 3) : log2 

+ 3 : 

2l 2l 2 2l 2l l 

p=1 k=1 

p=1 
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Also, if m = max(np 

+ 1), then 

1 {epPr 

I and E
[zj 

2 f zk; 1 : p : qe; 1 : k : np 

+ 1 g] : (log2 

m + 3) : 

2l 2l 

Upper bound for forgeries of type (b2). 

Let the frst j , 1 ciphertext blocks of queried message i provide the frst j , 1 ciphertext blocks of forgery Pqe 

Pnp+1 py. To fnd the upper bound in this case, we partition the sum Pr = ] into four p=1 k=1 I and E [zj 

zk
terms, fnd individual upper bounds for each term, and then add these upper bounds. The frst term is a 

psum taken for p 6 P= i and in this case we use Claim 3.2(a) to fnd an upper bound for r [zj 

= z ].
I and E k

The last three terms are for the case p = i, and two of these terms are sums taken for k  j and k > j , 

prespectively. For these sums, we apply Claim 3.2(b) to fnd an upper bound for Pr [zj 

= z ]. For 

I and E k
pthe remaining term corresponding to i = p and k = j, w e show that the event zj 

= z is impossible. k 

+1 np j,1 Xqe 

nXp qe X 

+1 X X 

p p iPr [zj 

= z ] = Pr [zj 

= z ] + Pr [zj 

= z ] +
I and E k I and E k I and E k

p=1 k=1 p=1;p 6 k=1=i k=1 

ni+1 X 

i iPr [zj 

= z ] + Pr [zj 

= z ]:
I and E j I and E k

k=j+1 

For the frst of the four terms above, we have the same bound as that of the frst of the two sums in the 

case of forgeries of type (a) above, namely, 

qe 

np+1 qe X X 

p 

1 

X np 

+ 1 

Pr [zj 

= z ] : (log2(np 

+ 1) + 3) :
I and E k 2l 2 

p=1;p 6 k=1 6=i p=1;p=i 

Pj,1 i i pFor the second term, namely Pr = z ], we note that i = p, which means that y0 

= y = yk=1 I and E [zj k 0 0 

, 

i 

1and k j . Hence, by Claim 3.2(b), Pr [zj 

= z ] : , where j , k = d x 2m and d is odd. Since I and E k 2l,m 

k = 1 ; ; j , 1, it follows that j , k = j , 1; ; 1, and by F act 3 with N , 1 = j , 1 and a = j , k, 

j,1 j,1 j,1 X X X j , 11 1i i 2mPr [zj 

= z ] = Pr [zj 

= z ] : : (log2(j , 1) + 3):
I and E k I and E k 2l 2l 2 

k=1 j,k=1 j,k=1 

i i i iFor the third term, Pr = z ] = 0 . This is the case because zj 

= z , = y 0j j 

, j x rI and E [zj j yj 

, j x r0 

i i i iand, since y0 

= y , r0 

= r0, it follows that zj 

= zj 

, yj 

= yj, which is impossible by the defnition of 0 

j. (Recall that for forgeries of type (b2), j is the smallest index such that yj 

6= yj
i ; 1 : j : minfni+1  ; n +1  g.) 

Pni+1 i i pFor the fourth term, namely Pr [zj 

= z ], we note that i = p, which means that y0 

= y = y0 

,k=j+1 I and E k 0 

i 

1and j k . Hence, by Claim 3.2(b), Pr [zj 

= z ] : , where k , j = d x 2m and d is odd. Since 

I and E k 2l,m 

k = j + 1 ; ; n i 

+ 1, it follows that k , j = 1 ; ; n i 

, j + 1, and by F act 3 with N , 1 = ni 

+ 1 , j and 

a = k , j, 

ni+1 

ni,j+1 ni,j+1 X X 1 

X 

i i 2mPr [zj 

= zk] = Pr [zj 

= zk] :I and E I and E 2l 

k=j+1 k,j=1 k,j=1 

1 ni 

, j + 1 

: (log2(ni 

, j + 1) + 3) : 

2l 2 
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Now, we add the bounds of the last three of the individual upper bounds, and then we add the frst upper 

bound to obtain the total upper bound for forgeries of type (b2). 

j,1 ni+1 X X 

i i iPr [zj 

= z ] + Pr [zj 

= z ] + Pr [zj 

= z ] :
I and E k I and E j I and E k

k=1 k=j+1 

1 j , 1 1 ni 

, j + 1 

(log2(j , 1) + 3) + (log2(ni 

, j + 1) + 3) : 

2l 2 2l 2 

Since for this type of forgeries 1 : j : ni 

+ 1, the terms under log2 

are j , 1 : ni; n i 

, j + 1 : ni. Thus, 

the sum of the last three terms is bounded as follows: 

j,1 ni,j+1 X X 

i i iPr 

I and E
[zj 

= zk] + Pr [zj 

= zj ] + Pr 

I and E
[zj 

= zk] :
I and E


k=1 k=j+1
 

1 j , 1 1 ni 

, j + 1 1 ni
(log2 

ni 

+ 3) + (log2 

ni 

+ 3) = (log2 

ni 

+ 3) : 

2l 2 2l 2 2l 2 

1 ni 

+ 1 

(log2(ni 

+ 1) + 3) : 

2l 2 

Hence, by adding the frst of the individual upper bounds to this above sum, we obtain: 

qe 

np+1 X X +1 1p 

ni
Pr [zj 

= z ] : (log2(ni 

+ 1) + 3) + 

I and E k 2l 2 

p=1 k=1 

qe1 

X np 

+ 1 

(log2(np 

+ 1) + 3)
2l 2 

p=1;p 6=i 

qe1 

X np 

+ 1 

= (log2(np 

+ 1) + 3) : 

2l 2 

p=1 Pqe 

/eSince + 1) : , b y F act 4, it follows that p=1(np l 

pPr I and E[zj 

2 f zk; 1 : p : qe; 1 : k : np 

+ 1 g] : 

qe 

np+1 X X 

p 

1 {e 

{e
Pr [zj 

= z ] : log2 

+ 3 :
I and E k 2l 2l l 

p=1 k=1 

p 1 

/eFurther, if m = max(np 

+ 1), then Pr [zj 

2 f z ; 1 : p : qe; 1 : k : np 

+ 1 g] : (log2 

m + 3).I and E k 2l 2l 

pFinally, for any forgery that is not a truncation, Pr [zj 

2 fz ; 1 : p : qe; 1 : k : np 

+ 1 g] is 

I and E k

bounded by the maximum of the bounds for the types (a), (b1) and (b2), namely 

1 {e 

{epPr [zj 

2 f zk ; 1 : p : qe; 1 : k : np 

+ 1 g] : log2 

+ 3 ;
I and E 2l 2l l 

p 1 

/eor, if m = max(np 

+ 1), then Pr [zj 

2 f z ; 1 : p : qe; 1 : k : np 

+ 1 g] : (log2 

m + 3 ) . Hence,
I and E k 2l 2l 

returning to the probability o f e v ent C conditioned by ( I and E), 

(n + 1) qe 

1 {e 

{e
Pr [C] = Pr [C j I and E] : + log2 

+ 3 :I and E 2l 2l 2l l 
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Also, if the maximum length m of the encrypted messages is known, the last term of the above bound can 

be replaced with 

1 

/e (log2 

m+ 3). tu
2l 2l 

Proof of Claim 4 

Event C is true implies that there is at least one element zs 

2 Z. Event D states that any hidden ciphertext 

block zs 

2 Z collides with another hidden block zt 

2 Z; t 6 , or zs 

collides with y0. Let s be the smallest = s
index of the element zs 

2 Z; hence, event D implies that zs 

collides with some other element zt 

2 Z; t >  s  

or zs 

= y0, or, alternatively, zs 

2 Z , f zsg or zs 

= y0. Hence, 

Pr[D j C and E and I] : Pr[zs 

2 Z , f zsg or zs 

= y0 

j C and E and I] 

Union bound leads to: 

Pr[D j C and E and I] : Pr[zs 

2 Z , f zsg j C and E and I] + Pr[zs 

= y0 

j C and E and I] X 

: Pr[zs 

= zt 

j C and E and I] + Pr[zs 

= y0 

j C and E and I]: 

t>s;zt2Z 

To compute the upper bound of the frst probability of the sum, Pr[zs 

= zt; zs; zt 

2 Z; t 6= s j C and E and I], 

recall that Z must have at least one element (since C is true). If Z has only one element, then this prob-
ability is zero. If Z has at least two elements, zs; zt, w e use the following claim, whose proof can be found 

at the end of this Appendix: 

Claim 4.1 

(a) For any zs; zt 

2 Z; 1 : s t : n+ 1: 

1 

Pr [z = zt] : ;
C and E and I s 

2l,m 

where the exponent m is defned by t, s = dx 2m and d is odd. 

(b) For any zs 

2 Z; 1 : s : n+ 1, and for any y0: 

1 

Pr [zs 

= y0] : ;C and E and I 2l,m 

where the exponent m is defned by s = dx 2m and d is odd. 

Then, by Claim 4.1(a) X X 2m 

Pr[zs 

= zt 

j C and E and I ] : 

2l 

t>s;zt2Z t>s;zt2Z 

where t, s = dx 2m and d is odd. Let a = t, s; zs; zt 

2 Z; s t. Then, by using this notation, the fact 

that the diferences t, s represent a subset of set f1; ; ng, and Fact 3, we obtain 

X 2m X 2m 

= 

2l 2l 

t>s;zt2Z a=t,s;t>s;zs;zt2Z 

n X 2m n 

: : (log2 

n+ 3) : 

2l 2l+1 

a=1 
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For the term Pr [zs 

= y0 

j C and E and I], we use Claim 4.1(b) and obtain: 

1 

Pr [zs 

= y0 

j C and E and I] : ;
2l,m 

where m is defned by s = d x 2m and d is odd. By defnition, m : log2 

s : log2(n + 1), and hence 

2m : n + 1 . Thus, 

n + 1 

Pr [zs 

= y0 

j C and E and I] : : 

2l 

By adding the two upper bounds, it follows that 

n n + 1 

Pr [D j C and E and I] : (log2 

n + 3) + : 

2l+1 2l 

ut 

R 

Proof of Fact 1 

(a) Let A be an adversary attacking the XCBC $ , XOR mode using qe 

+ qv 

queries, {e 

+ {v 

total memory 

for these queries, and time te 

+ tv. The probability of success is related directly to the security of the 

underlying encryption mode XCBC$ and F . To fnd an upper bound for this probability, we introduce 

a distinguisher D for F , which is given two oracles f and f,1, where f is a permutation used by the 

XCBC $ , XOR mode. D runs A, simulates an oracle for XCBC $ , XOR via queries for its own 

oracles f and f,1, responds to A's qe 

encryption queries, and verifes A's choices of ciphertext forgeries 

0i 0i 0i 0i 0iy = y0 

y1 

yn ; y n+1; 1 : i : qv. D returns the result of each y0i's verifcation to A; i.e., D returns either 

Success or Failure to A. D outputs 1 if A's forgery decrypts successfully, and 0, otherwise. 

Distinguisher D's advantage, AdvD(F ; P 

l) : E, is defned as: 

l [Df [Df 1] : 

+P 

l 

Advsprp (F ; PD 

) = P
 1] , P
r =
 r =
 R 

f+F f 

R
where f f F denotes the selection of function f from the SPRP family F by the random key K, and 

R
f f P 

l denotes the random selection of f from the set of all permutations P 

l . 

By the defnition of the distinguisher algorithm: 

[DfP
 r 1] = P
 [
D , XCBC $ , XOR (y) 6= N ull ] = P [Succ]=
 r rR R R 

f+F f+F f+F 

and 

[DfP
 1] = P
 [
D , XCBC $ , XOR (y) 6= N ull ] = P [Succ]:r =
 r r RRR 

+P 

l +P 

l +P 

l 

R R
The above probabilities are over the random choice of r0, f f F , f f P 

l, and D's guesses. Hence, 

f f f 

P
 [Succ] = P [Succ] , P [Succ] + P [Succ]r r r r R 

RR 

+P 

l 

+P 

l +P 

l 

R
(b) This proof is based on constructing a polynomial-time algorithm D that distinguishes between f,1 f P 

l 

R
and f f GS 

using an adversary A for the XCBC $ , XOR mode. 

In a similar manner to the one used in part (a) (repeated here for completeness), let A b e an adversary 

attacking the XCBC $ , XOR mode using qe 

+ qv 

queries, {e 

+ {v 

total memory for these queries, and 
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R R R 

+P 

l 

[Succ] : E + P 

f+F f+F f f 

= Advsprp l(F ; P ) + PD 

[Succ]:r r 

f f 



   

[Succ], we introduce a distinguisher D for P 

l which is time te + tv. To fnd an upper bound for Pr 

f+P l 

given two oracles O, O,1 . These oracles simulate the block encryption and decryption operations needed 

R
by D to simulate the XCBC $ , XOR mode for adversary A. Oracle O simply uses f f P 

l to respond 

to D's block encryption requests. In contrast, oracle O,1 fips a coin b 2 f 0; 1g and responds to D's block 

R R
decryption requests by using either f,1 f P 

l or f f GS. D runs A, responds to A's qe encryption queries, 

0i 0i 0i 0i 0iand then verifes A's choices of ciphertext forgeries y = y0 

y y ; y . [As a consequence, 1 
n n+1; 1 : i : qv

D issues all its requests for block encryption to O, if any, before all the requests for block decryption to 

O,1.] D returns the result of each y0i's decryption to A; i.e., D returns either Success or Failure to A. D 

outputs 1 if A's forgery decrypts successfully, and 0, otherwise. 

