Two Methods to Calculate the Required Number of 
 Rounds of Miller-Rabin Testing 

Currently, NIST recommends that when testing a candidate prime for use in DSA and RSA signature schemes, the following tests are performed:

When testing the RSA p and q primes, 8 rounds of Miller-Rabin (M-R) are performed followed by a single Lucas test.  For the smaller primes
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, that are used as part of the assurance that the p and q primes are “strong”, 50 Miller-Rabin tests are required.  These recommendations are in accordance with theAmerican National Standard (ANS) X9.31 standard.

For the DSA primes p and q, 50 M-R tests are required by Federal Information Processing Standard (FIPS) 186-2.  The reason for the large number of the required tests is that if an error occurs and either p or q turns out to be a composite number, then this error will be experienced system-wide.
NIST is taking a fresh look at these requirements and preparing the new recommendations for the number of M-R tests after considering comments that were submitted for the draft of FIPS 186-3.  After searching available literature on primality testing, two alternative methods are presented below; NIST strongly recommends Method 1, rather than Method 2.  
1. 
Method 1.
(Recommended)

Apply the ideas of paper [1] to estimate p k,t , the probability that an odd k-bit integer that passes t rounds of M-R testing is actually composite.  The probability 
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 is understood as the ratio of the number of odd composite numbers of a binary length k that pass t rounds of M-R testing (with randomly generated bases) to the total number of odd integers of binary length k. This is equivalent to assuming that candidates selected for testing will be chosen uniformly at random from the entire set of odd k-bit integers. From the perspective of a party charged with the responsibility of generating a k-bit prime, the objective is to determine a value of t such that 
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 is no greater than an acceptably small target value
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From [1], it is possible to compute an upper bound for 
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 as a function of k and t.  Inversing this, one can compute an upper bound for t as a function of k and 
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, the maximum allowed probability of accidentally generating a composite number.  The algorithm for computing t is as follows:  

For t = 1, 2 … (up to some stopping value needed to be able to stop when no number of rounds of M-R would suffice)

For M = 3, 4 … 
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 as in (2).
If 
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Stop

Endif

Endfor

Endfor 

Here, k is the bit length of the candidate primes, and (2) is as follows:
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Armed with this expression for t, the following methodologies are proposed for testing the DSA and RSA candidate primes.
1.1 Generating DSA Primes

For the DSA, one has to exercise the maximum possible care when generating the primes.  The same primes p and q are used by many parties, since they are domain parameters.  This means that any weakness that these numbers may possess would affect multiple users.  It also means that the primes are not generated very often; typically, the entire system uses the same set of parameters.  Therefore, in this case, some additional care is called for.
With this in mind, it may be too optimistic to assume that conditions allow one to simply compute t according to (1) and (2).  One may want to be more cautious and either include some additional testing (beyond the M-R tests) or use a more conservative estimate of the error probabilities associated with the M-R tests.  This approach leads to the following strategy: either (A) use the number of M-R tests as calculated above and follow them with a single Lucas test, as defined, for example, in ANS X9.31, or (B) base the choice of t on a different formulation of the probability of an error occurring in the M-R testing, leading to a more conservative recommendation.
One approach of type (B) would be to adopt the viewpoint of the majority of system users, who have no part in generating the (supposed) prime, but who must rely upon its primality for their security. Such parties may be concerned that the candidates for M-R testing have been selected in a fashion that deviates significantly from the uniform distribution – which was assumed when determining t according to (1) and (2). In cases where the selection process could be unusually biased in some way, it is important to minimize the probability that a composite number will survive testing.  It can be shown that for any k-bit odd composite number (regardless of how it was selected), the probability that it will pass t rounds of M-R testing with randomly chosen bases is less than
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 (although this is not a particularly tight bound). Selecting t such that 4-t ≤ ptarget is equivalent to choosing t ≥ (log2(ptarget)/2. To insure that a composite number has a probability no greater than ptarget of surviving the M-R tests, one can set the number of rounds at t = (–log2(ptarget)/2(. Even if the method of selecting candidates were so biased that it offered nothing but composite numbers for testing, one can reasonably expect that it would take at least 1/ ptarget attempts (which is greater than 4t ) before a composite number would slip through the t-round M-R testing process.
WARNING: As the discussion above illustrates, one must take care when using the phrase “error probability” in connection with the recommended number of rounds of M-R testing. The probability that a composite number survives t rounds of Miller-Rabin testing is not the same as p k,t , which is the probability that a number surviving t rounds of Miller-Rabin testing is composite. Ordinarily, the latter probability is the one that should be of most interest to a party responsible for generating primes, while the former may be more important to a party responsible for validating the primality of a number generated by someone else. However, for sufficiently large k (e.g., k ≥ 51), it can be shown that p k,t ≤ 4-t – under the same assumptions concerning the selection of candidates as those made to obtain formula (2).  (See [1].)  In such cases, t = (–log2(ptarget)/2( rounds of Miller-Rabin testing can be used both in generating and validating primes, with ptarget serving as an upper bound on both the probability that the generation process yields a composite number and the probability that a composite number would survive an attempt to validate its primality.
This leads us to the following recommended values for t when selecting the DSA primes p and q.  Please note that the sizes of p and q are chosen in such a way that the probability (
[image: image15.wmf]80

2

-

, or 
[image: image16.wmf]112

2

-

, or 
[image: image17.wmf]128

2

-

) of having the signature forged when p and q are known to be prime is similar to the probability of mistakenly generating a composite number.
	