Distinguisher D's advantage, AdvD(P 

l; G S), is defned as: 

R 

AdvD(P 

l [Df [DfG S) = P 1] , P
 1]
;
 :
r =
 r =
 

+P l 

R
where f f P 

l denotes the selection of function f , and its inverse f,1, from the set of all permutations 

R
P 

l by the random key K, and f f GS 

denotes the random selection of f from P 

l to encrypt and the 

R
associated function f f GS 

to decrypt. 

R 

By the defnition of the distinguisher algorithm: 

R 

f f+GS 

[Df D , XCBC $ , XOR (y) 6=P
 r 1] = P
 [
 N ull ] = P [Succ] 

[Succ]: 

=
 r r 

+P l 

f+G

R 

+P l 

f+G

R R 

+P l 

f+G

f f f 

and 

[Df D , XCBC $ , XOR (y) 6=P
 r 1] = P
 [
 N ull ] = P=
 r rR R R 

S S S 

R R
The above probabilities are over the random choice of r0, f f P 

l , f f GS, and D's guesses. Hence, 

P
 [Succ] = P [Succ] , P [Succ] + P [Succ]r r r rR 

+P l +P l
R 

Now we fnd an upper bound for D's advantage in distinguishing between P 

l and GS. By the defnition 

of the two oracles O and O,1, only oracle O,1 can b e used by D to distinguish b e t ween P 

l and GS. 

Furthermore, whenever a block decryption request to oracle O,1 is a ciphertext block that was generated 

R R
during the encryption of A's qe 

queries, the output of oracle O,1 is the same for both f f P 

l and f f GS 

(by the defnition of f), and a distinction b e t ween P 

l and GS 

cannot b e made. Hence, D can make a 

distinction between P 

l and GS 

only when the ciphertext blocks of the decryption requests to oracle O,1 

(i.e., the inputs to f,1 or f) have never been generated during the encryption of A's qe 

queries; i.e., the 

R R 

f f f+G f+GS S 

= AdvD(P 

l; G S) + P [Succ]:r R 

f+GS 

ciphertext blocks are not in S .
R 

f+P l 

R R
f P 

l and fTo make the distinction between f,1 f GS, D needs to send only ciphertext blocks that are 

to oracle O,1, since D already has the plaintext blocks corresponding to all the ciphertext not in S 

R 

R 

blocks in S 

+P l 

+P l 

f 

.
 In this case, f = v, where v 

R
f Rl;l, and the advantage of distinguisher D cannot be higher 

f 

than the advantage of any polynomial-time algorithm D' that distinguishes a random permutation from 

la random function using the same block decryption requests from f0; 1g , S to oracle O,1 as those R 

+P l 

l;lmade by distinguisher D; i.e., AdvD(P 

l; G S) : AdvD0 (P 

l; R ). However, by the bound of the birthday 
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l;  

q(q,1)
 

2l+1


attack, AdvD0 (P 

l; R 

l ) : where q is the number of the block decryption requests to oracle O,1; i.e., 

q : 

/v Hence,
l
 

l;l  

{v({v 

, l)


AdvD(P 

l; G S) : AdvD0 (P 

l; R ) : : 

l22l+1 

Hence, 

{v({v 

, l)
Pr [Succ] : Pr [Succ] + :R R 

f+P 

l f+GS 
l22l+1 

ut 

Proof of Fact 2 

If i = d x 2m, then i x r0 

= d x 2m x r0 

has (at least) the frst (i.e., least signifcant) m bits zero. Also, 

2l,msince i 2l, it follows that d . Let r0m 

= r0[1 l , m] b e the least signifcant l , m bits of r0. 

(These bits will be shifted in the most signifcant l , m bit positions of a block b y m ultiplication with 2m.) 

First, we note that 

i x r0 

= ( dr0m)jj 0 0 | vz ' 

m 

where dr0m 

= r0m 

+ + r0m 

mod 2l,m and jj is the concatenation operator. To see this: | vz ' 

d times 

i x r0 

= (d x 2m) x r0 

= d x (r0 

x 2m) = ( r0 

x 2m) + + ( r0 

x 2m) | vz ' 

d times 

= (r0mjj 0 0) + + ( r0mjj 0 0) = ( r0m 

+ + r0m)jj 0 0 | vz ' | vz ' | vz ' 

| vz ' 

m m m | vz ' 

d times 

d times 

= (dr0m)jj 0 0 | vz ' 

m 

where dr0m 

= r0m 

+ + r0m 

mod 2l,m . | vz ' 

d times 

Second, we divide all values of an arbitrary constant a into two complementary classes based on whether 

the frst (i.e., least signifcant) m bits of a are all zero, compute Pr [i x r0 

= a] for each class separately, 

and then take the maximum of the two probabilities as the overall bound. 

Let a[1 m] = 0 denote the values of a for which the frst m bits are zero, and a[1 m] =6 0 those for 

which at least one of the the frst m bits is not zero. Since i x r0 

= (dr0m)jj 0 0, it follows that, if | vz ' 

m 

a[1 m] 6= 0, Pr [ i x r0 

= a ] = 0 . However, if a[1 m] = 0, then [ i x r0 

= a ] , [ dr0m 

= b ], where 

b = a[m + 1 l] represents bits m + 1 ; l of a, i.e., the l , m most signifcant bits of a. Hence, in this 

case, 

Pr [ i x r0 

= a ] = Pr [ dr0m 

= b ]; 

where d; r0m; b 2 f 0; 1gl,m . However, d and 2l,m are relatively prime because d is odd. Hence, d has a left 

inverse,9 e, and dr0m 

= b , edr0m 

= eb , r0m 

= eb (mod 2l,m), which happens with probability 1 /2l,m 

because r0m 

= r[1 l , m] is random and uniformly distributed in f0; 1gl,m . Thus, if a[1 m] = 0, 

1 

Pr [i x r0 

= a] = : 

2l,m 

9 A w ay to see that d has a left inverse, e, is to label 2l,m = f , and to note that, if d and f are relatively prime, then, by 

Euclid's gcd algorithm, there exists e and h such that ed + hf = 1; i.e., ed = 1 , hf or ed = 1(modf ). 
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2 

Hence, for any v alue of constant a, Pr [i x r0 

= a] : 

1 . tu
2l,m 

Proof of Fact 3 

Since any a can be expressed as a = d x 2m, where d is odd, there are multiple values of a that have the 

same exponent m. (For example, for all odd values of a, m = 0 , and for all even values of a that are not PN,1 a m ultiple of 4, m = 1.) Hence, when computing the sum a=1 

2m , w e can group together the terms 2m 

that have the same exponent m (i.e., we group the terms 2m that are equal). 

For a given exponent m, w e fnd the number of distinct values of a that have the same exponent m when 

represented as d x 2m . To fnd this number, we note that 1 : a : N , 1 and, hence, 1 : d : b 

N,1 c.2m 

b 

N,1Hence, the numb e r o f distinct values of a that yield the same exponent m is b 2
1 

2m 

c + 1 c, since this 

number is bounded by the number of distinct values of d odd. 

lFrom the defnition of exponent m, 2 

m : N , 1 (i.e., 0 : m : log2(N , 1)). Hence, 

N,1 

blog2 

(N,1)c blog2(N,1)c X 2mX X 1 N , 1 N , 1 

2m = b b c + 1 c2m : + 

2m 2 2 

a=1 m=0 m=0 

2blog2(N,1)c+1N , 1 , 1 

= (blog2(N , 1)c + 1) + 

2 2 

because, for any M > 0, 

PM = 2 

M+1 , 1. Hence, m=0 

2m 

N,1 X N , 1 N , 1 

2m : (log2(N , 1) + 1) + (N , 1) = (log2(N , 1) + 3): 

2 2 

a=1 

ut 

Proof of Fact 4 

Pqe 

/e 

/eSince, by h ypothesis, p=1(np 

+ 1) : , the term under the log2 

is np 

+ 1 : . Hence, we obtain: 

l l 

qe 

qe X X{e
(np 

+ 1) log2(np 

+ 1) : log2 

(np 

+ 1) ;
l 

p=1 p=1 

and thus, 

qe X {e 

{e
(np 

+ 1) log2(np 

+ 1) : log2 

: 

l l 

p=1 

Further, if m = max(np 

+ 1), then log2(np 

+ 1) : log2 

m. Hence, 

qe X {e
(np 

+ 1) log2(np 

+ 1) : log2 

m: 

l 

p=1 

ut 

Proof of Claim 3.1 
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There are three possible complementary cases to consider: 

i i i(1) y0 

= y0, for some queried message i; 1 : i : qe. Then r0 

= f = f,1(y0) = r0 

is random and uniformly 

i 6 p p 6distributed, by defnition. Furthermore, if r0 

= r = r (i.e., y0 

= yi 6= y0 

), then i = p and r0 

is also 0 0 
0 

pindependent o f r0 

, b y defnition. 

i(2) y0 

= zj , for some queried message i; 1 : i : qe; 1 : j : ni + 1 ; i.e., y0 

collides with some hidden 

iciphertext block, zj , generated during the encryption of message i. But this is exactly the event prohibited 

by I. 

i i i(3) y0 

6 0 

and y0 

= z , for all queried messages i; 1 : i : qe; k : 1. Then r0 

= f(y0) = v(y0) = r0; 8i; 1 := y 6 6k

f Rl;li : qe is random, uniformly distributed and independent o f a n ything else because v 

R
and f has never 

pbeen invoked with argument y0. Hence, r0 

is random, uniformly distributed and independent o f r0 

. ut 

Proof of Claim 3.2 

p p p p p p pt jxr0 0 

,yThe event zj 

= z is equivalen t o yj,jxr0 

= yk,kxr0 

, = kxr k+yj 

, kxr0 

= jxr0,yj+y .k k
p(a) If y0 

6 0 

, and since event I is true, it follows that r0 

is random, uniformly distributed, and independent = y
pof r0 

, by Claim 3.1 above. Also, event I and E implies that r0 

is random, uniformly distributed, and 

p p p pindependent o f r0 

by the defnition of event E. Thus, j x r0 

is independent o f k x r0 

, y + yj 

and k x r0k
p pis independent o f j x r0 

, yj + y , since j; k > 0, and yj; y k; j; k are known constants. Furthermore, event k
p p p p p[zj 

= z ] = [j x r0 

= k x r0 

, y + yj] = [k x r = j x r0 

, yj + y ]. Hence, k k 0 k


p p p
Pr [zj 

= z ] = Pr [j x r0 

= k x r0 

, y + yj]I and E k I and E k
p p= Pr I and E[k x r0 

]:= j x r0 

, yj + yk

p pHowever, Pr [j x r0 

= k x r0 

, yk + yj] : 

1 , where j = d1 

x 2m1 and d1 

is odd, by F act 2. Also, 

I and E 2l,m1 

p pPr [k x r0 

= j x r0 

, yj + y ] : 

2l,
1 

m2 

, where k = d2 

x 2m2 and d2 

is odd. Hence, I and E k


p
 

1 1 1 

[zj 

= z ] : min ; = ;P r I and E k 2l,m1 2l,m2 2l,m

where m = min(m1;m 2). 

p p(b) If y0 

= y0 

, then r0 

= r0 

. Hence, 

p p p pzj 

= z , yj , j x r0 

= yk , k x r , (k , j) x r0 

= yk 

0 k , yj: 

Thus, 

p pPr [zj 

= z ] = Pr [(k , j) x r0 

= yk , yj]:I and E k I and E

However, since event I is true, it follows that r0 

is random and uniformly distributed, by Claim 3.1 above. 

Also, event I and E implies that r0 

is random and uniformly distributed, by the defnition of event E. 

pSince j; k > 0; j 6 ; y ; j; k are known constants, and k = j, F act 2 implies that = k, and yj 6k

p 

1 

Pr [(k , j) x r0 

= yk , yj] :
I and E ,m2l

where m is defned by k , j = d x 2m; k > j or j , k = d x 2m; j > k , and d is odd. ut 

Proof of Claim 4.1 
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(a) One can write the event zt 

= zs 

, (t , s) x r0 

= yt 

, ys. Hence, 

Pr [zs 

= zt] = Pr [(t , s) x r0 

= yt 

, ys]:C and E and I C and E and I 

Since event I is true, r0 

is random and uniformly distributed, by Claim 3.1. Furthermore, by the defnition 

of events E and C, event C and I and E implies that r0 

is random and uniformly distributed. Using the 

defnition of m and the facts that (1) r0 

is random and uniformly distributed, (2) yt; y s 

are constants, and 

(3) 1 : t , s : 2l , 1, we obtain (by F act 2) that 

1 

[(t , s) x r0 

= yt 

, ys] :Pr 

C and E and I 2l,m 

where m is defned by t , s = d x 2m and d is odd. Hence, 

1 

[zs 

= zt] : :P r C and E and I 2l,m 

(b) The proof of this part is similar to that of part (a) and is included here for completeness. 

Note that, since zs 

= ys 

, s x r0, event zs 

= y0 

, s x r0 

= ys 

, y0, where ys 

and y0 

are constants. 

However, since event I is true, r0 

is random and uniformly distributed, by Claim 3.1. Furthermore, event 

C and I and E implies that r0 

is random and uniformly distributed. Hence, by F act 2, 

1 

Pr [zs 

= y0] = Pr [s x r0 

= ys 

, y0] :C and E and I C and E and I 2l,m 

where m is defned by s = d x 2m and d is odd. tu
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Appendix B - Proof [Security of the Stateful-Sender XEBC-MAC (XECBC-MAC) in an 

Adaptive Chosen-Message Attack] 

Throughout this proof, we use the same notation as in the Proof for Security of the XCBC$-XOR in a 

Message-Integrity A ttack, Appendix A, and the same facts (i.e., Facts 1 4). Unless mentioned otherwise, 

f Rl;lwe focus on the probability for adversary's success when f 

R
, and, for simplicity, we will drop the 

f Rl;lf 

R
subscript from the probability equations. 

To fnd an upper bound on the probability o f an adversary's success we use the same proof technique as 

for the XCBC$-XOR scheme. That is, we (1) defne several types of events on which we condition the 

adversary's success, (2) express the upper bound in terms of the conditional probabilities obtained, and 

(3) compute upper bounds on these probabilities. As before, our choice and number of conditioning events 

is motivated exclusively by the need to obtain a (good) upper bound for the probability of the adversary's 

success. Undoubtedly, other events could be used for deriving alternate upper bounds. 

We provide some intuition for the choice of conditioning events defned, by giving the following examples of 

events that cause an adversary's success. (The reader can skip these examples without loss of continuity.) 

Examples of Adversary's Success. A way for the adversary to fnd a forgery x0 that passes the 

integrity check w0 = w, is to look for collisions in the input of f , at forgery verifcation. The following 

three examples illustrate why such collisions cause an adversary's success. Other such examples, and other 

ways to fnd forgeries, exist. 

Example 1 Collisions between inputs of f at forgery verifcation with those at message signing 

Suppose that all inputs to f at forgery verifcation collide with inputs to f at signing. We pessimistically 

declare the adversary to b e successful. For example, suppose that two of the block inputs to f at the 

verifcation of forgery (x0; ctr0; w 

0) represent two swapped inputs to f at the signing of message x using 

counter ctr and obtaining the authentication tag w. Also suppose that all other inputs to f at forgery 

verifcation are the same as those of message x at signing. Hence, x0 6 In this case, the authentication = x. 

0 0check for forgery (x ; ctr0 = ctr; w = w) will pass the integrity c heck. 

It should b e noted that this criterion for adversary's success is pessimistic because, among the forgeries 

that make this event true some will decrypt correctly with negligible probability. For instance, if a forgery 

0 0 0 0 0x is a truncation of a signed message, the collision of the last forgery block x = z + ( n + 1) x rn0+1 0 0 

with any of the inputs to f or f 0 at message signing is a negligible-probability e v ent and hence truncation 

would have a negligible chance of success (viz., Claim 1 below provides some intuition for this statement). 

Example 2 Collisions among inputs of f at forgery verifcation 

Suppose that two inputs of f obtained during forgery verifcation, x0 and x0 

+2, do not collide with n+1 n
0 0any of the inputs to f obtained during message signing, but collide with each other; xn+1 

= x +2. Alson
0 0 0 0suppose that the adversary's forgery (x ; ctr0; w 

0) is obtained as follows: x = xjjxn+1jjxn+2, ctr0 = ctr, and 

0 0 0w = w. Clearly, x 6 ; ctr0; w= x and the forgery (x 0) passes verifcation under the pessimistic assumption 

that f(z0 

+ ( n + 3) x r0) = f(z0 

+ ( n + 1) x r0). 

Example 3 Collisions among the inputs of f that cause discovery of r0 

p pSuppose that the forgery counter ctr0i collides with an input to f , x + k x r0 

; 1 : p : qs; 1 : k : np,k 
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0

0i 0i 0obtained during message signing, or with x + j x r ; 1 : i : qv; 1 : j : n , during the verifcation of 0j i
0; ctr0; w 

0). Suppose that the adversary fnds that x = ctr0i, for some message p, known 

p pforgery (x + k x r0k 

plaintext block xp and known counter ctr0i, 1 : i : qv.k 

Hence, the adversary can determine rp and thus 

the adversary's forgeries can satisfy collisions of Examples 1 and 2 above. A similar collision event b e t ween 

ctr0i and an input to f during forgery verifcation has a similar efect. 

Conditioning Events. To compute an upper bound on the probability of successful forgery, w e c hoose 

three conditioning events based on collisions in the inputs of f . Intuition for the choice of events is provided 

by Examples 1 3 above. To defne the conditioning events, we use the following notation for the last 

block that is enciphered 

p px = z+1 0np

0i 0i:
x 0 

= z n +1
i

Next, we i n troduce the sets: 

0

: fctr1;
 ; ctrqsIs g 

p pS : fx + k x r ; 1 : p : qs; 1 : k : np 

+ 1 g;0k 

0i 0s 0i 0s 02/ (IsVi 

: fx S); 1 : s : n +
 1
 g;+ s x r ;
 + s x rx0 0 is s 

where Is is the set of all the counters used at signing, S is the set of all the inputs to function f (aside 

from the counters) at signing, and Vi 

is the set of all the inputs to function f (aside from the counters) at 

verifcation of query i. Based on sets Is; S ; V i, w e i n troduce the following collision events that arise at the 

0iverifcation of forgery (x ; ctr0i; w 

0i): 

Ci : Vi 

= ; 

Event Ci includes all instances when inputs of f at forgery verifcation (aside from counters) collide with 

either counters or inputs to function f at message signing. Next we defne event Di as follows: 

0 0i 0iDi : 9s; 1 : s : n 2 Vi1
+
 :
 + s x rx 0i s 

0i 0i 0i 0i 0i 0i 0 = x = s; 1 : t : n6
 ; 8x 2 Vi; t 6and x +
 1
+ s x r + t x r + t x r0 0 0 it ts 

0i 0i 0i = ctr6
and x + s x r0s 

Event Di states that there is at least one input block of forgery i that does not collide with any other block 

and counter of forgery i. It is clear that the defnition for Di makes sense only when event Ci is false. 

r

The rationale for introducing events Ci (or, actually, Ci) and Di is similar to the one used in the proof of 

Theorem 2. That is, we w ant to fnd a desirable event which states that there exists a forgery block that 

does not collide with any other input to f at either message signing or verifcation of forgery i (as suggested 

by Examples 1 and 2). Clearly, if this event is true, then the probability o f v erifcation passing is 1/2l . To 

fnd this event, however, we must ensure that all other collisions that that may lead to the discovery of 

0 

are also ruled out for this block (as suggested by Example 3). For this reason, we must introduce two 

events beside Ci and Di, namely events Rv and Rs defned below. (Note that these events need not cover i 

the last block or a signed message or of forgery i since such a collision cannot be used to solve for either r
0 

0 

since random variables z and z0 

remain unknown to the adversary.) After we fnd the desired event or r0 0

for forgery i, we show that the complement o f this event has a negligible probability (viz., the section on 

Non-truncation Forgeries below). 

0i 0i 0i 0 = xj 

+ j x rRv 

i 

: ctr 6
 0 ; 8j; 1 : j : ni 
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Event Rv states that all inputs to f during the verifcation of forgery i (aside from counters and last block) i 

do not collide with forgery counters. 

Rs : P 

s and P 

v and Qs; 

where 

p pP 

s : ctra 6 + k x r0 

; 8a; p; k; 1 : a; p : qs= x ; 1 : k : npk


0a p p
P 

v : ctr 6= x + k x r0 

; 8a; p; k; 1 : a : qv; 1 : p : qs; 1 : k : npk


p p p p
Qs : x + j x r 6 + k x r0 

; 8p; j; k; 1 : p : qs; 1 : j; k : np; j = k= x 6j 
0 k

0iand j is the index of a block in forgery i; i.e., xj . Event Rs states that all inputs to f at message signing 

(aside from counters and last block) do not collide with any other such inputs and with any of the counters 

used at message signing and forgery verifcation. Note that event Rs is independent o f a n y forgery i. 

Upper bound on the Probability of Successful Forgery. By standard conditioning, 

Pr [Succ] : Pr [Succ j Rs] + Pr [Rs] : Pr [Succ j Rs] + Pr [P 

s] + Pr [P 

v] + Pr [Qs]; 

since Rs = P 

s or P 

v or Qs . The second, third and fourth terms in the sum are bounded as in the following 

Claim: 

Claim 1 

(a) 

qs{s 

{s
Pr [P 

s] : log2 

+ 3 : 

l2l+1 l 

(b) 

qv{s 

{s
Pr [P 

v] : log2 

+ 3 : 

l2l+1 l 

(c) 

1 ({2 

s 

{s
Pr [Qs] (log2 

+ 3) : 

2l 4l2 l 

To compute an upper bound for the probability of successful forgery, when event Rs is true, we note 

that the adversary is successful if one of his qv 

forgeries is successful. Let the i-th adversary's forgery be: 

0i 0i 0i 0i(ctr0i; x ; w 

0i), where x = x1 

x .
 Hence, by union bound, the probability of adversary's success for all 0n
i 

f Rl;lqv 

verifcation queries (when f 

R
) is: 

qv X 

0i 0i 0i[Succ j Rs +1 

j Rs]:
E E
P
 ] : Pr [wr = y1 

y 0n
i

i=1 

Hence, we frst compute the probability of adversary's success when a single forgery verifcation is allowed; 

0i 0i 0i j RsE E
i.e., we compute Pr [w ]. For this computation, we partition the space of all possible = y y 01 +1n
i

forgeries into (1) truncation and (2) non-truncation forgeries.
 

Truncation Forgeries. For truncation forgeries, we i n troduce the events:
 

0i 0 0iZIs : z0 

+ ( ni + 1) x r0 

2 Is 

0i 0 0iZS 

: z0 

+ ( ni + 1) x r0 

2 S: 
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i 

Using these events, we show that the probability of adversary's success in creating a successful forgery i is 

p0inegligible. If forgery i is a truncation, then there exists p; 1 : p : qs 

: ctr0i = ctrp and x = x ; 8k; 1 :k k
p0 0i 0 0i 0 0ik : n , hence z = z If the input to f at block n + 1 namely z + ( n + 1) x r0 

, does not 

at signing (i.e., event ZS 

is true), then y = f(z + ( + 1) x r0 

) is random, uniformly distributed 

np 0 0 

. i 

, 0 i 

collide with any counter (i.e., event ZIs is true) and any input to function f (aside from the counters) 

0i 0i 0 0in0 

i
0 i+1n

and independent of any other block y0 in the formula for w0i . Hence, in this case, the probability o f the 

0i 0i 0i during the verifcation of forgery i is 1/2lE E
event that y Summarizing, by standard y = w .
 

n0 

i
+11 

conditioning and union bound, 

0i 0i 0i 0i 0i 0ij Rs] or ZS) and Rs] + Pr [ZIs or ZS 

j Rs]E E
 E E
 +1 

j (ZIsPr [w Pr [w:
= y1 

yn0 

i
+1 

= y1 

y 0 

i
n

1 1 

: + Pr [ZIs or ZS ] : + Pr [ZIs j Rs] + Pr [ZS 

j Rs]: 

2l 2l 

Upper bounds for the probabilities of events ZIs j Rs and ZS 

j Rs are given by the following Claim: 

Claim 2 

(a) 

qs
Pr [ZIs j Rs] : : 

2l 

(b) 

{s 

np
Pr [ZS 

j Rs] : + : 

l2l 2l 

Hence, for any truncation forgery, 

1 + ( + 1)0i 0i 0i 

qs 

{s 

np 

{s 

qs 

np
= y E E y j Rs] : + + + : + :P r [w 0 

i
1 +1 2l 2l l2l 2l l2l 2ln

0i 0i 0i 

+1 

j Rs] for non-E E
Non-truncation Forgeries. Now, we fnd an upper bound for Pr [w = y y 0 

i
1 n

truncation forgeries. To compute this upper bound, we defne an event such that (1) the probability of 

successful forgery is 1/2l when this event occurs, and (2) the probability o f the complement o f this event 

has a negligible upper bound. 