	Number of M-R tests only
	Number of M-R when followed by one Lucas test

	Error probability: 
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p size - 1024 bits, q size - 160 bits
	40
	For p –  3
For q –  19

	Error probability: 
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p size - 2048 bits, q size - 224 bits
	56
	For p –  3

For q –  24

	Error probability: 
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p size - 3072 bits, q size - 256 bits
	64
	For p –  2

For q –  27


Table 1.  Recommended number of Miller-Rabin tests when generating primes p and q for use in DSA, as determined by Method 1, using strategies (A) and (B).
1.2
 Generating Primes for RSA Signatures 

When generating primes for the RSA signature algorithm, it is still very important to reduce the probability of errors in the M-R testing procedure.  However, if a composite number survives the testing process, the consequences of the error may be less dramatic than in the case of generating DSA domain parameters, since the composite number is used by only one entity to generate its key pair.  If an extremely unlikely event occurs, and one of the
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 primes turns out to be composite, then there is still a high probability that the corresponding RSA prime will satisfy the requisite conditions.  If the p or q value generated for some user turns out to be composite, the problem will not go undiscovered for long, since it is almost certain that signatures generated by that user will not be verifiable.
NIST therefore proposes that it is not necessary to use the Lucas test when testing
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for primality.  When testing p and q, in general, it is sufficient to have the number of the Miller-Rabin tests as derived from (1) and (2).  One always has the option to follow this with a single Lucas test.  

1.2.1.
   Sizes of Primes and Error Probabilities
The sizes of p and q that are recommended for use in RSA signature algorithms are 512, 1024 and 1536 bits.  They yield modulus sizes of 1024, 2048 and 3072 bits, and security strengths of 80, 112 and 128 bits, correspondingly.  Hence, it makes sense to match the number of rounds of Miller-Rabin testing to ptarget values of 2-80, 2-112, and 2-128, respectively.
The sizes of 
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are generally chosen to be 21 to 40 bits larger than the security strength of the RSA signature algorithm, based on the size of p and q.  This is consistent with the original choice of parameters in AN X9.31, where the p and q would yield 80 bits of security and the smaller primes were 101 to 120 bits in length.
The following numbers of tests are therefore recommended. 

	
	M-R tests only
	Optionally 
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 - 101 to 120 bits

p, q size – 512 bits, n – 1024 bits
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 –  28
p, q –  5
	p, q –  5 M-R plus one Lucas test

	Error probability: 
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 - 133 to 152 bits

p, q size – 1024 bits, n – 2048 bits
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p, q –  5
	p, q –  5 M-R plus one Lucas test
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 - 149 to 168 bits

p, q size – 1536 bits, n – 3072 bits
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 –  44
p, q –  4
	p, q –  4 M-R plus one Lucas test


Table 2.  Recommended number of Miller-Rabin tests when generating primes for use in RSA digital signatures, as determined by (1) and (2) above.
1.3. Special Case of Security Strength of 100 Bits 

In the previous subsection, the most plausible interpretation of the intent of ANS X9.31 when choosing the prime sizes and the error probabilities is presented.  The sizes of p and q determine the strength of the signature algorithm and this, in turn, determines the choice of the target error probability in the Miller-Rabin tests and, as a result, the required number of these tests.  

However, the same ANS X9.31 standard could be interpreted as demanding that the Miller-Rabin error probability always be 2-100 .  This is because it required 50 Miller- Rabin tests for 
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, and one can argue that it was derived from the estimate 4-t ≤ ptarget.  NIST computed the required numbers of Miller-Rabin tests for the 2-100 error probability.  The number of tests is based on the algorithm (1) and (2). The sizes of p and q are, as before, 512, 1024, or 1536.  The sizes of
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are either 101 to 120 bits as in ANS X9.31, or 121 to 140 bits, to be consistent with the (log2(ptarget)+21 to (log2(ptarget)+40 approach. 
The following statements summarize the requirements when ptarget = 
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For
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 - 101 to 120 bits, 38 Miller-Rabin tests are required.

For
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 - 121 to 140 bits, 35 Miller-Rabin tests are required.

For p, q – 512 bits, 7 Miller-Rabin tests are required.

For p, q – 1024 bits, 4 Miller-Rabin tests are required.

For p, q – 1536 bits, 3 Miller-Rabin tests are required.

As before, when testing p and q for primality, the Miller-Rabin tests may optionally be followed by a single Lucas test.

2. 
Method 2.
(Not Recommended)
An even more aggressive approach to estimating the required number of M-R has been proposed in [1].  It is based on the same interpretation of the error probability
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 as used in Method 1 to arrive at the estimate given by (2) (which, in itself, is rather aggressive).  In order to obtain a tighter bound on
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, an optimization is performed over the values of not just one integer parameter M, as in (1), but over a large array of parameters, some of which are real-valued.  The details are outlined in [2], but some are omitted, so it is necessary to trust that the authors performed their optimization the right way.

The resulting recommendations for t are stated in [1] for only a few pairs of 

(k, 
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. One can also find this table of the calculated values of t in [3], Fact 4.48.  Without the full details stated in any of the papers, it is not possible to apply their analysis to the different values of the target error probability.  Therefore, NIST does not recommend choosing this method and provides it in this paper only for completeness.  NIST would even argue against using this method when the M-R tests are followed by a Lucas test.  This is especially true if the DSA candidate primes are tested.  
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