Using the events defned above and by standard conditioning, we obtain: 

0i 0i 0i 0i 0i 0i j Ci and Di and Rv 

ij Rs] and RsE E
 E E
Pr [w Pr [w ]
:
 +
= y1 

yn0 

i
+1 

= y1 

yn0 

i
+1 

Pr [Ci or Di or Rv j Rs]i 

0i 0i 0i j Ci and Di and Rv and RsiE E
Pr [w ]
 +
:
 = y1 

yn0 

i
+1 

Pr [Ci or Di or Rv j Rv and Rs] + Pr [Rv j Rs]i i i
 

0i 0i 0i
 j Ci and Di and Rv and Rs]iE E
= Pr [w = y1 

yn0 

i
+1 

+Pr [Ci or Di j Rv and Rs] + Pr [Rv j Rs]i i
 

0i 0i 0i
 j Ci and Di and Rv and RsiE E
Pr [w ]
 +
:
 = y1 

yn0 

i
+1 

Pr [Ci or Di j Ci and Rv and Rs] + Pr [Ci j Rv and Rs] + Pr [Rv j Rs]i i 

0i 0i 0i =
 Pr [w = y1 

E E
 yn0 

i
+1 

j Ci and Di and Rv and Rsi 

] +
 

Pr [Di j Ci and Rv and Rs] + Pr [Ci j Rv and Rs] + Pr [Rv j Rs];i i i 
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since the following events are equivalent: 

(Ci or Di or Rv j Rv and Rs) = (Ci or Di j Rv and Rs)i i i 

(Ci or Di j Ci and Rv and Rs) = (Di j Ci and Rv and Rs):i i 

Event (Ci and Di and Rv and Rs) is the desired event mentioned earlier in this proof. If this event i 

0 0i 0ihappens, then there must exist an index j; 1 : j : n + 1 such that x + j x r does not collide with i j 
0 

0i 0i 0iany other input to f , at either message signing or verifcation of forgery i, and hence y = f(xj 

+ j x rj 
0 

) 

0i 0iE Eis random, uniformly distributed and independent o f any other terms in the expression y y +1.0 

i
1 n

0i 0iE E
Hence, y is random and uniformly distributed and hence, y 0 

i
1 +1n

10i 0i 0i j Ci and Di and Rv and Rs] :iE E
Pr [w :
= y1 

yn0 

i
+1 2l 

0i 0i 0i j Rs]E E
The other probabilities that appear in the expression for the total probability Pr [w = y y 0 

i
1 +1n

are bounded as in Claim 3, whose proof can be found below: 

Claim 3 

(a) 

0ni 
0Pr [Rv j Rs] : (log2 

n + 3) :i 2l+1 

i 

(b) 

qsn
0 {s 

{siPr [Ci j Rv and Rs] : + log2 

+ 3 :i 2l l2l+1 l 

(c) 

0ni 
0Pr [Di j Ci and Rv and Rs] : (log2 

n + 3) :i 2l+1 

i 

Based on this claim, for an arbitrary forgery i that is not a truncation, we obtain: 

01 n0i 0i 0i i 0E E j Rs] : + (log2 

n + 3) +Pr [w = y y 0 

i
1 i+1 2l+12ln

qsn
0 {s 

{s 

n0 

i i 0+ log2 

+ 3 + (log2 

n + 3)
2l l2l+1 2l+1 

il 

n0 qsn
0 {s 

{si 
0 i(log2 

n + 3) + + log2 

+ 3 :i l2l+12l 2l l 

For any forgery, the upper bound is the maximum from the upper bounds for truncation and non-truncation 

forgeries, hence, 

n0 qsn
0 {s 

{s0i 0i 0i i 0 i = y E E y j Rs] : (log2 

n + 3) + + log2 

+ 3 :P r [w 0 

i
1 +1 

i l2l+12l 2ln l 

Hence, for all qv 

verifcation queries, we obtain by union bound, 

qv X 

0i 0i 0i[Succ j Rs] j Rs]E E
P
 : Pr [wr = y1 

yn0 

i
+1 

i=1 

qv X 

0 0n qsn {s 

{si 0 i: (log2 

n + 3) + + log2 

+ 3i l2l+12l 2l l 

i=1 

{v 

{v 

qs{v 

qv{s 

{s 

: (log2 

+ 3) + + log2 

+ 3 

l2l+1l2l l l2l l 

{v 

{v 

qs{v 

qv{s 

{s 

= (log2 

+ 3) + + log2 

+ 3 : 

l2l+1l2l l l2l l 
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Hence, by Claim 1, 

{v 

{v 

qs{v 

qv{s 

{s
Pr [Succ] : (log2 

+ 3) + + log2 

+ 3 + 

l2l+1l2l l l2l l 

{2(qs 

+ qv){s 

{s s 

{s
log2 

+ 3 + (log2 

+ 3) : 

l2l+1 l22l+2l l 

R
Finally, when f f F , the probability for adversary's success is bounded as follows: 

{v 

{v 

qs{v 

qv{s 

{s
Pr R 

[Succ] : E + (log2 

+ 3) + + log2 

+ 3 + 

f+F l2l l l2l l2l+1 l
 

(qs 

+ qv){s 

{s 

{2 {s
slog2 

+ 3 + (log2 

+ 3)
l2l+1 l22l+2l l 

{v 

{v 

qs{v 

{s 

{s 

{s 

= E + (log2 

+ 3) + + qs 

+ 2 qv 

+ (log2 

+ 3) : 

l2l+1l2l l l2l 2l l 

ut 

Proofs of Claims 1 - 3 

For the proof of Claims 1 3 we use the following Fact, which i s v ery similar to Fact 3 in Appendix A: 

Fact 1 

For any N > 1, let m be defned by b , a = d x 2m, where 1 : a b : N , 1 and d is odd. Then 

X (N , 1)(N , 2)
2m : (log2(N , 2) + 3): 

4 

1�a�b�N,1 

Fact 2 Pqs 

/sIf for any p; 1 : p : qs; n p 

> 0, and if + 1 ) : , then, p=1(np l 

qs X {2 

(np 

+ 1) 

2 log2(np 

+ 1) : 

l2 

s log2 

{s 

;
l 

p=1 

and, further, if m = max(np 

+ 1), then 

qs X {2 

s(np 

+ 1) 

2 log2(np 

+ 1) : 

l2 

log2 

m: 

p=1 

Proof of Claim 1 

p p(a) Event P 

s deals with collisions between inputs to f at signing, namely x +kxr0 

; 1 : p : qs; 1 : k : npk 

and constant counters at signing, namely ctra; 1 : a : qs. Since P 

s = 9 a; p; k; 1 : a; p : qs; 1 : k : np 

: 

p pctra = x + k x r0 

, it follows by union bound that k 

qs 

qs 

npXXX 

p pPr [P 

s] : Pr [ctra = x + k x r0 

]:k 

a=1 p=1 k=1 

p pIn this event, ctra and xk 

are constants. Since r0 

is random and uniformly distributed, and the event of 

p pinterest can be written as k x r0 

= ctra , xk, then, by F act 2 (Appendix A), 

2m 

a p pPr [ctr = x + k x r0 

] : ;k 2l 
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where k = d x 2m and d is odd. Hence, by F act 3 (Appendix A) we h a ve 

npX 

a p p 

np
Pr [ctr = x + k x r0 

] : (log2 

np 

+ 3) :k 2l+1 

k=1 

Furthermore, by F act 4 (Appendix A) we h a ve 

qs 

np	

qs XX	 X 1 {sa p p 

np	 

{s
Pr [ctr = x + k x r0 

] : (log2 

np 

+ 3) : , qs 

log2 

, qs 

+ 3k	 2l+1 2l+1 l l 

p=1 k=1 

p=1
 Pqs 

P /s


/s 

qssince + 1) : , or, : , qs. Thus, p=1(np l p=1 

np l 

qs 

qs	 

qs XXX 

np	 X 

a p p 

1 {s 

{s
Pr [ctr = x + k x r :	 log2 

, qs 

+ 3k 

0 

]
2l+1 

, qs
l l 

a=1 p=1 k=1 

a=1 

1 qs {s{s 2 = , q log2 

, qs 

+ 3 : 

2l+1 

sl	 l 

Hence, 

1 qs{s 

{s
Pr [P 

s] : 

2l+1 

, q 

2 log2 

, qs 

+ 3 :sl	 l 

A simple (albeit higher) upper bound is then 

1 qs{s 

{s
Pr [P 

s] : log2 

+ 3 : 

2l+1 l l 

(b) Event P 

v is very similar with event P 

s, i.e., it deals with collisions b e t ween inputs to f at signing, 

p pnamely x + k x r0 

; 1 : p : qs; 1 : k : np 

and constant counters at verifcation, namely ctr0a; 1 : a : qv.k 

In a manner similar to the one used in the proof of (a), since ctr0a are also constants, 

Pr [P 

v]
 

qv 

qs 

np qv
 XXX	 X 1 {s 

{s0a p p: Pr [ctr = x + k x r0 

] : , qs 

log2 

, qs 

+ 3k	 2l+1 l	 l 

a=1 p=1 k=1 

a=1
 

1 qv{s 

{s
 

= , qsqv 

log2 

, qs 

+ 3 

2l+1 l	 l 

A simple (albeit higher) upper bound is then 

1 qv{s 

{s
Pr [P 

v] : log2 

+ 3 : 

2l+1 l l 

(c) Event Qs , deals with collisions b e t ween inputs to f at signing within the same message, namely 

p p p px + j x r = x + k x r where 1 : p : qs; 1 : j; k : np; j 6 Since Qs = 9 p; j; k; 1 : p : qs; 1 : j; k :6 = k.j 
0 k 

0 

p p p pnp; j	 6 j 

+ j x r = x + k x r0 

. Without loss of generality, let k > j . Then, by union bound, = k : x 60 k 

qs X X 

p p p pPr	 Pr [x + j x r0 

= x + k x r0 

]:[Qs] : j k 

p=1 1 j�k np 

p p p p	 p p p pEvent x + j x r = x + k x r is equivalent t o ( k , j) x r = x Since r is random and uniformly j 
0 k 

0 0 j 

, xk. 0 

distributed, by F act 2 (Appendix A), this event happens with probability 

2m 

where k , j = d x 2m and d
2l 

is odd. Then, by F act 1 (Appendix B), we h a ve 

X 

p p p p 

X 2m 1 np(np 

, 1)
Pr [xj 

+ j x r0 

= xk 

+ k x r0 

] : : (log2(np 

, 1) + 3): 

2l 2l 4 

1 j�k np	 

1 j�k np 
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Furthermore, 

qs X X 

p p p pPr [Qs] : Pr [x + j x r + k x r ]
= x0 0j k 

p=1 1 j�k np 

qs 

qs X 1 np(np 

, 1) 

X 1 (np 

+ 1)
(log2(np 

, 1) + 3) 

2 

(log2(np 

+ 1) + 3):
 ;


2l 2l4
 4
 

p=1 p=1 

and using Fact 2 (Appendix B), we h a ve 

qs X ({2 

s1
 (np 

+ 1)2 1
 {s
Pr [Qs] (log2(np 

+ 1) + 3) :
 (log2 

3)
 :
+
 

4l22l 2l4
 l 

p=1 

ut 

Proof of Claim 2 

0i 0(a) Event ZIs refers to collisions between the last input to f at verifcation of forgery i, namely z + (
 +
n0 i 

1) x r0i 

0 , and any counter at signing, namely ctra; 1 : a : qs. By union bound, 

qs X 

0i 0 0iPr [ZIs j Rs] : = ctra j Rs]:P r [z (
 1)
+
 +
 x rni0 0 

a=1 

0i f 0(rp p i) is random, uniformly distributed and independent of r and of the counter since it is z = z =
 0 00 0

obtained by enciphering with a diferent k ey. Hence, since ctra is a constant, 

10 0i aPr [z 

0i +0 j Rs(
 1)
 ]
+
 = ctrx rn =
 0i 2l 

and 

qs
Pr [ZIs j Rs] : : 

2l 

ut 

0i 0 

i 

+(b) Event ZS 

refers to collisions between the last input to f at verifcation of forgery i, namely z + (
 n0
0i a a1) x r , and any input to f at signing (other than counters), i.e., x + b x r ; 1 : a : qs; 1 : b : na 

+ 1.0 0b 

By union bound, 

qs 

na+1 X X 

0i 0 0ij Rs] : 

a a 

b 

+ b x r j Rs]:P r [ZS 

Pr [z (
 1)
+
 +
 x rn = x0 0 0i 

a=1 b=1 

pa 0i 0 0i a a 0iIf b : na, then x is a constant in the equation z (
 1)
 + b x r Then, since z is+
 +
 x rn = x = z0 .
0 0 0 0ib b 

p0i 0i aobtained using a diferent k ey, z is random, uniformly distributed and independent o f and of ;
r = r r0 0 00
athe constant xb 

. Hence, 

10i 0 0i a a 

b 

+ b x r j RsPr [z (
 1)
 ]
+
 +
 :
x rn = x =
 0 0 0i 2l 

a a 0i a= a, then z p6
If b = na 

+ 1, then x In this case, if p and z are random, uniformly distributed = z = z.
0 0 00b 

p0i aand independent; they are also independent o f and r Hence,r = r .
0 00

10i 0 0i a a 

b 

+ b x r j RsPr [z (
 1)
 ]
+
 +
 :
n x r = x =
 0 0 0i 2l 
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p p0i a a 0i aIn the complementary case, namely when b = na 

+ 1 ; p = a, then z = z = z = x and r = r = r0 

.0 0 0 b 

0 0 

Since, in this case, b = na 

+ 1 = np 

+ 1, it follows that 

0i 0 0i a a 0 

pz + ( n + 1) x r = xb 

+ b x r , (np 

, ni) x r = 0 ;0 i 0 0 0 

p0where, np 

> n (since the forgery is a truncation of message p). Event Rs is true, hence r is unknown, i 0 

2m 

random and uniformly distributed. Hence, by Fact 2 (Appendix A), the probability of this event is 

2l 

0 0where np 

, n = d x 2m and d is odd. Hence, 2m : np 

, ni 

: np. Hence,i 

2m 

0i 0 0i a a 0 

p 

np
Pr [z + ( n + 1) x r = xb 

+ b x r j Rs] = Pr [(np 

, n ) x r = 0 j Rs] : : :0 i 0 0 i 0 2l 2l 

Hence, 

qs 

na+1 X X 

0i 0 0i a aPr [ZS 

j Rs] : Pr [z + ( n + 1) x r = xb 

+ b x r j Rs]0 i 0 0 

a=1 b=1 

qs 

naXX 

0i 0 0i a a = Pr [z + ( n + 1) x r = xb 

+ b x r j Rs] +0 i 0 0 

a=1 b=1 

qs X 

0i 0 0i a aPr [z + ( n + 1) x r = z + ( na 

+ 1) x r j Rs] +0 i 0 0 0 

a=1;a 6=p 

0i 0 0i p aPr [z0 

+ ( ni 

+ 1) x r0 

= z0 

+ ( np 

+ 1) x r0 

j Rs] 

qs 

na qs 

qs 

na+1 XX 1 

X 1 np 

X X 1 np 

{s 

np
: + + + : + : 

2l 2l 2l 2l 2l l2l 2l 

a=1 b=1 6 a=1 b=1a=1;a=p 

ut 

Proof of Claim 3 

(a) Event Rv deals with collisions between inputs to f at verifcation of forgery i and the counter corre-i 

sponding to forgery i. Hence, in a manner similar to the one used in the Proof of Claim 1(a) 

0 0n n 0iX 

iX 2m n0i 0i 0i i 
0Pr [Rv 

i 

j Rs] : Pr [ctr j Rs] := xj 

+ j x r0 

(log2 

n 3)
 :
:
 +
i2l+12l 

j=1 j=1 

ut 

(b) The proof of this Claim is very similar to the proof of Claim 3 in the Proof of Theorem 2. First, 

we choose an index j such that for any type of possible non-truncation forgery i, the input to f at the 

0i 0iverifcation of forgery i, namely xj 

+ j x r0 

, does collide with any input to f during message signing with 

low probability. Next, we compute an upper bound for these collisions. 

All non-truncation forgeries can b e partitioned in a similar manner as that used in the proof of Claim 3 

of Theorem 2. That is, we defne extensions of the plaintext of a signed message, which w e call the prefx 

case, and the complementary case, which w e call non-prefx case. The non-prefx case includes two separate 

subcases, namely when ctr0i is diferent from any ctrp of any message p obtained at signing (i.e., message 

p(x ; ctrp; w 

p)), or when there is a signed message p such that ctr0i = ctrp. Hence, in the latter subcase, 

there must be at least a block position j in the forged message x0i that is diferent from the corresponding 

block of the signed message p. This partition of all possible forgery types shows that a forged message 

0i 0i 0i which is not a truncation, can be in one of the following three complementary types: = x1 

x
n
i 
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p0 0i(a) 9p; 1 : p : qs 

: n > np; ctr0i = ctrp and 8k; 1 : k : np 

: x = x ; i.e., the forged message is an i k k

extension of message xp (the prefx case). The non-prefx case consists of the following two forgery types: 

(b1) ctr0i 6 ; and = ctrp; 8p; 1 : p : qs


0 0i
 

p(b2) 9p; 1 : p : qs 

: ctr0i = ctrp; 9k; 1 : k : min(n ; n p) : x 6= x ; i.e., the forged message is obtained by i k k

modifying a queried message starting with some block b e t ween the second and last block. 

Now w e c hoose index j mentioned above for each t ype of possible non-truncation forgeries, as follows: for 

forgeries of type (a), j = np 

+ 1 ; for forgeries of type (b1), j = 1 ; and for forgeries of type (b2), j is the 

0i 0 0smallest index such that x 6 x ; 1 : j : minfnp; n ig. In all cases 1 : j : n= 

p , and hence, the chosen j j 

i


0i
block x is well defned. j 

0i 0i 0i 0iEvent Ci implies that xj 

+ j x r 2 Is j 

+ j x r 2 S. Hence, by union bound or x0 0

0i 0i 0i 0i 

j 

+ j x r j 

+ j x rP
 r [Ci j Rv and Rs] :i 

2 Is j Rv and Rsi 

2 S j Rv and Rs]:iPr [x ] + Pr [x0 0

Let us defne the following events: 

0i 0i 

j 

+ j x r 2 Is 

2 S:
 

EIs : x 0

0i 

0
0i 

j 

+ j x rES 

: x 

Hence, 

Pr [Ci j Rv and Rs] : Pr [EIs j Rv and Rs] + Pr [ES 

j Rv and Rs]:i i i 

We determine upper bounds for events EIs j Rv; E S 

j Rv using the following Claim, whose proof is found i i 

at the end of this appendix: 

Claim 3.1 

(a) 

0qsniPr [EIs j Rv and Rs] : :i 2l 

(b) 

{s 

{s
Pr [ES 

j Rv and Rs] : log2 

+ 3 :i l2l+1 l 

Based on Claim 3.1, 

qsn
0 {s 

{siPr [Ci j Ri
v and Rs] : Pr [EIs j Ri

v and Rs] + Pr [ES 

j Ri
v and Rs] : 

2l 

+ 

l2l+1 

log2 

+ 3 : 

l 

ut 

(c) We fnd an upper bound for Pr [Di j Ci and Rv and Rs] in a manner very similar to the one used in i 

Claim 4 of the Proof of Theorem 2. 

0i 0iEvent Ci implies that there is at least one element x + s x r 2 Vi. Event Di is true if and only if for any 0s 

0 0i 0i 0i 0i2 Vi 

2 Vi; 1 : t :index s; 1 : s : n 1 , the block x collides with another block x+
 + s x r + t x r0 0i 

ts 

0 0i+ 1 ; s =6 t, or with ctr0i . But the latter collisions, namely xi 

0i 

0 

0i= ctr0i, where x + s x r0i 

0 2 Vi,+ s x rn s s 

is already precluded by event Ri
v . For the former collisions, let s b e the smallest index of the element 

0i 0i 0i 0i 0i 0i2 Vi. Hence, event Di implies that x 2 Vi 

, f g, and + s x r + s x r + s x rx0 0 0s s s 

0i 0i 0i 0iP
 r [Di j Ci and Rv and Rs] :i 

Pr [x g j Ci and Rv and Rs]:i2 Vi 

, f+ s x r + s x rx0 0s s 
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Furthermore, by union bound we h a ve X 

0i 0i 0i 0iPr [Di j Ci and Rv and Rs] : Pr [x + s x r = x + t x r j Ci and Rv and Rs]:i s 0 t 0 i 

t>s;x0i+txr0i2Vit 0 

0iIn this expression, r0 

is unknown, random and uniformly distributed since events Ri
v and Rs are true. 

0i 0i 0i 0i 0i 0i 0i 0iFurthermore, x ; x are constants, or x is a constant and xt 

= z0 

, since t > s; if x = z0 

, then xt 

iss t s t 

0i 0iindependent o f r0 

because z0 

was obtained by enciphering with a diferent k ey. Hence, by F act 2 (Appendix 

A), the probability is at most 

2m 

, where t , s = d x 2m and d is odd. Hence, 

2l 

2m 

0i 0i 0i 0iPr [x + s x r0 

= xt 

+ t x r j Ci and Ri
v and Rs] : :s 0 2l 

Furthermore, proceeding in the same manner as for Claim 4 in the proof of Theorem 2 (viz., Appendix A) 

we have 

0 

0i 0i 0i 0i i 
0 

X n
Pr [x + s x r = x + t x r j Ci and Rv and Rs] : (log2 

n + 3) ;s 0 t 0 i 2l+1 

i 

t>s;x0i+txr0i2Vit 0 

and hence, 

0ni 0Pr [Di j Ci and Rv and Rs] : 

2l+1 

(log2 

n + 3) :i i 

ut 

Proof of Claim 3.1 

0i 0i(a) Event EIs refers to collisions b e t ween the chosen block x + j x r and counters at signing, namely j 

0 

ctrp; 1 : p : qs. Hence, by union bound, and Fact 2 (Appendix A) 

qs 

qs X X 2m 2mqs0i 0iPr [EIs j Ri
v and Rs] : Pr [xj 

+ j x r0 

= ctrp j Ri
v and Rs] : 

2l 

=
2l 

; 

p=1 p=1 

0iwhere j = d x 2m and d is odd, since, by events Rv and Rs r is unknown, random and uniformly i 
0 

0i 0distributed, xj 

is a constant, and ctrp is a constant. Furthermore, since 2m : j : ni, it follows that 

qsj qsn
0 

iPr [EIs j Rv and Rs] : : :i 2l 2l 

ut 

0i 0i(b) Event EIs refers to collisions between the chosen block xj 

+ j x r0 

and inputs to f at signing other 

p pthan counters, namely blocks x + k x r0 

; 1 : p : qs; 1 : k : np 

+ 1 . Hence, by union bound, k 

qs 

npXX 

0i 0i p pPr [ES 

j Ri
v and Rs] : Pr [xj 

+ j x r0 

= xk 

+ k x r0 

j Rv and Rs]i 

p=1 k=1 

In a manner similar to the one used for Claim 3 (Part 2) in the proof of Theorem 2, we can show that 

{s 

{s
Pr [ES 

j Rv and Rs] : log2 

+ 3 :i l2l+1 l 

ut 
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Proof of Fact 1 

We will use Fact 3 from Appendix A, but frst we rewrite the sum as : 

N,2 N,1 N,2 N,1,a X X X X X 

2m 2m 2m=	 ; 

1 a�b N,1 

a=1 b=a+1 

a=1 c=1 

def 

where c = b , a. By Fact 3 from Appendix A, we h a ve 

N,1,a X N , 1 , a 

2m : (log2(N , 1 , a) + 3) : 

2 

c=1 

Hence, 

N,2	 N,2 X X N , 1 , a	 

X e 

2m :	 (log2(N , 1 , a) + 3) = (log2 

e + 3) ;
2	 2

1	 a�b N,1 

a=1 e=1 

def 

where the index e = N , 1 , a. Furthermore, since e : N , 2, we h ave 

N,2	 N,2 X X e 

X e	 (N , 1)(N , 2)
2m : (log2 

e + 3) : (log2(N , 2) + 3) :	 (log2(N , 2) + 3): 

2 2	 4 

1	 a�b N,1 

e=1 e=1 

ut 

Proof of Fact 2 

/s 

qs	 sSince np 

+ 1 : 

l 

and 

P
p=1(np 

+ 1) 

2 : 

/

l2

2 

, it follows that 

qs 

qs X	 X {2 

s{s 

{s
(np 

+ 1) 

2 log2(np 

+ 1) : (np 

+ 1) 

2 log2 

: log2 

: 

l l2 l 

p=1	 p=1 

ut 
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Appendix C - Proof [Security of stateful XEBC-MAC (XECBS-MAC) in an Adaptive 

Chosen-Message Attack] 

Throughout this proof, we use the same notation as in the Proof for Security of the XCBC$-XOR in a 

Message-Integrity A ttack, Appendix A, and the same facts (i.e., Facts 1 4). Unless mentioned otherwise, 

f Rl;lwe focus on the probability for adversary's success when f 

R
, and, for simplicity, we will drop the 

f Rl;lf 

R
subscript from the probability equations. 

pNotation. Let z ; 1 : p : qs; 1 : k : np 

be the hidden inputs of function f at the signing of message p;k
pp pi.e., for signed message x = x x , w e have 1 np 

p pz = x + p x R + k x R 

* :k k

Let zj
0i; 1 : i : qv; 1 : j : n0 b e the hidden inputs to function f at the verifcation of forgery i; i.e., for i 

0i 0i 0i 0i (s0i : qsthe forgery x using the message identifer (ID) s ), we h= x x a ve 0n
i 

1

0i 0i 0i z = xj 

+ s x R + j x R 

* :j 

To fnd an upper bound on the probability o f an adversary's success we use the same proof technique as 

for the XCBC$-XOR scheme. That is, we (1) defne several types of events on which we condition the 

adversary's success, (2) express the upper bound in terms of the conditional probabilities obtained, and 

(3) compute upper bounds on these probabilities. 

We provide some intuition for the choice of conditioning events defned, by giving the following examples of 

events that cause an adversary's success. (The reader can skip these examples without loss of continuity.) 

Examples of Adversary's Success. A way for the adversary to fnd a forgery x0 that passes the 

integrity check w0 = w, is to look for collisions in the input of f , at forgery verifcation. The following 

three examples illustrate why such collisions cause an adversary's success. Other such examples, and other 

ways to fnd forgeries, exist. 

Example 1 Collisions between inputs of f at forgery verifcation with those at message signing 

Suppose that all inputs of f at forgery verifcation collide with inputs of f at signing. We pessimistically 

declare the adversary to b e successful. For example, suppose that two of the block inputs of f at the 

0verifcation of forgery (x 6 ; w 

0) represen t o s w= x; s0 t w apped inputs of f at the signing of message x using 

message ID s0 and obtaining the authentication tag w. Also suppose that all other inputs of f at forgery 

verifcation are the same as those of message x at signing. In this case, the authentication check for forgery 

(x0; s 

0; w 

0 = w) will pass the integrity c heck. 

It should be noted that this criterion for adversary's success is pessimistic because, among the forgeries that 

make this event true some will decrypt correctly with negligible probability. For instance, if a forgery x0 

is a truncation of a signed message and the message ID s0i is equal to the identifer of the signed message, 

then, despite collisions b e t ween the inputs of f at forgery verifcation with inputs of f at signing, the 

truncation forgery has only negligible chance of success (viz., Claim 1 below provides some intuition for 

this statement). 

Example 2 Collisions among inputs of f at forgery verifcation 

0 0 0 x R + R*Suppose that two (hidden) inputs of f obtained during forgery verifcation, namely z + s= x1 1
0 0 0 x R + 2 

0x R*, for forgery x = x0 0 0, do not collide with any of the and z using message ID s+ s= x x1 2
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inputs of f obtained during signing of any message x but collide with each other; also assume that x0 6= x. 

0 0Then the forgery (x ; s ; w 

0 = 0) passes verifcation.
 

Example 3 Collisions among the inputs of f that cause discovery of R or R*
 

p sSuppose that, at message signing, two (hidden) inputs of function f collide; i.e., z = z ; 1 : p; s :k t 

qs; 1 : k : np; 1 : t : ns 6 (s; t). This can lead to the discovery of some, and possibly , where (p; k) = 

all, of the bits of R or R* .
 For example, suppose that xp 

1 + p x R + R* x R* ,
 orp + p x R + 2= x2
R* 0Knowing R*, an adversary can choose i and the forgery x 0 0 0 such 

p p with message ID s= x , x = x x.
 1 21 2
0 0 x R + R* 0 0 x R +2 x R*, i.e., x0 0 = R* = x2 

, x1.that x Then the adversary can let the + s + s= x , x1 2 2 1 

tag w0 = 0 . Similar examples which illustrate collisions that pessimistically lead to the discovery of R can 

be found; e.g., collision xp 

1 + p x R + R* = xr 

1 + r x R + R*, where p 6 (R* = r. is completely determined if 

p , r is odd.) 

Conditioning Events. To compute an upper bound on the probability of successful forgery, w e c hoose 

three conditioning events based on collisions in the inputs of f . Intuition for the choice of events is provided 

by Examples 1 3 above. We i n troduce the sets: 

pS : fz ; 1 : p : qs; 1 : k : npg;k
0i 0i 0Vi 

: fz ; z 2/ S; 1 : j : nig;j j 

where S is the set of all the inputs of function f at signing, and Vi 

is the set of all the inputs of function 

f at verifcation of query i. Based on sets S and Vi, w e i n troduce the following collision events that arise 

0i 0iat the verifcation of forgery (x ; s ; w 

0i): 

Ci : Vi 

= ;: 

Event Ci includes all instances when inputs of f at forgery verifcation collide with inputs of function f at 

message signing. Next we defne event Di as follows: 

Di : 9j; 1 : j : ni 

0 : zj 

0i 2 Vi 

0i 0i 0i 0and z 6 m; 8z ; 6 i:= z 2 Vi j = m; 1 : m : nj m 

Event Di states that there is at least one "new" input block of forgery i that does not collide with any 

other "new" block of forgery i, where here "new" input blocks refers to input blocks that are not in the 

set of input blocks at signing, namely S. It is clear that the defnition for Di makes sense only when event 

Ci is false. 

The rationale for introducing events Ci (or, actually, Ci) and Di is similar to the one used in the proof of 

Theorem 2 (Appendix A). That is, we w ant to fnd a desirable event which states that there exists a forgery 

block that does not collide with any other input to f at either message signing or verifcation of forgery 

i (as suggested by Examples 1 and 2). Clearly, if this event is true, then the probability of verifcation 

passing is 1/2l . To fnd this event, however, we m ust ensure that all other collisions that that may lead to 

the discovery of R or R*, are also ruled out for this block (as suggested by Example 3). For this reason, 

we i n troduce event Rs defned below. 

p sRs : zk 

6= z ; 1 : p; s : qs; 1 : k : np; 1 : t : ns; (p; k) = ( s; t)t 

6

Event Rs states that the set S is collision-free. Note that event Rs is independent o f a n y forgery i. 
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Upper bound on the Probability of Successful Forgery. By standard conditioning, we h a ve 

Pr [Succ] : Pr [Succ j Rs] + Pr [Rs]: 

The second term in the sum is bounded as in the following Claim: 

Claim 1 

{2 

l22l+1 

s (log2 

{s 

{sqs
Pr [Rs] : (log2 

qs + 3) 3)
 :
+
 +


+1l2l l 

To compute an upper bound for the probability of successful forgery, when event Rs is true, we note that 

i
n
0

f Rl;by union bound, the probability of adversary's success for all qv 

verifcation queries (when f 

R

0i 0i 0i 0; s ; w 

0i) is successful, where x = x ithe adversary is successful if one of his qv 

forgeries (x Hence,x .
0 

i 

1 

l) is: 

X 

] : Pr [w 

qv 

0

Hence, we frst compute the probability of adversary's success when a single forgery verifcation is allowed; 

0i 0i[Succ j Rs j RsE E
P
 ]:
r = y y 

i 

0n
i 

1 

=1i

0

forgeries into (1) truncation and (2) non-truncation forgeries. 

0i 0i j RsE E
i.e., we compute Pr [w ]. For this computation, we partition the space of all possible = y y i 

0n
i 

1 

0i 0

i
k 

i
n
0

= p and x0

0i such that 

iTruncation Forgeries. We call truncation a forgery x together with a value of s= x x 0 

i 

1 

0i 0p p
k

p p
n ; 8
there exists a signed message x such that s k; 1 : k : n= x x = x  n.
1 i pp 

0In this case, for any 1 : j : n h a ve: wei

0i 0p
j ; 8j; 1 : j : n ;
z = zj i

and thus 

0i 0i p
j

p
j= f(z ) = f(z )
 ;
y = yj j

and the computed tag becomes 

0 0

E E 

i p p

n

p

n
p E y p

nE E
 E E
 E E
 :
y y = y y = w yi 

0n
i 

1 0 

i 

0 

i
+11 p 

0p
n0 

i
+1 

p
nwhere the exclusive-or sum y contains at least one term since ny  n.
i pp 

0

In this expression, when there are no collisions in the inputs of f at signing, the values y

0i 0 j Rs] = Pr [w 

0i = wp E yi p

n
p
n j RsE E
 E E
Pr [w ]
= y y y =
 

i 

0n
i 

1 0 

i
+1 p

0i E wp j Rsp

n
p
nE E
Pr [y ]:
y = w0 

i
+1 p 

p

n
p
n; ; y are0 

i
+1 p 

i> n0 

values. These values appear only in the signing of message p and the tag wp contains other outputs of 

random, uniformly distributed and mutually independent. Since np 

there is at least one of these 

p 

1 

; 

mutually independent and independent o f all the other outputs of function f at signing. (Intuitively, we 

p 

0n
i 

which, due to event Rs being true, are also random, uniformly distributed, function f , namely y ; y

p

n
E E
 ypnshow that the exclusive-or sum y is random, uniformly distributed and unknown.) Hence, 0 

i
+1 

0

p

the exclusive-or sum yp
n0 

i
+1 

E E


p
n is random and uniformly distributed, and hence y
p

E E
 ypnp 

= w 

0i E wp j Rs
1
 

] = :
 

2l 

0i 0i p

n0 

i
+1E E
 y 

i 

0n
i 

j Rs] = Pr [yPr [w = y1 
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0i 0i 0i j Rs] for non-E E
Non-Truncation Forgeries. Now, we fnd an upper bound for Pr [w = y y 0 

i 

1 n

truncation forgeries. To compute this upper bound, we defne an event such that (1) the probability of 

successful forgery is 1/2l when this event occurs, and (2) the probability o f the complement o f this event 

has a negligible upper bound. 

Using the events defned above and by standard conditioning, we obtain: 

0i 0i 0i 0i 0i 0i j Ci and Di and Rsj Rs]E E
 E E
Pr [w Pr [w ]
:
 +
= y1 

y = y1 

y0 

i 

0 

i
n n

Pr [Ci or Di j Rs] 

0i 0i 0i j Ci and Di and RsE E
Pr [w ]
 +
:
 = y1 

y 0 

i
n

Pr [Ci or Di j Ci and Rs] + Pr [Ci j Rs] 

0i 0i 0i j Ci and Di and RsE E
Pr [w ] +
=
 = y1 

y 0 

i
n

Pr [Di j Ci and Rs] + Pr [Ci j Rs]; 

since the following events are equivalent: 

(Ci or Di j Ci and Rs) = (Di j Ci and Rs): 

Event ( Ci and Di and Rs) is the desired event mentioned earlier in this proof. If this event happens, then 

0 0ithere must exist an index j; 1 : j : ni 

such that zj 

does not collide with any other input to f , a t either 

0i 0imessage signing or verifcation of forgery i, and hence yj 

= f(zj 

) is random, uniformly distributed and 

0i 0i 0i 0iindependent of any other terms in the expression y E E Hence, y E E is random and y y.
0 

i 

0 

i 

1 1n n

uniformly distributed and hence, 

10i 0i 0i j Ci and Di and RsE E
Pr [w ] = :
= y1 

y 0 

i 2ln

0i 0i 0i j Rs]E E
The other probabilities that appear in the expression for the total probability Pr [w = y y 0 

i 

1 n

are bounded as in Claim 2, whose proof can be found below: 

Claim 2 

(a) 

qs 

{s 

{s
Pr [Ci j Rs] : (log2 

qs 

+ 3) + (log2 

+ 3) : 

2l+1 l2l+1 l 

(b) 

0ni 
0Pr [Di j Ci and Rs] : (log2 

n + 3) : 

2l+1 

i 

Based on this claim, for an arbitrary forgery i that is not a truncation, we obtain: 

01 n0i 0i 0i 

qs 

{s 

{s i 
0 = y E E y j Rs] : + + (log2 

+ 3) + (log2 

nPr [w (log2 

qs 

+ 3) 3)
+
 :
0 

i 

1 i2l+1 l2l+1 2l+12ln l 

For any forgery, the upper bound is the maximum from the upper bounds for truncation and non-truncation 

forgeries, hence, 

1 qs 

{s 

{s 

n0 

0i 0i 0i i 0Pr [w = y1 

E E
 yn0 

i 

j Rs] : 

2l 

+
 

2l+1 

(log2 

qs 

+ 3) +
 (log2 

+
 3)
 +
 (log2 

ni 

+
 3)
 :
 

l2l+1 l 2l+1 
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Hence, for all qv 

verifcation queries, we obtain by union bound and using Fact 4 from the proof of Theorem 

2: 

qv X 

0i 0i 0iPr [Succ j Rs] : Pr [w = y1 

E E yn j Rs]0 

i 

i=1 

qv X 1 qs 

{s 

{s 

n0 

(log2 

n 

0 

i 

i(log2 

qs 

+ 3) (log2 

3)
 3)
: +
 +
 +
 +
 +
 

2l+1 l2l+1 2l+12l l 

i=1 

qv 

qvqs 

qv{s 

{s 

{v 

{v 

= + (log2 

qs 

+ 3) + (log2 

+ 3) + (log2 

+ 3) : 

2l 2l+1 l2l+1 l2l+1l l 

Hence, by Claim 1, 

qv 

qvqs 

qv{s 

{s 

{v 

{v
Pr [Succ] : + (log2 

qs 

+ 3) + (log2 

+ 3) + (log2 

+ 3) + 

2l 2l+1 l2l+1 l2l+1l l 

{2qs{s s 

{s
(log2 

qs 

+ 3) + (log2 

+ 3) : 

l2l+1 l22l+1 l 

f F , the probability for adversary's success is bounded as follows: 

R
Finally, when f

P [Succ] : E +r R 

f+F 

qv 

qvqs 

qv{s 

{s 

{v 

{v 

+ (log2 

qs 

+ 3) + (log2 

+ 3) + (log2 

+ 3) + 

2l+1 l2l+1 l2l+12l l l 

{2qs{s s 

{s
(log2 

qs 

+ 3) + (log2 

+ 3)
l2l+1 l22l+1 l 

qv 

{v 

{v 

{s 

qs 

= E + + (log2 

+ 3) + qv 

+ (log2 

qs 

+ 3) + 

l2l+1 2l+12l l l 

{s 

{s 

{s 

qv 

+ (log2 

+ 3) : 

l2l+1l l 

ut 

Proofs of Claims 1 and 2 

Proof of Claim 1 

To fnd an upper bound for Pr [Rs], we defne the following set (which enables us to defne event Rs): 

u pSp;k 

= fz ; 1 : u : p , 1; 1 : v : nug f z ; 1 : v : kg;v v 

and events: 

Rs 

p;k 

: Sp;k 

is collision-free; 

and 

Rs = Rs p q :p;np+1 p+1;1; if s

Based on these defnitions, Rs is the true event, and Rs = Rs . By convention, Rs = Rs .1;1 
qs;nqs 

qs;nqs+1 

Using standard conditioning, we h a ve the recurrence relation: 

Pr [Rs ] : Pr [Rs j Rs ] + Pr [Rs ]:p;k+1 p;k+1 

p;k p;k
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Hence, 

s] 

sPr[R = Pr[R ]qs;nqs+1 

qs 

npXX 

ss: Pr[R j R ] + Pr[Rs 

p;k+1 

p;k 1;1] 

p=1 k=1 

qs 

npXX 

ss= Pr[R j Rp;k+1 

p;k] 

p=1 k=1 

s s s sbecause Pr[R1;1] = 0, since event R is always true. In here, we also have that Pr[R j R ] = 1;1 qs;nqs 

+1 

qs;nqs 

s 

sPr[R j R ] = 0. 

ps s 
uWhen event R is true, event R is true only when the collisions z = z happened, where either p;k p;k+1 k+1 

v 

p p+1 u p or u = p and v : k. By convention, z +1 

= z , if p qs. Hence, by union bound: np 1 

p,1 nu k XX X 

s 

s 

p u s 

p p sPr[R j Rp;k] : Pr[z = zv 

j Rp;k] + Pr[z = zv 

j Rp;k]:p;k+1 k+1 k+1 

u=1 v=1 v=1 

To compute a bound for the second sum, we note that 

p p * p pzk+1 

= z , (k + 1 , v) x R = xv 

, x ;v k+1

and by using Facts 2 and 3 (Appendix A), we obtain 

k X kp p sPr[z = z j R ] : (log2 

k + 3) :k+1 

v p;k 2l+1 

v=1 

To compute a bound for the frst sum, we split it into three terms based on the diferent v alues of v : nu 

relative t o k + 1, and obtain 

nu k X X 

p u s 

p u s 

p u sPr[zk+1 

= zv 

j Rp;k] = Pr[zk+1 

= zv 

j Rp;k] + Pr[zk+1 

= zk+1 

j Rp;k] + 

v=1 v=1 

nuX 

p u sPr[z = z j R ]:k+1 

v p;k

v=k+2 

(By convention, the probabilities for undefned collisions are set to zero. For instance, if k + 1 > nu, then 

p u sPr[z = z j R ] = 0 and the last sum is zero, since it does not have a n y terms.) k+1 

k+1 p;k

For the frst term of the frst sum, v : k, and 

p u * u pz = z , (k + 1 , v) x R = x , x + ( u, p) x R:k+1 

v v k+1 

Here, let m be defned as k + 1 , v = dx 2m and d odd; hence, by F acts 2 and 3 (Appendix A), one can 

show that 

k X kp u sPr[zk+1 

= zv 

j Rp;k] : 

2l+1 

(log2 

k + 3) : 

v=1 

Similarly, for the last term of the frst sum, v : k + 2, 

nuX n , 1p u s 

u 

, k
Pr[z = z j R ] : (log2(nu 

, k , 1) + 3):k+1 

v p;k 2l+1
 

v=k+2
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(Note that if nu 

, k , 1 : 0, the sum is set to zero, which is consistent with the convention for such sums). 

Also, for the middle term of the frst sum, v = k + 1 

p u u pz = z , (p , u) x R = xk+1 

k+1 k+1 

, xk+1 

and, hence, using Fact 2, we h a ve 

2m 

p u j RsPr [zk+1 

= zk+1 p;k] : 

2l 

where 0  p , u = d x 2m and d is odd. Hence, 

nu 2mX 

p u 

k nu 

, k , 1 

Pr [z = z j Rs (log2 

k + 3) + + (log2(nu 

, k , 1) + 3);k+1 

v p;k] : 

2l+1 2l 2l+1
 

v=1
 

where 0  p , u = d x 2m and d is odd. Furthermore, using Fact 4 (Appendix A), we h a ve: 

nuX 2m 2m 

p u 

nu 

, 1 nu
j RsPr [zk+1 

= zv p;k] : (log2(nu 

, 1) + 3) + : (log2 

nu 

+ 3) + : 

2l+1 2l 2l+1 2l 

v=1 

Hence, the frst sum becomes 

p,1 X 

nu p,1 

2mX X 

p u 

nu
Pr [z = z j Rs (log2 

nu 

+ 3) + :k+1 

v p;k] : 

2l+1 2l 

u=1 v=1 u=1 

Using Fact 3 (Appendix A), and 0  p , u = d x 2m and d odd, we obtain 

p,1 X 2m p , 1 

: (log2(p , 1) + 3): 

2l 2l+1 

u=1 

by using Fact 4 (Appendix A). Hence, the frst sum is bounded as follows: 

p,1 nu p,1 XX 

p u 

p , 1 

X nu
Pr [z = z j Rs (log2(p , 1) + 3) + (log2 

nu 

+ 3) :k+1 

v p;k] : 

2l+1 2l+1 

u=1 v=1 u=1 

Hence the bound of Pr [Rs j Rs ] becomes p;k+1 

p;k

p,1 nu k XX X 

p u 

p p[Rs j RsPr j Rs : Pr [z = z p;k] + Pr [z = zv 

j Rs 

p;k+1 

p;k] k+1 

v k+1 

p;k] 

u=1 v=1 v=1 

p,1 

p , 1 

X nu 

k 

: (log2(p , 1) + 3) + (log2 

nu 

+ 3) + (log2 

k + 3) : 

2l+1 2l+1 2l+1 

u=1 

Returning to the computation of the bound for Pr [Rs], we obtain 

qs 

npXX 

Pr [Rs] = Pr [Rs ] : Pr [Rs j Rs ]qs;nqs 

p;k+1 

p;k

p=1 k=1 0 1 

p,1 Xqs X 

np Xp , 1 nu 

k 

: 

@ (log2(p , 1) + 3) + (log2 

nu 

+ 3) + (log2 

k + 3) 

A 

2l+1 2l+1 2l+1 

p=1 k=1 

u=1 

qs 

np qs 

np p,1 XX p , 1 

XXX nu 

= (log2(p , 1) + 3) + (log2 

nu 

+ 3) + 

2l+1 2l+1 

p=1 k=1 

p=1 k=1 

u=1 

qs 

npXX k 

(log2 

k + 3)
2l+1
 

p=1 k=1
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In the frst sum, since p , 1 : qs, it follows that 

qs 

np qs 

npXX p , 1 

XX qs 

qs{s
(log2(p , 1) + 3) : (log2 

qs 

+ 3) : (log2 

qs 

+ 3) : 

2l+1 2l+1 l2l+1 

p=1 k=1 

p=1 k=1 

The second sum yields: 

qs 

np p,1 qs 

np p,1 XXX nu 

1 

XXX{s
(log2 

nu 

+ 3) : (log2 

+ 3) nu
2l+1 2l+1 l 

p=1 k=1 

u=1 p=1 k=1 

u=1 

/s 

Pp,1 

Pp,1since nu 

: . One can also see that for: p = 1 ; = 0 since it has no terms, for p = 2 ; = n1,l u=1 

nu u=1 

nu 

etc. Hence, 

qs 

np p,1 XXX nu 

1 {2 

= n2n1 

+ n3(n1 

+ n2) + + nqs 

(n1 

+ + nqs,1) : (n1 

+ + nqs 

)2 = 

s : 

2l+1 2 2l 

p=1 k=1 

u=1 

Hence, the second sum is bounded as follows: 

qs 

np p,1 XXX {2nu s 

{s
(log2 

nu 

+ 3) : (log2 

+ 3) : 

2l+1 l2l+2 l 

p=1 k=1 

u=1 

In the third sum, we h a ve k : np 

and, using Fact 4 (Appendix A), we obtain: 

qs 

np qs 

qs XX k 

X np(np 

, 1) 

X np{s
(log2 

k + 3) : (log2 

np 

+ 3) : (log2 

np 

+ 3)
2l+1 2l+2 l2l+2
 

p=1 k=1 

p=1 p=1
 

{2 

s 

{s 

: (log2 

+ 3) : 

l22l+2 l 

Hence, 

{2 {2qs{s s 

{s s 

{s
Pr [Rs] : (log2 

qs 

+ 3) + (log2 

+ 3) + (log2 

+ 3)
l2l+1 l22l+2 l22l+2l l 

{2qs{s s 

{s 

: (log2 

qs 

+ 3) + (log2 

+ 3) : 

l2l+1 l22l+1 l 

Pqs 

Pnp kRemark: With more care one can show that the sum (log2 

k + 3 ) is actually order p=1 k=1 2l+1 q
/2 /2 

s 

/s s 

/slo g 2 

, and, hence, for very large 

/s , the dominant term in the upper bound is (log2 

+ 3). ut 

l22l+2l2 2l l l l 

Proof of Claim 2 

(a) The proof of this Claim is very similar to the proof of Claim 3 in the Proof of Theorem 2 (viz., Appendix 

A). First, we choose an index j such that for any type of possible non-truncation forgery i, the input to 

0i 0if at the verifcation of forgery i, namely xj 

+ s x R + j x R*, does collide with any input to f during 

message signing with low probability. Next, we compute an upper bound for these collisions. 

All non-truncation forgeries can be partitioned in a similar manner as that used in the proof of Claim 3 of 

Theorem 2 (Appendix A). That is, we defne extensions of the plaintext of a signed message, which w e call 

the prefx case, and the complementary case, which w e call non-prefx case. The non-prefx case includes 

two separate subcases, namely when s0i is diferent from any message ID p of any message p obtained at 

signing (i.e., message (xp; p; w 

p)), or when there is a signed message p such that s0i = p. Hence, in the 
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latter subcase, there must b e at least a block position j in the forged message x0i that is diferent from 

the corresponding block of the signed message p. This partition of all possible forgery types shows that a 

0i 0i 0iforged message x = x x which is not a truncation, can be one of the following three complementary 1 n0 

i 

types: 

p0 0i 0i(a) 9p; 1 : p : qs 

: n > n p; s = p and 8k; 1 : k : np 

: x = x ; i.e., the forged message is an extension i k k

of message xp (the prefx case). The non-prefx case consists of the following two forgery types: 

(b1) s0i 6 ; and = p; 8p; 1 : p : qs
p0i 0 0i(b2) 9p; 1 : p : qs 

: s = p; 9k; 1 : k : min(ni; n p) : xk 

=6 xk; i.e., the forged message is obtained by 

modifying a queried message starting with some block b e t ween the second and last block. 

Now w e c hoose index j mentioned above for each t ype of possible non-truncation forgeries, as follows: for 

forgeries of type (a), j = np 

+ 1 ; for forgeries of type (b1), j = 1 ; and for forgeries of type (b2), j is the 

0i 0 0smallest index such that x 6 x ; 1 : j : minfnp; n ig. In all cases 1 : j : n= 

p , and hence, the chosen j j 
i


0i
block x is well defned. j 

0i 0iEvent Ci implies that xj 

+ s x R + j x R* 2 S. Hence, by union bound 

qs 

npXX 

0i 0i pPr [Ci j Rs] : Pr [xj 

+ s x R + j x R 

* = x + p x R + k x R 

* j Rs]:k 

p=1 k=1 

We write the inner sum as a sum of three terms, as follows: 

npX 

0i 0i pPr [xj 

+ s x R + j x R 

* = x + p x R + k x R 

* j Rs]k 

k=1 

j,1 X 

0i 0i p= Pr [xj 

+ s x R + j x R 

* = x + p x R + k x R 

* j Rs]k 

k=1 

0i 0i p+ Pr [xj 

+ s x R + j x R 

* = x + p x R + j x R 

* j Rs]k 

npX 

0i 0i p+ Pr [xj 

+ s x R + j x R 

* = x + p x R + k x R 

* j Rs];k 

k=j+1 

By the convention adopted above, the probability terms are zero for undefned collision events. (For 

p0i 0iexample, if j > np, then Pr [x + s x R + j x R* = x + p x R + j x R* j Rs] = 0.) For the collision j k
 

0i 0i 0i 0i 0i


p pxj 

+ s x R + j x R* = x + p x R + j x R* , we have ( s , p) x R = xk 

, xj 

. In this expression, if s = p,k 

0i 

pthen by the choice of index j we are in case (b2) where xj 

6 k, and the probability of this collision event = x

is zero. If s 6 e ha0i = p, then using Fact 2 (Appendix A), w ve 

0i 0i pPr [xj 

+ s x R + j x R 

* = x + p x R + j x R 

* j Rs] : 

2m 

;k 2l 

0i 0i 0i 0iwhere s , p = d x 2m if s > p , or p , s = d x 2m if p s . For, the other sums, in a manner similar to 

the one used in Claim 1, we h a ve: 

j,1 X 

0i 0i pPr [xj 

+ s x R + j x R 

* = x + p x R + k x R 

* j Rs]k 

k=1 

npX 

0i 0i p+ Pr [xj 

+ s x R + j x R 

* = x + p x R + k x R 

* j Rs]k 

k=j+1 

np
: (log2 

np 

+ 3) : 

2l+1 
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Hence, by using Fact 4 (Appendix A), we h a ve 

qs 

np qs XX X 2m 

0i 0i pPr [xj 

+ s x R + j x R 

* = x + p x R + k x R 

* j Rs] : + 

np 

(log2 

np 

+ 3)k 2l 2l+1
 

p=1 k=1 

p=1
 

qs X 2m {s 

{s 

: + (log2 

+ 3) : 

l2l+12l l 

p=1 

Pqs 2m 0iIn the frst sum, , we use the fact that 1 : p; s0i : qs; p 6= s (as shown in Case (b2) above, the p=1 2l 

probability is zero when p = s0i), hence 

qs 

s0i ,1 

qs X 2m X 2m X 2m
 

= +
 

2l 2l 2l 

p=1 p=1 p=s0i+1 

0i 0is , 1 qs 

, s , 10i 0i: (log2(s , 1) + 3) + (log2(qs 

, s , 1) + 3) 

2l+1 2l+1 

qs 

, 2 qs 

: (log2(qs 

, 1) + 3) : (log2 

qs 

+ 3)
2l+1 2l+1 

Hence, 

qs 

{s 

{s
Pr [Ci j Rs] : (log2 

qs 

+ 3) + (log2 

+ 3) : 

2l+1 l2l+1 l 

(b) We fnd an upper bound for Pr [Di j Ci and Rs] in a manner very similar to the one used in Claim 3(c) 

of the Proof of Theorem 3 (viz., Appendix B). Since the message ID does not matter in this case (since all 

the elements of Vi 

have the same message ID s0i, then the bound is identical 

0ni 0Pr [Di j Ci and Rs] : (log2 

n + 3) : 

2l+1 

i 

ut 
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Appendix D - Proof [Security of stateful XEBCS-XOR in a Message-Integrity Attack] 

Throughout this proof, we use the same notation as in the Proof for Security of the XCBC$-XOR in a 

Message-Integrity A ttack, Appendix A, and the same facts (i.e., Facts 1 4). Unless mentioned otherwise, 

R
we focus on the probability for adversary's success when f f GS, and, for simplicity, we will drop the 

R
f f GS 

subscript from the probability equations. 

pNotation. Let z ; 1 : p : qe; 1 : k : np 

be the hidden ciphertext blocks at the encryption of message p;k
pp pi.e., for encrypted message x = x x , w e have 1 

np 

p pz = f(x + p x R + k x R 

* ); 1 : k : npk k 

p pznp+1 

= f(xnp+1 

+ p x R): 

0i 0Let zj 

; 1 : i : qv; 1 : j : n + 1 be the hidden ciphertext blocks at the decryption of forgery i; i.e., for the i
 

0i 0i 0i 0i
forgery y = y1 

y 0 

y 0 

using the message identifer (ID) s0i (s0i : qe), we h ave 

n n +1
i i

0i 0i 0i 0 z = y , s x R , j x R 

* ; 1 : j : n + 1 :j j i 

To fnd an upper bound on the probability o f an adversary's success we use the same proof technique as 

for the XCBC$-XOR scheme. That is, we (1) defne several types of events on which we condition the 

adversary's success, (2) express the upper bound in terms of the conditional probabilities obtained, and 

(3) compute upper bounds on these probabilities. 

Conditioning Events. To compute an upper bound on the probability of successful forgery, w e c hoose 

three conditioning events based on collisions in the inputs of f and f,1 . We i n troduce the sets: 

pS : fz ; 1 : p : qe; 1 : k : np 

+ 1 g;k
0i 0i 0: fz ; z 2/ S; 1 : j : n + 1 g;Vi j j i 

where S is the set of all the hidden ciphertext blocks (outputs of function f at encryption), and Vi 

is the 

set of all the inputs of function f,1 at decryption of query i that are not in S. Based on sets S and Vi, w e 

introduce the following collision events that arise at the verifcation of forgery (y0i; s 

0i): 

Ci : Vi 

= ;: 

Event Ci includes all instances when inputs of f,1 at forgery decryption collide with outputs of function 

f at message encryption. Next we defne event Di as follows: 

Di : 9j; 1 : j : n 

0 + 1 : z 

0i 2 Vii j 

0i 0i 0i 0and z 6 ; 8z ; j 6 + 1 := z 2 Vi = m; 1 : m : nj m m i 

Event Di states that there is at least one "new" hidden ciphertext block for forgery i that does not collide 

with any other "new" hidden ciphertext block for forgery i, where "new" hidden ciphertext blocks refers 

to hidden ciphertext blocks that are not in the set of hidden ciphertext blocks at encryption, namely S. It 

is clear that the defnition for Di makes sense only when event Ci is false. 

The rationale for introducing events Ci (or, actually, Ci) and Di is similar to the one used in the proof 

of Theorem 2 (Appendix A). That is, we want to fnd a desirable event which states that there exists a 

hidden ciphertext block that does not collide with any other output of f at message encryption or with 

any other input to f,1 at the decryption of forgery i. Clearly, if this event is true, then the probability o f 
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R R R
verifcation passing is 1/2l if f f GS, where we use the reduction from f f F to f f GS 

as defned in 

Appendix A (Fact 1). To fnd this event, however, we m ust ensure that all other collisions that that may 

lead to the discovery of R or R* are also ruled out for this block (viz., Example 3 in Appendix C). For this 

reason, we i n troduce event Re defned below. 

p sRe : z =6 z ; 1 : p; s : qe; 1 : k : np + 1 ; 1 : t : ns + 1 ; (p; k) 6= ( s; t):k t

Event Re states that the set S is collision-free. Note that event Re is independent o f a n y forgery i. 

Upper bound on the Probability of Successful Forgery. Fact 1 of Appendix A reduces the problem 

to fnding an upper bound for P [Succ], and r R 

f+GS 

{v({v , l)
P
 r [Succ] : E + +
 P
 r [Succ]:R R

l22l+1f+F f+GS 

R
Unless we state otherwise, assume that f f GS 

(and drop this subscript from P [Succ].)r R 

f+GS 

By standard conditioning, we h a ve 

Pr [Succ] : Pr [Succ j Re] + Pr [Re]: 

The second term in the sum is bounded as in the following Claim: 

Claim 1 

{2 ({e , l)qe{e e 

{e 

{e
Pr [Re] : (log2 

qe + 3) + (log2 

+ 3) + :
+1 +1 +1l2l l22l l l22l

/e(/e,l)The proof of Claim 1 is similar to the proof of Claim 1 of Appendix C, and the extra term 2 2l+1 

appears 

l
R R R

f Rl;lbecause of the distinction between f f P 

l (since f f GS) and f . 

To compute an upper bound for the probability of successful forgery, when event Re is true, we note that 

the adversary is successful if one of his qv 

forgeries is (y0i; s 

0i Hence,0i 0i0i) is successful, where y = y y +1.01 n
i

R
by union bound, the probability of adversary's success for all qv 

verifcation queries (when f f GS) is: 

qv X 

0i 0i 0i[Succ j Re j ReE
P
 ] : Pr [x ]:
r = x x0 01+1n n
i i 

i=1 

Hence, we frst compute the probability of adversary's success when a single forgery verifcation is allowed; 

i.e., we compute Pr [Succ j Re]. For this computation, we partition the space of all possible forgeries into 

(1) truncation and (2) non-truncation forgeries. 

0i 0i 0i 0iTruncation Forgeries. We call truncation a forgery y together with a message identifer s= y y 01 +1n
i

p p p 0i 0i p(s0i : qe) such that there exists a ciphertext message y = y y where s = p and y = y ; 8k; 1 :1 np+1 k k
0k : n + 1  n + 1.pi

In this case, for any 1 : j : n0 + 1 we have: i

0i p 0 z = z ; 8j; 1 : j : n + 1 ;j j i

and thus 

0i 0i 0i p pxj 

= f,1(z ) , s x R , j x R 

* = f,1(z ) , p x R , j x R 

* = x ;j j j
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i 

for any 1 : j : n0 , and i

0i f,1(z 

0i 0i 

px R = f,1(z) , s +1) , p x Rx n0 

i
+1 

=
 n0 

i
+1 0 

i
n

0 + 1) x R 

* 0 + 1) x R 

*p p 

n0 

i
+1 

+
 (
 n+ p x R + ( , p x R = x :
= x n0 

i
+1 

i in

Hence, the integrity condition 

0i 0i 0iE E
x = x x0 

i
0 

i 

1+1n n

becomes 

p 0 x R 

* 

p pE E x(
 1)
+
 +
 0 

i 

;
x n = x
n0 

i
+1 

1i n

p p 

1; 

0where x are constants (since n 1 : np). Hence, by F act 2, we h a ve for the truncation forgery ;
 +
x 0 

i
i+1n

2m 

0i 0i 0i j Re] :E
Pr [x ;
n0 

i
+1 

= x1 

x 0 

i 2ln

where n0 + 1 = d x 2m and d is odd. Thus, since 2m : n0 + 1, we have i i 

0n + 10i 0i 0i ij Re] :E
Pr [x :
= x x0 

i
0 

i 

1+1 2ln n

0i 0i 0i 

0 

i 

j Re] for non-E E
Non-Truncation Forgeries. Now, we fnd an upper bound for Pr [x = x x
n0 

i
+1 

1 n

truncation forgeries. To compute this upper bound, we defne an event such that (1) the probability of 

successful forgery is 1/2l when this event occurs, and (2) the probability o f the complement o f this event 

has a negligible upper bound. 

Using the events defned above and by standard conditioning, we obtain: 

0i 0i 0i 0i 0i 0i j Ci and Di and Reej R ]0 

i 

E E
 E E
Pr [x Pr [x ]
 +
:
 n0 

i
+1 

= x1 

x n0 

i
+1 

= x1 

x 0 

i
n n

Pr [Ci or Di j Re] 

0i 0i 0i j Ci and Di and ReE E
Pr [x ]
 +
:
 n0 

i
+1 

= x1 

x 0 

i
n

Pr [Ci or Di j Ci and Re] + Pr [Ci j Re] 

0i 0i 0i j Ci and Di and ReE E
Pr [x ] +
=
 n0 

i
+1 

= x1 

x 0 

i
n

Pr [Di j Ci and Re] + Pr [Ci j Re]; 

since the following events are equivalent: 

(Ci or Di j Ci and Re) = (Di j Ci and Re): 

Event ( Ci and Di and Re) is the desired event mentioned earlier in this proof. If this event happens, then 

10i 0i 0i j Ci and Di and ReE E
Pr [x ] = :
 n0 

i
+1 

= x1 

x 0 

i 2ln

0i 0i 0i 

0 

i 

j Re]E E
The other probabilities that appear in the expression for the total probability Pr [x = x x
n0 

i
+1 

1 n

are bounded as in Claim 2, whose proof is similar to that of Claim 2 in Appendix C. 

Claim 2 

(a) 

qe 

{e 

{e
Pr [Ci j Re] : (log2 

qe 

+ 3) + (log2 

+ 3) : 

2l+1 l2l+1 l 
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(b) 

n + 1iPr [Di j Ci and Re] : (log2(n 

0 

2l+1 

0 

i 

+ 1) + 3) :
 

Based on this claim, for an arbitrary forgery i that is not a truncation, we obtain: 

n + 1i3 ) + (log2(n 

01 qe 

{e 

{e0i 0i 0i 0 

0 

i 

j Re] :E E
Pr [x (log2 

qe 

+ 3) (log2 

1) + 3)
 :
+
 +
 +
 +
 n0 

i
+1 

= x1 

x i2l+1 l2l+1 2l+12ln l 

For any forgery, the upper bound is the maximum from the upper bounds for truncation and non-truncation 

forgeries, hence, 

0n + 1i3 ) + (log2(n 

1 qe 

{e 

{e0i 0i 0i 0 

0 

i 

j Re] :E E
Pr [x (log2 

qe 

+ 3) (log2 

1) + 3)
+
 +
 +
 +
 :
 n0 

i
+1 

= x1 

x i2l+1 l2l+1 2l+12ln l 

Hence, for all qv 

verifcation queries, we obtain by union bound, 

qv X 

0i 0i 0i[Succ j Re] j Re]E E
P
 : Pr [xr n0 

i
+1 

= x1 

x 0 

i
n

i=1 

qv X 1 qe 

{e 

{e 

0n + 1i3 ) + (log2(n 

0(log2 

qe 

+ 3) (log2 

1) + 3)
: +
 +
 +
 +
i2l+1 l2l+1 2l+12l l 

i=1 

qv 

qvqe 

qv{e 

{e 

{v 

{v 

= + (log2 

qe 

+ 3) + (log2 

+ 3) + (log2 

+ 3) : 

2l 2l+1 l2l+1 l2l+1l l 

Hence, by Claim 1, 

qv 

qvqe 

qv{e 

{e 

{v 

{v
Pr [Succ] : + (log2 

qe 

+ 3) + (log2 

+ 3) + (log2 

+ 3) + 

2l 2l+1 l2l+1 l2l+1l l 

{2qe{e e 

{e 

{e({e 

, l)
(log2 

qe 

+ 3) + (log2 

+ 3) + : 

l2l+1 l22l+1 l22l+1l 

f F , the probability for adversary's success is bounded as follows: 

R
Finally, when f

{v({v 

, l) 

l22l+1 

+
P
 r [Succ] : E + 

f 

R 

+F 

= 

qv 

2l 

+ 

qvqe 

2l+1 

(log2 

qe 

+ 3 ) + 

qv{e 

l2l+1 

(log2 

{e 

l 

+ 

qe{e 

l2l+1 

(log2 

qe 

+ 3 ) + 

{2 

e 

l22l+1 

(log2 

{e 

l 

+ 3 ) + 

E + 

{v({v 

, l) 

l22l+1 

+ 

qv 

2l 

+ 

{v 

l2l+1 

(log2 

{v 

l 

+ 3 ) 

qv 

+ 

{e 

l 

qe 

2l+1 

(log2 

qe 

+ 3 ) + qv 

+ 

{e 

l 

3 ) + 

{v 

l2l+1 

(log2 

{v 

l 

+ 

{e({e 

, l) 

l22l+1 

+ 

{e 

l2l+1 

(log2 

{e 

l 

+ 3 ) + 

3 ) + 

{e({e 

, l) 

l22l+1 

: 

ut 

64
 


